TDA7491LP ### 5 W + 5 W dual BTL class-D audio amplifier #### **Features** - 5 W + 5 W continuous output power: $R_L = 8 \Omega$, THD = 10% at $V_{CC} = 9 V$ - 5 W + 5 W continuous output power: $R_L = 4 \Omega$, THD = 10% at $V_{CC} = 6.6 \text{ V}$ - Wide range single supply operation (5 V 14 V) - High efficiency ($\eta = 90\%$) - Four selectable, fixed gain settings of nominally 20 dB, 26 dB, 30 dB and 32 dB - Differential inputs minimize common-mode noise - Filterless operation - No 'pop' at turn-on/off - Standby and mute features - Short-circuit protection - Thermal overload protection - Externally synchronizable ### **Description** The TDA7491LP is a dual BTL class-D audio amplifier with single power supply designed for LCD TVs and monitors. Thanks to the high efficiency and exposed-pad-down (EPD) package no separate heatsink is required. Furthermore, the filterless operation allows a reduction in the external component count. The TDA7491LP is pin to pin compatible with the TDA7491P and TDA7491HV. Table 1. Device summary | Order code | Operating temperature | Package | Packaging | |---------------|-----------------------|-----------------|---------------| | TDA7491LP | 0 to 70 °C | PowerSSO-36 EPD | Tube | | TDA7491LP13TR | 0 to 70 °C | PowerSSO-36 EPD | Tape and reel | September 2009 Doc ID 13541 Rev 4 1/34 Contents TDA7491LP ## **Contents** | 1 | Devi | ce block diagram | |---|-------|--| | 2 | Pin (| description 6 | | | 2.1 | Pin out 6 | | | 2.2 | Pin list | | 3 | Elec | trical specifications8 | | | 3.1 | Absolute maximum ratings | | | 3.2 | Thermal data 8 | | | 3.3 | Electrical specifications 8 | | 4 | Cha | racterization curves10 | | | 4.1 | With 4- Ω load at V _{CC} = 6.6 V | | | 4.2 | With 8- Ω load at V _{CC} = 9 V | | | 4.3 | Test board | | 5 | Pack | kage mechanical data | | 6 | Арр | lications circuit | | 7 | Арр | lications information | | | 7.1 | Mode selection | | | 7.2 | Gain setting | | | 7.3 | Input resistance and capacitance | | | 7.4 | Internal and external clocks | | | | 7.4.1 Master mode (internal clock) | | | | 7.4.2 Slave mode (external clock) | | | 7.5 | Filterless modulation | | | 7.6 | Output low-pass filter | | | 7.7 | Protection function | | | 7.8 | Diagnostic output | | | 7.9 | Heatsink requirements | | | | | 57 | TDA7491LF | • | Col | ntents | |-----------|------------------|-----|--------| | 8 | Revision history | | 32 | List of tables TDA7491LP # List of tables | Table 1. | Device summary | 1 | |-----------|----------------------------|---| | Table 2. | Pin description list | 8 | | | Absolute maximum ratings | | | | Thermal data | | | Table 5. | Electrical specifications | ć | | Table 6. | PowerSSO-36 EPD dimensions | 2 | | Table 7. | Mode settings | (| | Table 8. | Gain settings2 | 7 | | Table 9. | How to set up SYNCLK | 8 | | Table 10. | Document revision history | : | TDA7491LP List of figures # **List of figures** | Figure 1. | Internal block diagram (one channel only) | | |------------|--|------| | Figure 2. | Pin connection (top view, PCB view) | | | Figure 3. | Output power vs supply voltage | 11 | | Figure 4. | THD vs output power (1 kHz) | 11 | | Figure 5. | THD vs output power (100 Hz) | 12 | | Figure 6. | THD vs frequency | 12 | | Figure 7. | Frequency response | 12 | | Figure 8. | Crosstalk vs frequency | | | Figure 9. | FFT (0 dB) | 13 | | Figure 10. | FFT (-60 dB) | 13 | | Figure 11. | Power supply rejection ratio vs frequency | 14 | | Figure 12. | Power dissipation and efficiency vs output power | 14 | | Figure 13. | Closed-loop gain vs frequency | 14 | | Figure 14. | Current consumption vs voltage on pin MUTE | 15 | | Figure 15. | Attenuation vs voltage on pin MUTE | 15 | | Figure 16. | Current consumption vs voltage on pin STBY | 15 | | Figure 17. | Attenuation vs voltage on pin STBY | 16 | | Figure 18. | Output power vs supply voltage | 16 | | Figure 19. | THD vs output power (1 kHz) | . 