AN2008-02

2ED100E12-F2_EVAL 6ED100E12-F2_EVAL

Evaluation Driver Board for EconoDUAL™3 and EconoPACK™+ modules

Industrial Power

Never stop thinking

Edition 2009-11-02 Published by Infineon Technologies AG 59568 Warstein, Germany © Infineon Technologies AG 2009. All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

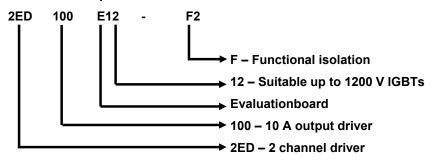
Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History:	2009-08	V1.2
Previous Version:	V1.1	
general	Improved driver stage for higher gate current to adapt for IGBT4 (2ED10)	0E12-F2)
general	Improved protection against disturbances on DESAT-signal (2ED100E12-	-F2)
general	Providing data for increased portofolio of modules to be used with 2ED10	0E12-F2
general	Update of measurement results (modules using IGBT4)	
Page 7	Update with recent data from 1ED020I12-F datasheet	
Page 16	More detailed text on baseplate temperature measurement	
Page 17	Discussing parameters having impact on switching losses	
Page 40	References	

We Listen to Your Comments


Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: IGBT.Application@infineon.com

Introduction

1	Introduction	.5
2 2.1 2.2 2.3 2.4 2.5	Design features Main features Key data Pin assignment Mechanical dimensions of the EconoDUAL™3 Driver Board Mechanical dimensions of the EconoPACK™+ Driver Board	.6 .7 .8 .9
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Application Note	10 10 11 12 12 14
4 4.1 4.2	Switching losses	17
5	Definition of layers for Evaluation Driver Boards	19
6 6.1 6.2 6.3 6.4 6.5	Schematic, Layout and Bill of Material EconoDUAL™3 board	20 23 24 25
7 7.1 7.2 7.3 7.4 7.5	Schematic, Layout and Bill of Material EconoPACK™+ board Schematic. Assembly drawing Layout. Bill of material. Gate resistor list	27 34 35 37 39
8 9	How to order Evaluation Driver Boards	

Part number explanation:

Introduction

1 Introduction

The Evaluation Driver Board 2ED100E12-F2 for EconoDUAL[™]3 modules as can be seen in Figure 1 and the Evaluation Driver Board 6ED100E12-F2 for EconoPACK[™]+ modules, shown in Figure 2, were developed to support customers during their first steps designing applications with these modules. The basic version of each board is available from Infineon in small quantities. The properties of these parts are described in the chapter 2.2 of this document whereas the remaining paragraphs provide information intended to enable the customer to copy, modify and qualify the design for production, according to his specific requirements.

The design of the 2ED100E12-F2 and the 6ED100E12-F2 was performed with respect to the environmental conditions described as design target in this document. The requirements for leadfree reflow soldering have been considered when components were selected. The design was tested as described in this documentation but not qualified regarding manufacturing and operation in the whole operating ambient temperature range or lifetime.

The boards provided by Infineon are subjected to functional testing only.

Due to their purpose Evaluation Boards are not subjected to the same procedures regarding Returned Material Analysis (RMA), Process Change Notification (PCN) and Product Discontinuation (PD) as regular products.

See Legal Disclaimer and Warnings for further restrictions on Infineons warranty and liability.

SAP number for EconoDUAL[™]3 Evaluation Driver Board: 31165

Figure 1 The 2ED100E12-F2 Evaluation Driver Board mounted on the top of the EconoDUAL™3 module

The following picture shows the driver board mounted on an EconoPACK[™]+ module. SAP number for EconoPACK[™]+ Evaluation Driver Board: 31166

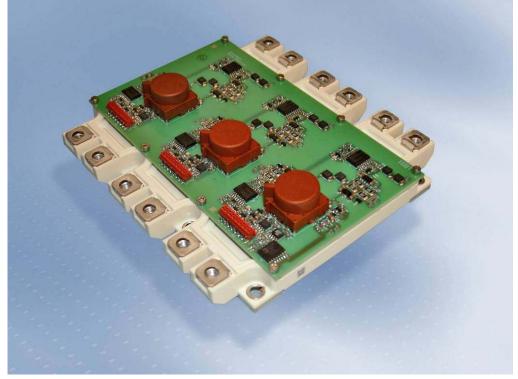


Figure 2 The 6ED100E12-F2 Evaluation Driver Board mounted on the top of the EconoPACK™+ module

2 Design features

The following sections provide an overview of the boards including main features, key data, pin assignments and mechanical dimensions.

