

TDA9975A

Triple 10-bit video converter and HDMI receiver interface with digital processing

Rev. 01 — 17 March 2008

Product short data sheet

1. General description

The TDA9975A is a combination of an analog video interface and a High-Definition Multimedia Interface (HDMI) receiver. The analog video interface comprises three 10-bit video converters, each converter having triple inputs. The HDMI receiver has two inputs and an embedded High-bandwidth Digital Content Protection (HDCP) keys memory.

The IC converts a YUV (YP_BP_R) analog signal into a YUV (YC_BC_R) or RGB digital signal or converts an RGB analog signal into a RGB or YUV (YC_BC_R) digital signal with a sampling rate up to 81 Msample/s.

The IC supports analog TV resolutions from 480i (720 \times 480i at 60 Hz) and 576i (720 \times 576i at 50 Hz) to HDTV (up to 1920 \times 1080i at 50/60 Hz) and analog PC resolutions from VGA (640 \times 480p at 60 Hz) to XGA (1024 \times 768p at 75 Hz).

The IC can also convert an HDMI stream (with or without HDCP) into a RGB or YUV (YC_BC_R) digital signal with a sampling rate up to 81 Msample/s.

The YC_BC_R digital output signal can be 4 : 4 : 4 or 4 : 2 : 2 semi-planar format following the ITU-R BT.601 standard or 4 : 2 : 2 ITU-R BT.656 format.

All settings are controllable via the I²C-bus.

2. Features

- Triple 10-bit Analog-to-Digital Converter (ADC)
- Three independent analog video sources, up to 81 Msample/s
- Two independent HDMI inputs, up to 81 Msample/s
- Analog video sources or HDMI inputs selectable via the I²C-bus
- Integrated analog composite sync slicer for Sync-On-Green (SOG) or Sync-On-Y (SOY) signal
- Integrated sync separator with automatic detection
- Frame and field detection for interlaced video signal
- Sync timing measurement for format recognition on analog and HDMI inputs
- Three clamps for programming a 10-bit clamping code from 0 to +767 in steps of 1 LSB for RGB and YP_BP_R signals
- Three programmable video gain amplifiers to enable full-scale resolution to be reached
- Amplifier bandwidth of 100 MHz
- Low gain variation with temperature

Triple 10-bit video converter and HDMI receiver interface

- PLL controllable via the I²C-bus, to generate the ADCs, formatter and output clocks which can be locked into a line frequency from 15 kHz to 70 kHz
- Programmable clock phase adjustment in 64-steps to 256-steps for precise sample timing control
- High-bandwidth Digital Content Protection (HDCP); key set in embedded One Time Programmable (OTP) non-volatile memory
- Programmable color space conversion of RGB or YUV input signal into YUV or RGB
- Output format RGB 4 : 4 : 4, YC_BC_R 4 : 4 : 4, YC_BC_R 4 : 2 : 2 semi-planar following the ITU-R BT.601 standard or YC_BC_R 4 : 2 : 2 ITU-R BT.656
- 8-bit, 10-bit or 12-bit output formats selectable via the I²C-bus
- Integrated downsampling-by-two with selectable filters on the C_B and C_R channels for 4 : 2 : 2 mode
- Internal video and audio pattern generator
- IC controllable via the I²C-bus; 5 V tolerant and bit rate up to 400 kbit/s
- TTL inputs 5 V tolerant
- LV-TTL outputs
- Power-down mode
- 1.8 V and 3.3 V power supplies
- Lead-free packages

3. Applications

- YUV or RGB high-speed video digitizer
- Projector, plasma and LCD TV
- Rear projection TV
- High-end TV

4. Quick reference data

Table 1.Quick reference data

 $\begin{array}{l} V_{DDA(3V3)} = 3.15 \ V \ to \ 3.45 \ V; \ V_{DDH(3V3)} = 3.0 \ V \ to \ 3.6 \ V; \ V_{DDI(3V3)} = 3.0 \ V \ to \ 3.6 \ V; \ V_{DDO(3V3)} = 3.0 \ V \ to \ 3.6 \ V; \\ V_{DDA(1V8)} = 1.65 \ V \ to \ 1.95 \ V; \ V_{DDH(1V8)} = 1.65 \ V \ to \ 1.95 \ V; \ T_{amb} = 0 \ ^\circ C \ to \ 70 \ ^\circ C. \\ Typical values are measured at \ V_{DDA(3V3)} = V_{DDH(3V3)} = V_{DDI(3V3)} = V_{DDO(3V3)} = 3.3 \ V; \ V_{DDA(1V8)} = V_{DDH(1V8)} = V_{DDH(1$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
V _{DDA(3V3)}	analog supply voltage (3.3 V)		3.15	3.3	3.45	V
V _{DDA(1V8)}	analog supply voltage (1.8 V)		1.65	1.8	1.95	V
V _{DDH(3V3)}	HDMI supply voltage (3.3 V)		3.0	3.3	3.6	V
V _{DDH(1V8)}	HDMI supply voltage (1.8 V)		1.65	1.8	1.95	V
V _{DDI(3V3)}	input supply voltage (3.3 V)		3.0	3.3	3.6	V
V _{DDC(1V8)}	core supply voltage (1.8 V)		1.65	1.8	1.95	V
V _{DDO(3V3)}	output supply voltage (3.3 V)		3.0	3.3	3.6	V

