54ABT573 Octal D-Type Latch with TRI-STATE Outputs

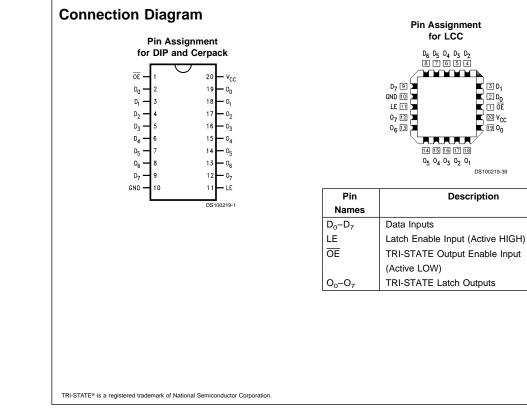
National Semiconductor

54ABT573 Octal D-Type Latch with TRI-STATE[®] Outputs

General Description

The 'ABT573 is an octal latch with buffered common Latch Enable (LE) and buffered common Output Enable $(\overline{\text{OE}})$ inputs.

This device is functionally identical to the 'ABT373 but has different pinouts.


Features

- Inputs and outputs on opposite sides of package allow easy interface with microprocessors
- Useful as input or output port for microprocessors

- Functionally identical to 'ABT373
- TRI-STATE outputs for bus interfacing
- Output sink capability of 48 mA, source capability of 24 mA
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed latchup protection
- High impedance glitch-free bus loading during entire power up and power down
- Nondestructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9321901

Ordering Code

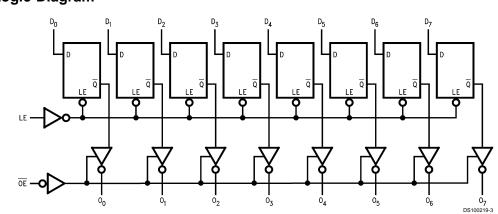
Military	Package Package Description Number		
54ABT573J-QML	J20A	20-Lead Ceramic Dual-In-Line	
54ABT573W-QML	W20A	20-Lead Cerpack	
54ABT573E-QML	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C	

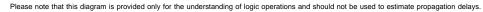
© 1998 National Semiconductor Corporation DS100219

Functional Description

The 'ABT573 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram


Function Table								
	Outputs							
ŌE	LE	D	0					
L	н	Н	Н					
L	н	L	L					
L	L	Х	0 ₀ 7					
н	х	Х	Z					


-

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial $O_0 = Value$ stored from previous clock cycle

Absolute Maximum Ratings (Note 1)

_	
Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to +5.5V
in the HIGH State	–0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	Twice the rated I _{OL} (mA)
DC Latchup Source Current	–500 mA

Over Voltage Latchup (I/O)

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	–55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Note 1: Absolute maximum ratings are values be damaged or have its useful life impaired. Fu conditions is not implied.	

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Para	Parameter ABT573 Uni		Units	Vcc	Conditions			
			Min	Тур	Max	1			
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Volt	age			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{OH} = -3 mA	
		54ABT	2.0					I _{OH} = -24 mA	
V _{OL}	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA	
I _{IH}	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)	
					5			V _{IN} = V _{CC}	
I _{BVI}	Input HIGH Current				7	μA	Max	V _{IN} = 7.0V	
	Breakdown Test								
IIL	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)	
					-5			$V_{IN} = 0.0V$	
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA	
								All Other Pins Grounded	
I _{OZH}	Output Leakage Curren	t			50	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$	
I _{OZL}	Output Leakage Curren	t			-50	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$	
I _{OS}	Output Short-Circuit Cu	rrent	-100		-275	mA	Max	V _{OUT} = 0.0V	
I _{CEX}	Output High Leakage C	urrent			50	μA	Max	V _{OUT} = V _{CC}	
I _{ZZ}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Others GND	
I _{CCH}	Power Supply Current				50	μA	Max	All Outputs HIGH	
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW	
I _{CCZ}	Power Supply Current				50	μA	Max	OE = V _{CC}	
								All Others at V _{CC} or GND	
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_{I} = V_{CC} - 2.1V$	
		Outputs TRI-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V	
		Outputs TRI-STATE			2.5	mA		Data Input V _I = V _{CC} - 2.1V	
								All Others at V_{CC} or GND	
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open	
	(Note 4)				0.12	MHz		\overline{OE} = GND, LE = V _{CC} (Note 3)	
								One Bit Toggling, 50% Duty Cycle	