17 | | Figure 20. | THD vs output power (100 Hz) | . 17 | | Figure 21. | THD vs frequency | 17 | | Figure 22. | Frequency response | 18 | | Figure 23. | Crosstalk vs frequency | | | Figure 24. | FFT (0 dB) | | | Figure 25. | FFT (-60 dB) | | | Figure 26. | Power supply rejection ratio vs frequency | 19 | | Figure 27. | Power dissipation and efficiency vs output power | | | Figure 28. | Closed-loop gain vs frequency | | | Figure 29. | Current consumption vs voltage on pin MUTE | 20 | | Figure 30. | Attenuation vs voltage on pin MUTE | 20 | | Figure 31. | Current consumption vs voltage on pin STBY | 21 | | Figure 32. | Attenuation vs voltage on pin STBY | | | Figure 33. | Test board (TDA7491LP) layout | 22 | | Figure 34. | PowerSSO-36 EPD outline drawing | | | Figure 35. | Applications circuit for class-D amplifier | | | Figure 36. | Standby and mute circuits | | | Figure 37. | Turn-on/off sequence for minimizing speaker "pop" | 26 | | Figure 38. | Device input circuit and frequency response | 27 | | Figure 39. | Master and slave connection | | | Figure 40. | Unipolar PWM output | | | Figure 41. | Typical LC filter for a 8- Ω speaker | | | Figure 42. | Typical LC filter for a 4-Ω speaker | | | Figure 43. | Behavior of pin DIAG for various protection conditions | | | Figure 44. | Power derating curves for PCB used as heatsink | | | | | | ## 1 Device block diagram Figure 1 shows the block diagram of one of the two identical channels of the TDA7491LP. Internal block diagram (one channel only) 9 VDDS SVCC Vdd-Regulator Vss-Regulator SGND SVR 9VDDS driverH₄ f Level Anti-PWM logic VDDPW fault shift driverL VKEF X PVCC ۷DDS driverH Gain0 Level vssl VDDPW Gain1 driverL SYNCLK DIAG Protection Standby& Muteplay TDA7491LP Pin description ## 2 Pin description ### 2.1 Pin out Figure 2. Pin connection (top view, PCB view) Pin description TDA7491LP ## 2.2 Pin list Table 2. Pin description list | Number | Name | Туре | Description | |--------|---------|--------|---| | 1 | SUB_GND | POWER | Connect to the frame | | 2,3 | OUTPB | OUT | Positive PWM for right channel | | 4,5 | PGNDB | POWER | Power stage ground for right channel | | 6,7 | PVCCB | POWER | Power supply for right channel | | 8,9 | OUTNB | OUT | Negative PWM output for right channel | | 10,11 | OUTNA | OUT | Negative PWM output for right channel | | 12,13 | PVCCA | POWER | Power supply for left channel | | 14,15 | PGNDA | POWER | Power stage ground for left channel | | 16,17 | OUTPA | OUT | Positive PWM output for left channel | | 18 | PGND | POWER | Power stage ground | | 19 | VDDPW | OUT | 3.3-V (nominal) regulator output referred to ground for power stage | | 20 | STBY | INPUT | Standby mode control | | 21 | MUTE | INPUT | Mute mode control | | 22 | INPA | INPUT | Positive differential input of left channel | | 23 | INNA | INPUT | Negative differential input of left channel | | 24 | ROSC | OUT | Master oscillator frequency-setting pin | | 25 | SYNCLCK | IN/OUT | Clock in/out for external oscillator | | 26 | VDDS | OUT | 3.3-V (nominal) regulator output referred to ground for signal blocks | | 27 | SGND | POWER | Signal ground | | 28 | DIAG | OUT | Open-drain diagnostic output | | 29 | SVR | OUT | Supply voltage rejection | | 30 | GAIN0 | INPUT | Gain setting input 