TDA9975A

Triple 10-bit video converter and HDMI receiver interface

Table 1. Quick reference data ... continued

 $\begin{array}{l} V_{DDA(3V3)} = 3.15 \ V \ to \ 3.45 \ V; \ V_{DDH(3V3)} = 3.0 \ V \ to \ 3.6 \ V; \ V_{DDI(3V3)} = 3.0 \ V \ to \ 3.6 \ V; \ V_{DDO(3V3)} = 3.0 \ V \ to \ 3.6 \ V; \\ V_{DDA(1V8)} = 1.65 \ V \ to \ 1.95 \ V; \ V_{DDH(1V8)} = 1.65 \ V \ to \ 1.95 \ V; \ T_{amb} = 0 \ ^\circ C \ to \ 70 \ ^\circ C. \\ Typical values are measured at \ V_{DDA(3V3)} = V_{DDH(3V3)} = V_{DDI(3V3)} = V_{DDO(3V3)} = 3.3 \ V; \ V_{DDA(1V8)} = V_{DDH(1V8)} = V_{DD}(V_{D$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ρ	power dissipation	analog interface; f _s = 81 Msample/s; ADCs current at 100 %	-	1030	-	mW
		HDMI interface; f _s = 78.25 Msample/s	-	680	-	mW
P _{pd}	power dissipation in Power-down mode	powered-up: I ² C-bus, activity detection and HDCP memory	-	40	-	mW
ADCs						
f _s	sampling frequency		12	-	81	MHz
Clock timing	input: pin VCLK					
f _{clk(max)}	maximum clock frequency	analog interface	-	-	81	MHz
		HDMI interface	-	-	81	MHz
Digital inputs RXB1–, RXB2	: pins RXA0+, RXA0–, RXA1+, 2+, RXB2–, RXBC+ and RXBC–	RXA1–, RXA2+, RXA2–, RXAC	+, RXAC–,	RXB0+, RX	(B0–, RXB [·]	1+,
f _{clk(RX)(max)}	maximum receiver clock frequency		-	-	81	MHz

5. Ordering information

Table 2. Ordering information						
Type number	Package					
	Name	Description	Version			
TDA9975AHS	SQFP208	plastic shrink quad flat package; 208 leads (lead length 1.3 mm); body $28 \times 28 \times 3.4$ mm; high stand-off height	SOT316-1			
TDA9975AEL	LBGA256	plastic low profile ball grid array package; 256 balls; body $17 \times 17 \times 1.05$ mm	SOT740-1			

5.1 Ordering options

Table 3. Survey of type numbers

Extended type number	Sampling frequency (Msample/s)	Application
TDA9975AHS/8/C1xx	81	customer specific version
TDA9975AEL/8/C1xx	81	customer specific version

TDA9975A SDS 1

Product short data sheet

Rev. 01 — 17 March 2008

4 of 7

NXP Semiconductors

TDA9975A
Triple 10-bit video converter and HDMI receiver interface

Triple 10-bit video converter and HDMI receiver interface

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDx(3V3)}	supply voltage on all 3.3 V pins		-0.5	+4.6	V
V _{DDx(1V8)}	supply voltage on all 1.8 V pins		-0.5	+2.5	V
ΔV_{DD}	supply voltage difference		-0.5	+0.5	V
I _O	output current		-	35	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		0	70	°C
Tj	junction temperature		-	125	°C
V _{esd}	electrostatic discharge voltage	human body model	-2000	+2000	V

8. Abbreviations

Table 5.	Abbreviations
Acronym	Description
ADC	Analog Digital Converter
HDCP	High-bandwidth Digital Content Protection
HDTV	High-Definition Television
LV-TTL	Low Voltage Transistor-Transistor Logic
PLL	Phase-Locked Loop
RGB	Red Green Blue
TTL	Transistor-Transistor Logic
VGA	Video Graphics Array
XGA	eXtended Graphics Array
YUV	color space used by the NTSC and PAL video systems

9. Revision history

Table 6. Revision histo	Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes	
TDA9975A_SDS_1	20080317	Product short data sheet	-	-	

10. Legal information

10.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

Nexperia — is a trademark of NXP B.V.

11. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TDA9975A_SDS_1
Product short data sheet

NXP Semiconductors

TDA9975A

Triple 10-bit video converter and HDMI receiver interface

12. Contents

1	General description 1
2	Features 1
3	Applications 2
4	Quick reference data 2
5	Ordering information 3
5.1	Ordering options 3
6	Block diagram 4
7	Limiting values 5
8	Abbreviations 5
9	Revision history 5
10	Legal information 6
10.1	Data sheet status 6
10.2	Definitions6
10.3	Disclaimers
10.4	Trademarks 6
11	Contact information 6
12	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

Date of release: 17 March 2008 Document identifier: TDA9975A_SDS_1