3

Note 3: For 8 bits toggling, $I_{\rm CCD}$ < 0.8 mA/MHz.

Note 4: Guaranteed but not tested.

10V

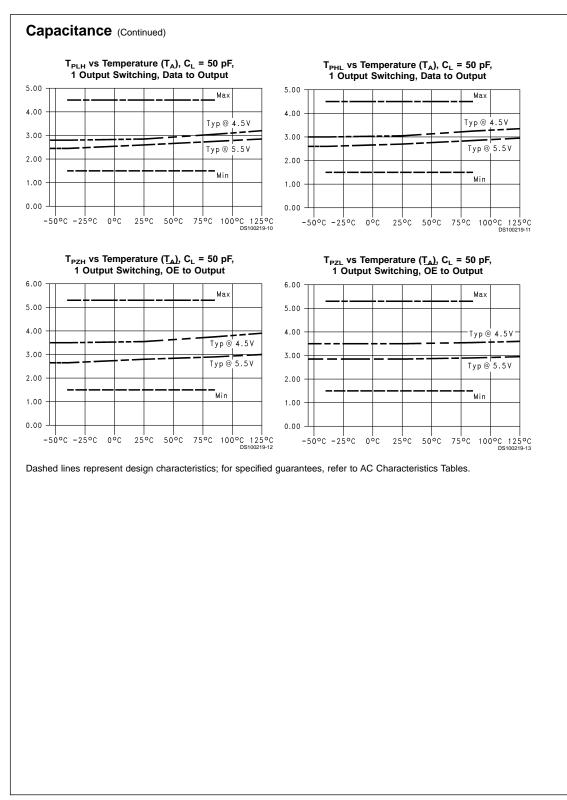
DC	Electrical	Characteristics
		Characteristics

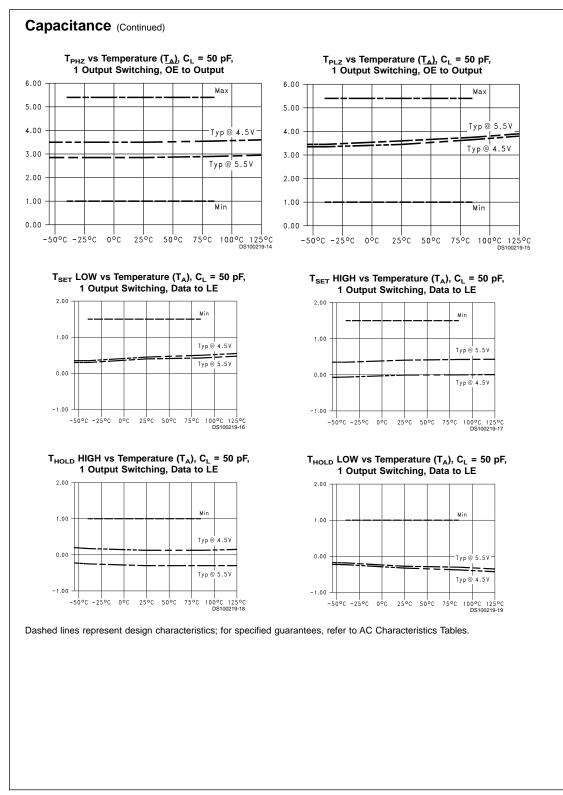
Symbol	Parameter	Min	Max	Units	V _{cc}	Conditions
						C_{L} = 50 pF, R_{L} = 500 Ω
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.9	V	5.0	$T_A = 25^{\circ}C$ (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-1.7	V	5.0	$T_A = 25^{\circ}C$ (Note 5)