1 | | 31 | GAIN1 | INPUT | Gain setting input 2 | | 32 | INPB | INPUT | Positive differential input of right channel | | 33 | INNB | INPUT | Negative differential input of right channel | | 34 | VREF | OUT | Half VDDS (nominal) referred to ground | | 35 | SVCC | POWER | Signal power supply | | 36 | VSS | OUT | 3.3-V (nominal) regulator output referred to power supply | | - | EP | - | Exposed pad for ground-plane heatsink, to be connected to GND | ## 3 Electrical specifications ### 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------|---|------------|------| | V _{CC} | DC supply voltage for pins PVCCA, PVCCB, SVCC | 18 | ٧ | | T _{op} | Operating temperature | 0 to 70 | °C | | Tj | Junction temperature | -40 to 150 | °C | | T _{stg} | Storage temperature | -40 to 150 | °C | ### 3.2 Thermal data Table 4. Thermal data | Symbol | Parameter | Min | Тур | Max | Unit | |------------------------|---|-----|-----|-----|------| | R _{th j-case} | Thermal resistance, junction to case | - | 2 | 3 | | | R _{th j-amb} | Thermal resistance, junction to ambient (mounted on recommended PCB) ⁽¹⁾ | - | 24 | ı | °C/W | ^{1.} FR4 with vias to copper area of 9 cm² (see also Section 7.9: Heatsink requirements on page 32). ## 3.3 Electrical specifications Unless otherwise stated, the results in *Table 5* below are given for the conditions: $V_{CC}=9~V$, R_L (load) = 8 Ω , $R_{OSC}=R3=39~k\Omega$, C8=100~nF, f=1~kHz, $G_V=20~dB$, and $Tamb=25~^{\circ}C$. Table 5. Electrical specifications | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |--------------------|--|--------------------|------|-----|-----|------| | V _{CC} | Supply voltage for pins PVCCA, PVCCB, SVCC | - | 5 | - | 14 | ٧ | | Iq | Total quiescent current | Without LC filter | - | 26 | 35 | mA | | I _{qSTBY} | Quiescent current in standby | - | - | 2.5 | 5.0 | μΑ | | V _{OS} | Output offset voltage | Play mode | -150 | - | 150 | mV | | V _{OS} | Output offset voltage | Mute mode | -60 | - | 60 | mV | | I _{OCP} | Overcurrent protection threshold | $R_L = 0 \Omega$ | 3 | 3.5 | - | Α | | Тј | Junction temperature at thermal shutdown | - | - | 150 | - | °C | | R _i | Input resistance | Differential input | 55 | 60 | - | kΩ | | V _{OVP} | Overvoltage protection threshold | - | 18.5 | - | - | ٧ | Table 5. Electrical specifications (continued) | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | |---------------------------------|-----------------------------------|---|--------|-----|-----|-------|--| | V _{UVP} | Undervoltage protection threshold | - | - | - | 4 | ٧ | | | Б | Deventuoneisten on registenes | High side | - | 0.2 | - | 0 | | | R _{dsON} | Power transistor on resistance | Low side | - | 0.2 | - | Ω | | | D | Output nower | THD = 10% | - | 5 | - | W | | | P _o | Output power | THD = 1% | - | 4 | - | l vv | | | D | Output power | R _L = 4 Ω, THD = 10%
V _{CC} = 6.6 V | - | 5 | - | w | | | P _o | Output power | $R_L = 4 \Omega$, THD = 1%
$V_{CC} = 6.6 V$ | - | 4 | - | VV | | | P _D | Dissipated power | P _o = 5 W + 5 W,
THD = 10% | - | 1.0 | - | W | | | η | Efficiency $P_0 = 5 W + 5 W$ | | 80 | 90 | - | % | | | THD | Total harmonic distortion | P _o = 1 W | - | 0.1 | 0.2 | % | | | G _V | | GAIN0 = L, GAIN1 = L | 18 | 20 | 22 | | | | | Closed loop gain | GAIN0 = L, GAIN1 = H | 24 | 26 | 28 | dB | | | | | GAIN0 = H, GAIN1 = L | 28 | 30 | 32 | | | | | | GAIN0 = H, GAIN1 = H | 30 | 32 | 34 | | | | ∆G _V | Gain matching | - | -1 | - | 1 | dB | | | СТ | Cross talk | f = 1 kHz | - | 50 | - | dB | | | a NI | Total innut naine | A Curve, G _V = 20 dB | - | 20 | - | μV | | | eN | Total input noise | f = 22 Hz to 22 kHz | - | 25 | 35 | μν | | | SVRR | Supply voltage rejection ratio | $ fr = 100 \text{ Hz}, Vr = 0.5 \text{ V}, $ $ C_{SVR} = 10 \mu F $ | 40 | 50 | - | dB | | | T _r , T _f | Rise and fall times | - | - | 50 | - | ns | | | f _{SW} | Switching frequency | Internal oscillator | 290 | 310 | 330 | kHz | | | | Output quitabing fraguency | With internal oscillator (1) | 250 | - | - | Id I= | | | f _{SWR} | Output switching frequency | With external oscillator (2) | 250 | - | - | kHz | | | V_{inH} | Digital input high (H) | | 2.5 | - | - | V | | | V _{inL} | Digital input low (L) | 7 | - | - | 0.8 | ľ | | | A _{MUTE} | Mute attenuation | V _{MUTE} = 1 V | 60 | 80 | - | dB | | | | | $V_{STBY} < 0.5 \text{ V}, V_{MUTE} = X$ | Standl | by | | - | | | Function mode | Standby, mute and play modes | V _{STBY} > 2.5 V,
V _{MUTE} < 0.8 V | Mute | | - | | | | - | | V _{STBY} > 2.5 V,
V _{MUTE} > 2.5 V | Play | | | - | | ^{1.} $f_{SW} = 10^6 / ((16 * R_{OSC} + 182) * 4) \text{ kHz}, f_{SYNCLK} = 2 * f_{SW} \text{ with R3} = 39 \text{ k}\Omega \text{ (see Figure 35.)}.$ ^{2.} $f_{SW} = f_{SYNCLK} / 2$ with the frequency of the external oscillator. TDA7491LP Characterization curves ### 4 Characterization curves The following characterization curves were made using the TDA7491LP demo board. The LC filter for the 4- Ω load uses components of 15 μ H and 470 nF, whilst that for the 8- Ω load uses 33 μ H and 220 nF. All other test conditions are given along side the corresponding curves. ### 4.1 With 4- Ω load at $V_{CC} = 6.6 \text{ V}$ Figure 3. Output power vs supply voltage Characterization curves TDA7491LP Figure 5. THD vs output power (100 Hz) Figure 6. THD vs frequency Figure 7. Frequency response TDA7491LP Characterization curves Figure 9. FFT (0 dB) Figure 10. FFT (-60 dB) 57 Doc ID 13541 Rev 4 Characterization curves TDA7491LP Figure 11. Power supply rejection ratio vs frequency Figure 12. Power dissipation and efficiency vs output power Figure 13. Closed-loop gain vs frequency TDA7491LP Characterization curves Figure 15. Attenuation vs voltage on pin MUTE $\overline{\Delta}$ Doc ID 13541 Rev 4 15/34 Characterization curves TDA7491LP Figure 17. Attenuation vs voltage on pin STBY # 4.2 With 8- Ω load at $V_{CC} = 9 \text{ V}$ Figure 18. Output power vs supply voltage TDA7491LP Characterization curves Figure 20. THD vs output power (100 Hz) Figure 21. THD vs frequency 477 Doc ID 13541 Rev 4 17/34 Characterization curves TDA7491LP Figure 22. Frequency response Figure 23. Crosstalk vs frequency Figure 24. FFT (0 dB) TDA7491LP Characterization curves Figure 26. Power supply rejection ratio vs frequency Figure 27. Power dissipation and efficiency vs output power 4 Doc ID 13541 Rev 4 Characterization curves TDA7491LP Figure 28. Closed-loop gain vs frequency Figure 29. Current consumption vs voltage on pin MUTE Figure 30. Attenuation vs voltage on pin MUTE TDA7491LP Characterization curves Figure 31. Current consumption vs voltage on pin STBY Figure 32. Attenuation vs voltage on pin STBY Characterization curves TDA7491LP ### 4.3 Test board Figure 33. Test board (TDA7491LP) layout ## 5 Package mechanical data The TDA7491LP comes in a 36-pin PowerSSO package with exposed pad down (EPD). *Figure 34* below shows the package outline and *Table 6* gives the dimensions. Figure 34. PowerSSO-36 EPD outline drawing 477 Doc ID 13541 Rev 4 23/34 Table 6. PowerSSO-36 EPD dimensions | 0 | Dimensions in mm | | | Dimensions in inches | | | |--------|------------------|------|------------|----------------------|-------|------------| | Symbol | Min | Тур | Max | Min | Тур | Max | | Α | 2.15 | - | 2.47 | 0.085 | - | 0.097 | | A2 | 2.15 | - | 2.40 | 0.085 | - | 0.094 | | a1 | 0.00 | - | 0.10 | 0.000 | - | 0.004 | | b | 0.18 | - | 0.36 | 0.007 | - | 0.014 | | С | 0.23 | - | 0.32 | 0.009 | - | 0.013 | | D | 10.10 | - | 10.50 | 0.398 | - | 0.413 | | E | 7.40 | - | 7.60 | 0.291 | - | 0.299 | | е | - | 0.5 | - | - | 0.020 | - | | e3 | - | 8.5 | - | - | 0.335 | - | | F | - | 2.3 | - | - | 0.091 | - | | G | - | - | 0.10 | - | - | 0.004 | | Н | 10.10 | - | 10.50 | 0.398 | - | 0.413 | | h | - | - | 0.40 | - | - | 0.016 | | k | 0 | - | 8 degrees | 0 | - | 8 degrees | | L | 0.60 | - | 1.00 | 0.024 | - | 0.039 | | М | - | 4.30 | - | - | 0.169 | - | | N | - | - | 10 degrees | - | - | 10 degrees | | 0 | - | 1.20 | - | - | 0.047 | - | | Q | - | 0.80 | - | - | 0.031 | - | | S | - | 2.90 | - | - | 0.114 | - | | Т | - | 3.65 | - | - | 0.144 | - | | U | - | 1.00 | - | - | 0.039 | - | | Х | 4.10 | - | 4.70 | 0.161 | - | 0.185 | | Υ | 4.90 | - | 7.10 | 0.193 | - | 0.280 | In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark. TDA7491LP Applications circuit ## 6 Applications circuit Figure 35. Applications circuit for class-D amplifier <u>L4</u> * OUTPA R6 PGNDA 22R PGNDA C2 _{470nF} C25 r□ vdds 26 OUT-L+ R1 100k 28 C27 C24 13 DIAG □ 330pF 100nF C6 100nF Input TDA7491LP SYNCLK □ 25V (16V) \$\frac{1}{2} OUTPB OUTPB 33uH PVCCB 100nF PVCCB VDDS □ 22R C20 ***** 220nF OUT-R+ C10 100nF 36 C22 100nF OUTNB T C14 1nF 21 S2 MUTE R4 33k 22 2 UF R2 33k 2 C7 R8 VCC 16V √S1 STBY LC FILTER COMPONENT C20,C26 Load L1,L2,L3,L4 IC2 4931CZ33 220 nF 22 uH SGND 8 ohm 33 uH 220 nF 3V3 POWER SUPPLY Input settings for gain: Input settings for standby, mute and play: | GAIN0 : GAIN1 | Nominal gain | STBY : MUTE | Mode | |---------------|--------------|---------------|---------| | 0 V : 0 V | 20 dB | 0 V : 0 V | Standby | | 0 V : 3.3 V | 26 dB | 0 V : 3.3 V | Standby | | 3.3 V : 0 V | 30 dB | 3.3 V : 0 V | Mute | | 3.3 V : 3.3 V | 32 dB | 3.3 V : 3.3 V | Play | | | | | | ### 7 Applications information ### 7.1 Mode selection The three operating modes of the TDA7491LP are set by the two inputs STBY (pin 20) and MUTE (pin 21). - Standby mode: all circuits are turned off, very low current consumption. - Mute mode: inputs are connected to ground and the positive and negative PWM outputs are at 50% duty cycle. - Play mode: the amplifiers are active. The protection functions of the TDA7491LP are realized by pulling down the voltages of the STBY and MUTE inputs shown in *Figure 36*. The input current of the corresponding pins must be limited to 200 μ A. Table 7. Mode settings | Mode | STBY | MUTE | |---------|------------------|----------------| | Standby | L (1) | X (don't care) | | Mute | H ⁽¹⁾ | L | | Play | Н | Н | 1. Drive levels defined in Table 5: Electrical specifications on page 9 Figure 36. Standby and mute circuits Figure 37. Turn-on/off sequence for minimizing speaker "pop" ### 7.2 Gain setting The gain of the TDA7491LP is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin 31). Internally, the gain is set by changing the feedback resistors of the amplifier. Table 8. Gain settings | GAIN0 | GAIN1 | Nominal gain, G _v (dB) | |-------|-------|-----------------------------------| | 0 | 0 | 20 | | 0 | 1 | 26 | | 1 | 0 | 30 | | 1 | 1 | 32 | ### 7.3 Input resistance and capacitance The input impedance is set by an internal resistor Ri = 60 k Ω (typical). An input capacitor (Ci) is required to couple the AC input signal. The equivalent circuit and frequency response of the input components are