2.1 Main features

The 2ED100E12-F2 and the 6ED100E12-F2 Evaluation Driver Board offers the following features:

- Dual channel IGBT driver in 2ED100E12-F2 version, adapted for use with IGBT4
- Six channel IGBT driver in 6ED100E12-F2 version
- Electrically and mechanically suitable for 600 V and 1200 V EconoDUAL™3 or EconoPACK™+ IGBT modules
- Includes DC/DC power supply with short circuit protection
- Isolated temperature measurement
- Short circuit protection with t_{off} < 6 µs
- Under Voltage Lockout of IGBT driver IC
- Positive logic with 5 V CMOS level for PWM and Fault signals
- One fault output signal for each leg
- PCB is designed to fulfil the requirements of IEC61800-5-1, pollution degree 2, overvoltage category III

Application Note

Downloaded from Elcodis.com electronic components distributor

2.2 Key data

All values given in the table bellow are typical values, measured at $T_A = 25$ °C

	Table 1	Key data and characteristic values (typical values)
--	---------	---

Parameter	Value	Unit
V _{DC} – primary DC/DC voltage supply	+15 (±0.5)	V
V _{cc} – primary supply voltage for logic devices	+5 (±0.5)	V
$V_{LogicIN}$ – PWM signals for Top and Bottom IGBT (active high)	0 / +5	V
V _{FAULT} – /FAULT detection output (active low)	0 / +5	V
IFAULT – max. /FAULT detection output load current	10	mA
V _{RST} – /RST input (active low)	0 / +5	V
I_{DC} – primary DC/DC current drawn (idle mode) per leg	40	mA
Icc – primary current drawn for logic devices per leg	25	mA
V_{out} – drive voltage level for Top and Bottom channel	+16 / -8	V
I _G – max. peak output current	±10	А
P _{DC/DC} – max. DC/DC output power (Top channel + Bottom channel) per leg	3	W
$\mathbf{f}_{\mathbf{S}}$ – max. PWM signal frequency for Top and Bottom channel ¹⁾	100	kHz
t _{PDELAY} – propagation delay time	200	ns
t _a – Two-level turn-off time	n.a.	ns
t _{PDISTO} – input to output propagation distortion	15	ns
t_{MININ} – min. pulse suppression for turn-on and turn-off ²⁾	n.a.	ns
V _{Desat} – Desaturation reference level	9	V
d _{max} – max. duty cycle	100	%
V _{ces} – max. collector – emitter voltage on IGBT	600/1200	V
V _{TEMP} – temperature measurement output voltage	digital 0/5	V
I _{TEMP} – max. temperature measurement load current	5	mA
T_{op} – operating temperature (design target) ³⁾	-40+85	°C
T _{sto} – storage temperature (design target)	-40+85	°C
U _{is,eff} – Isolation voltage ⁴⁾ (Transformer Vacuumschmelze)	500	V _{AC}
V _{IORM} – Maximum Repetitive Insulation Voltage ⁵⁾ (1ED020I12-F Driver IC)	1420	V_{peak}
V _{IORM} – Max. working insulation voltage ⁶⁾ (AD7400 Sigma-Delta Converter)	891	V _{peak}

¹⁾ The maximum switching frequency for every EconoDUAL[™]3 or EconoPACK[™]+ module type should be calculated separately. Limitation factors are: max. DC/DC output power of 1.5 W per channel and max. PCB board temperature measured around gate resistors of 105 °C for used FR4 material. For detailed information see chapter 2.3

 $^{^{2)}}$ Minimum value $t_{\mbox{\scriptsize MININ}}$ given in 1ED020I12-F IGBT driver datasheet

³⁾ Maximum ambient temperature strictly depends on load and cooling conditions. For detailed description see chapter 2.3

 $^{^{\}rm 4)}$ Values defined in datasheets: T60403-D4615-X054 (date: 21.03.2000),