Note 5: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

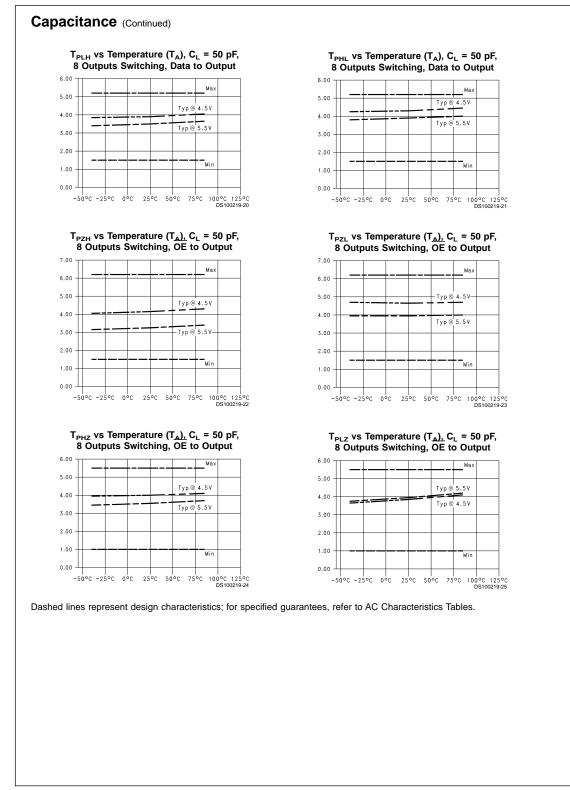
AC Electrical Characteristics

Symbol	Parameter	54ABT T _A = -55°C to +125°C		Units	Fig. No.	
	Γ					
		$V_{\rm CC} = 4.5$	iV to 5.5V			
		C _L =	50 pF			
	Γ	Min	Max			
t _{PLH}	Propagation Delay	1.0	6.4	ns	Figure 4	
t _{PHL}	D _n to O _n	1.5	6.7			
t _{PLH}	Propagation Delay	1.0	7.1	ns	Figure 4	
t _{PHL}	LE to O _n	1.5	7.5			
t _{PZH}	Output Enable Time	0.8	6.5	ns	Figure 6	
t _{PZL}		1.5	7.2			
t _{PHZ}	Output Disable Time	1.5	7.7	ns	Figure 6	
t _{PLZ}	Time	1.0	7.0			