shown in *Figure 38*. For Ci = 220 nF the high-pass filter cut-off frequency is below 20 Hz: $$fc = 1 / (2 * \pi * Ri * Ci)$$ Figure 38. Device input circuit and frequency response #### 7.4 Internal and external clocks The clock of the class-D amplifier can be generated internally or can be driven by an external source. If two or more class-D amplifiers are used in the same system, it is recommended that all devices operate at the same clock frequency. This can be implemented by using one TDA7491LP as master clock, while the other devices are in slave mode (that is, externally clocked. The clock interconnect is via pin SYNCLK of each device. As explained below, SYNCLK is an output in master mode and an input in slave mode. #### 7.4.1 Master mode (internal clock) Using the internal oscillator, the output switching frequency, f_{SW} , is controlled by the resistor, R_{OSC} , connected to pin ROSC: $$f_{SW} = 10^6 / ((16 * R_{OSC} + 182) * 4) \text{ kHz}$$ where R_{OSC} is in $k\Omega$. In master mode, pin SYNCLK is used as a clock output pin, whose frequency is: For master mode to operate correctly then resistor R_{OSC} must be less than 60 k Ω as given below in *Table 9*. #### 7.4.2 Slave mode (external clock) In order to accept an external clock input the pin ROSC must be left open, that is, floating. This forces pin SYNCLK to be internally configured as an input as given in *Table 9*. The output switching frequency of the slave devices is: $$f_{SW} = f_{SYNCLK} / 2$$ Table 9. How to set up SYNCLK | Mode | ROSC | SYNCLK | |--------|--------------------------------|--------| | Master | $R_{OSC} < 60 \text{ k}\Omega$ | Output | | Slave | Floating (not connected) | Input | Figure 39. Master and slave connection ### 7.5 Filterless modulation The output modulation scheme of the BTL is called unipolar pulse width modulation (PWM). The differential output voltages change between 0 V and $+V_{CC}$ and between 0 V and $-V_{CC}$. This is in contrast to the traditional bipolar PWM outputs which change between $+V_{CC}$ and $-V_{CC}$. An advantage of this scheme is that it effectively doubles the switching frequency of the differential output waveform. The OUTP and OUTN are in the same phase when the input is zero, then the switching current is low and the loss in the load is small. In practice, a short delay is introduced between these two outputs in order to avoid the BTL output switching at the same time. TDA7491LP can be used without a filter before the speaker, because the frequency of the TDA7491LP output is beyond the audio frequency, the audio signal can be recovered by the inherent inductance of the speaker and natural filter of the human ear. Figure 40. Unipolar PWM output ### 7.6 Output low-pass filter To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The cutoff frequency should be larger than 22 kHz and much lower than the output switching frequency. It is necessary to choose the L-C component values depending on the loud-speaker impedance. Some typical values, which give a cut-off frequency of 27 kHz, are shown in *Figure 41* and *Figure 42* below. Figure 41. Typical LC filter for a 8- Ω speaker Figure 42. Typical LC filter for a 4- Ω speaker #### 7.7 **Protection function** The TDA7491LP is fully protected against overvoltages, undervoltages, overcurrents and thermal overloads as explained here. #### Overvoltage protection (OVP) If the supply voltage exceeds the value for V_{OVP} given in Table 5: Electrical specifications on page 9 the overvoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage drops to below the