

Voltage Transducer LV 25-P/SP2

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$I_{PN} = 10 \text{ mA}$ $V_{PN} = 10..1500 \text{ V}$

Electrical data

$egin{aligned} oldsymbol{I}_{PN} \ oldsymbol{I}_{P} \ oldsymbol{R}_{M} \end{aligned}$	Primary nominal r.m.s. or Primary current, measur Measuring resistance		10 0 ± 14 R _{M min}	4 R _{M ma}	mA mA
	with ± 15 V	@ \pm 10 mA _{max} @ \pm 14 mA _{max}	100 100	343 183	$\Omega \ \Omega$
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m. Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC iso		25 2500 : ± 15 10 + I _s 4.1		mA V mA kV

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ I_{PN} , $T_A = 25$ °C Linearity error		± 0.8 < 0.2		% %
I _O	Offset current @ $\mathbf{I}_{\rm P}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	+ 25°C + 85°C - 40°C + 25°C	± 0.15	Max ± 0.15 ± 0.60 ± 0.80	mΑ
t _r	Response time $^{\mbox{\tiny 1)}}$ @ 90 % of $\mathbf{V}_{\mbox{\tiny PN}}$		25		μs

General data

$T_{_{\rm A}}$	Ambient operating temperature	- 40 + 85	°C	
T _s	Ambient storage temperature	- 45 + 90	°C	
R _P	Primary coil resistance @ T _A = 85°C	300	Ω	
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 85°C	117	Ω	
m	Mass	22	g	
	Standards	EN 50155 : 1	EN 50155 : 1995	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_d = 4.1 \text{ kV}$
- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Railway equipment.

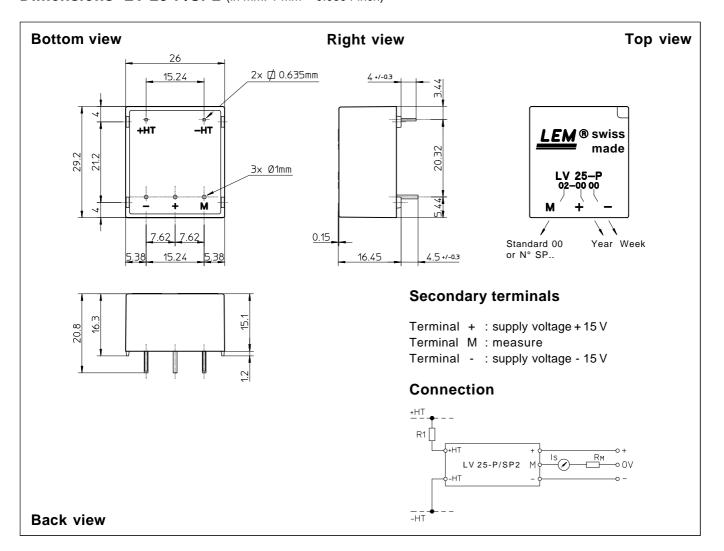
Principle of use

 For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

 $\underline{\text{Note}}$: $\,^{1)}$ R $_{_1}$ = 25 k Ω (L/R constant, produced by the resistance and inductance of the primary circuit).

060315/4

Dimensions LV 25-P/SP2 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.2 mm

• Fastening & connection of primary 2 pins

0.635 x 0.635 mm

• Fastening & connection of secondary 3 pins Ø 1 mm

• Recommended PCB hole 1.2 mm

Remark

• I_s is positive when V_p is applied on terminal +HT.

Instructions for use of the voltage transducer model LV 25-P/SP2

Primary resistor R, : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, R, should be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA.

Example: Voltage to be measured $V_{PN} = 250 \text{ V}$

a) ${f R}_{_1}$ = 25 k $\Omega/2.5~$ W, ${f I}_{_P}$ = 10 mA b) ${f R}_{_1}$ = 50 k $\Omega/1.25$ W, ${f I}_{_P}$ = 5 mA Accuracy = \pm 0.8 % of \mathbf{V}_{PN} (@ \mathbf{T}_{A} = $+25^{\circ}$ C) Accuracy = \pm 1.6 % of \mathbf{V}_{PN} (@ \mathbf{T}_{A} = $+25^{\circ}$ C)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to R, in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 10 to 1500 V.

060315/4

page 2/2