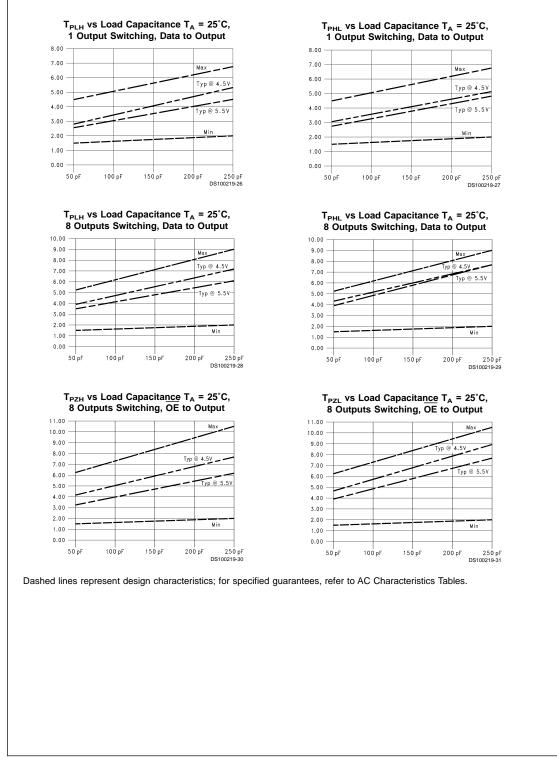

AC Operating Requirements

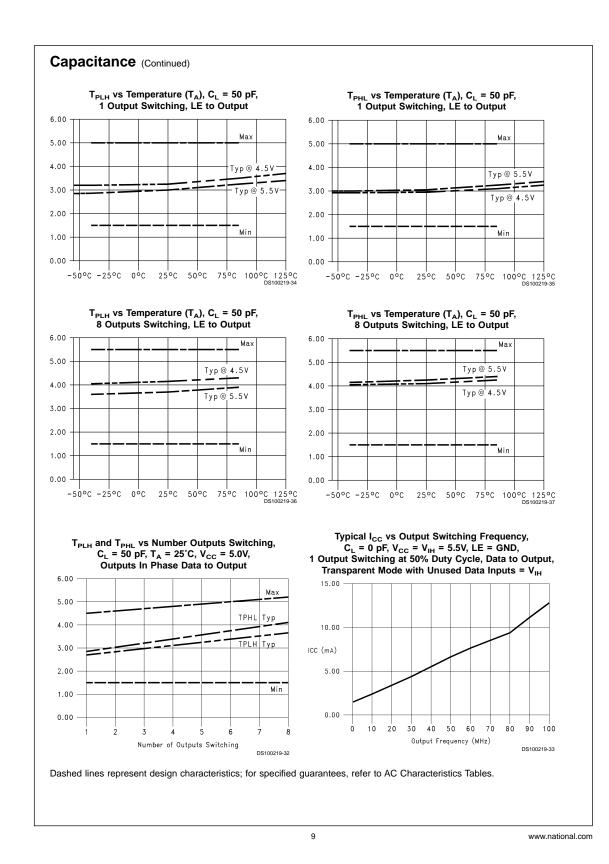

Symbol	Parameter	$\frac{54ABT}{T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C}$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$		Units	Fig. No.
		Min	Max		
t _s (H)	Set Time, HIGH	2.5		ns	Figure 7
t _s (L)	or LOW D _n to LE	2.5			
t _h (H)	Hold Time, HIGH	2.5		ns	Figure 7
t _h (L)	or LOW D _n to LE	2.5			
t _w (H)	Pulse Width,	3.3		ns	Figure 5
	LE HIGH				