threshold value the device restarts. #### **Undervoltage protection (UVP)** If the supply voltage drops below the value for V_{UVP} given in *Table 5: Electrical* specifications on page 9 the undervoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage recovers the device restarts. #### Overcurrent protection (OCP) If the output current exceeds the value for IOCP given in Table 5: Electrical specifications on page 9 the overcurrent protection is activated which forces the outputs to the high-impedance state. Periodically, the device attempts to restart. If the overcurrent condition is still present then the OCP remains active. The restart time, T_{OC}, is determined by the R-C components connected to pin STBY. #### Thermal protection (OTP) If the junction temperature, T_i, reaches 145 °C (nominal), the device goes to mute mode and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction temperature reaches the value for T_i given in Table 5: Electrical specifications on page 9 the device shuts down and the output is forced to the high impedance state. When the device cools sufficiently the device restarts. #### 7.8 Diagnostic output The output pin DIAG is an open drain transistor. When the protection is activated it is in the high-impedance state. The pin can be connected to a power supply (<14 V) by a pull-up resistor whose value is limited by the maximum sinking current (200 µA) of the pin. Figure 43. Behavior of pin DIAG for various protection conditions Doc ID 13541 Rev 4 31/34 ### 7.9 Heatsink requirements A thermal resistance of 24 °C/W can be obtained using the PCB copper ground layer with 16 vias connecting it to the contact area for the exposed pad. Ensure that the copper ground area is a nominal 9 cm² for 24 °C/W. Figure 44 shows the derating curves for copper areas of 4 cm² and 9 cm². As with most amplifiers, the power dissipated within the device depends primarily on the supply voltage, the load impedance and the output modulation level. The maximum estimated power dissipation for the TDA7491LP is less than 2 W. When properly mounted on the above PCB the junction temperature could increase by 48 °C. However, with a musical program the dissipated power is about 40% less than this, leading to a temperature increase of around only 30 °C. So even at the maximum recommended ambient temperature for consumer applications there is still a clear safety margin before the maximum junction temperature is reached. Figure 44. Power derating curves for PCB used as heatsink TDA7491LP Revision history # 8 Revision history Table 10. Document revision history | Date | Revision | Changes | | |-------------|----------|---|--| | 02-Jul-2007 | 1 | Initial release. | | | 20-Oct-2008 | 2 | Characterization curves updated | | | 29-Jun-2009 | 3 | Updated text concerning oscillator R and C in Section 3.3: Electrical specifications on page 9 Updated condition for Iq test, updated value for V _{OVB} added V _{UVP} maximum value, updated THD maximum value, updated STBY and MUTE voltages in Table 5: Electrical specifications on page 9 Added characterization curves for 4-Ω speakers in Chapter 4 on page 11 Updated equation for f _{SW} on page 10 and on page 28 Updated Figure 35: Applications circuit for class-D amplifier on page 25 | | | 04-Sep-2009 | 4 | Added text for exposed pad in Figure 2 on page 7 Added text for exposed pad in Table 2 on page 8 Updated exposed pad Y (Min) dimension in Table 6 on page 24 Updated supply voltage for pin DIAG pull-up resistor in Section 7.8 on page 31. | | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com