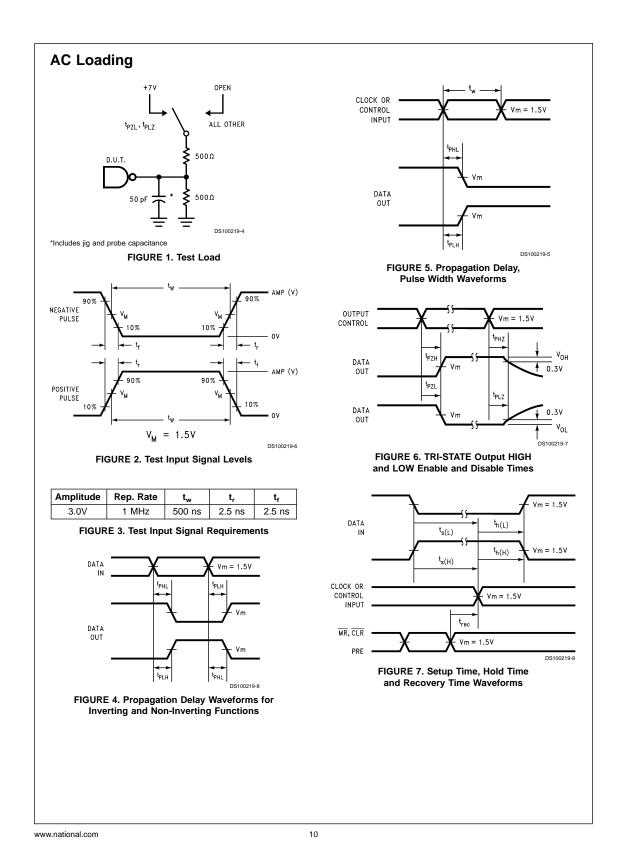
Capacitance

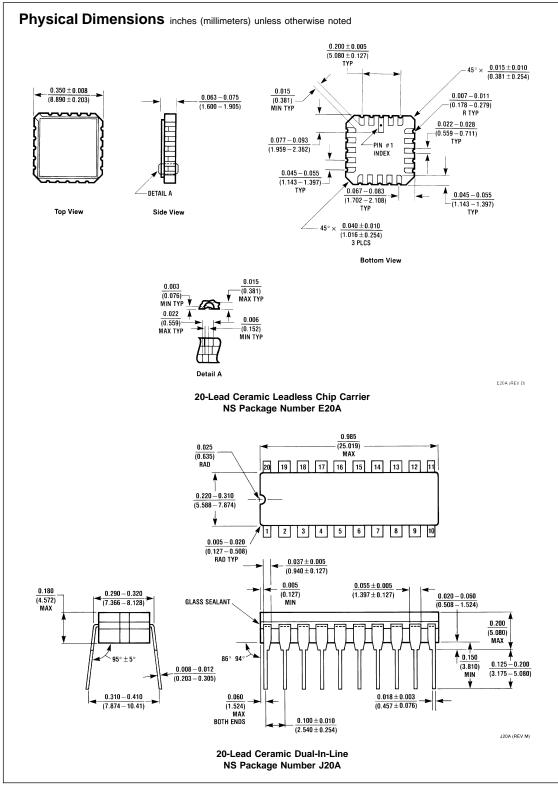

Symbol	Parameter	Тур	Units	Conditions		
				(T _A = 25°C)		
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0V$		
C _{OUT} (Note 6)	Output Capacitance	9	pF	$V_{CC} = 5.0V$		
Note C. C. is measured at fragmany (A Mile and Mile OTD 000D Mathed 0040						

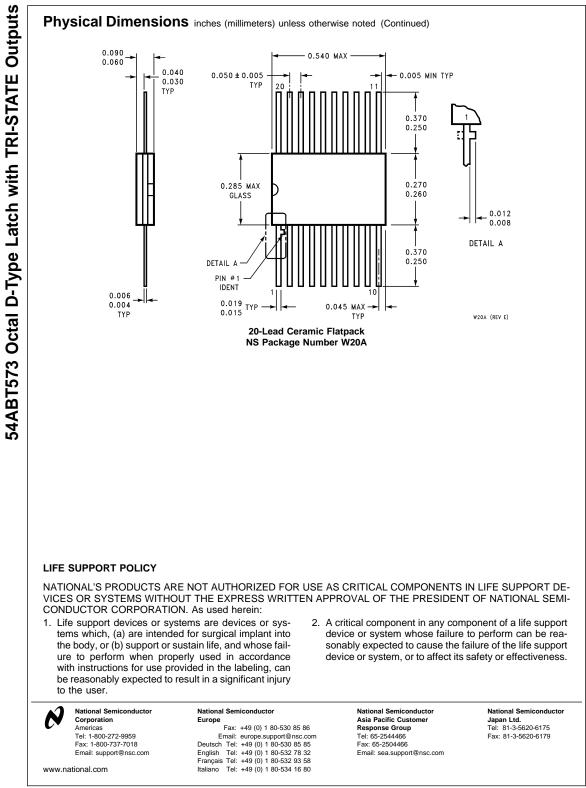
Note 6: C_{OUT} is measured at frequency f = 1 MHz per MIL-STD-883B, Method 3012.






6





Downloaded from Elcodis.com electronic components distributor

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.