⁵⁾ 1ED020I12-F (Datasheet, Version 2.1, October 2008)

⁶⁾ AD7400 (9/07 – Revision B)

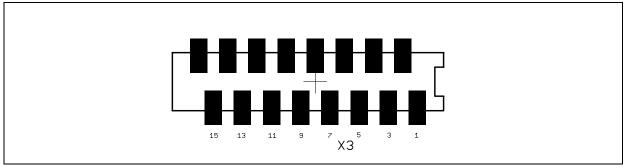
Application Note

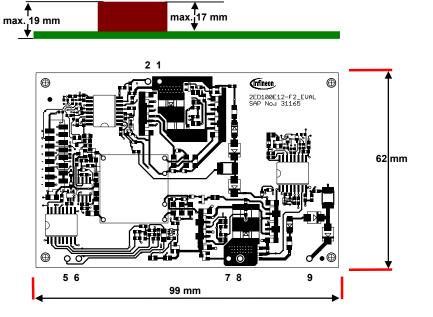
2.3 Pin assignment

All external signals should be applied to connector X1 to X3, they are shown on Figure 3 and the description is given in Table 2.

Pin	Label	Function
X3.1	MClock	Clock out for temperature measurement
X3.2	Supply	+15 V Primary voltage for DC/DC converter
X3.3	GND	Primary ground for DC/DC converter supply voltage
X3.4	Supply	+15 V Primary voltage for DC/DC converter
X3.5	TOP IN-	PWM signal for Top transistor, negative logic
X3.6	TOP IN+	PWM signal for Top transistor, positive logic
X3.7	TOP RDY	Ready signal for Top channel
X3.8	TOP /FLT	Fault detection output Top channel
X3.9	TOP/BOT /RST	Reset signal for Top and Bottom IGBT-Driver
X3.10	BOT /FLT	Fault detection output Bottom channel
X3.11	BOT RDY	Ready signal for Bottom channel
X3.12	BOT IN-	PWM signal for Bottom transistor, negative logic
X3.13	BOT IN+	PWM signal for Bottom transistor, positive logic
X3.14	TEMP-Digital	Sigma / Delta signal for temperature measurement
X3.15	+5V	+5 V Voltage supply for logic devices
X3.16	Signal GND	Primary ground logic devices

 Table 2
 Inputs and outputs of 6ED100E12-F2 for connector X3




Figure 3 The 6ED100E12-F2 Evaluation Driver Board pin assignment for the third leg

Connectors X1 and X2 of the EconoPACK[™]+ board have the same pinning as connector X3 except temperature measurement. Connector X3 of EconoPACK[™]+ driver board has the same pin assignment as connector X1 of the EconoDUAL[™]3 driver board.

2.4 Mechanical dimensions of the EconoDUAL[™]3 Driver Board

SAP number to order Evaluation Driver Board for EconoDUAL™3 modules: 31165

Figure 4 Dimensions of the 2ED100E12-F2 Driver Board

2.5 Mechanical dimensions of the EconoPACK[™]+ Driver Board

SAP number to order Evaluation Driver Board for EconoPACK™+ modules: 31166

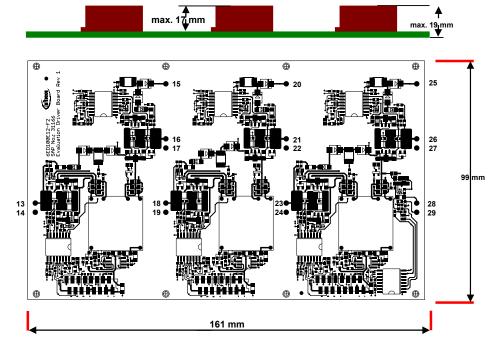


Figure 5 Dimensions of the 6ED100E12-F2 Driver Board

Application Note

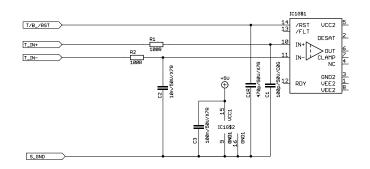
Downloaded from Elcodis.com electronic components distributor

Both Driver Boards should be fastened by self taping screws and soldered to the auxiliary connectors on top of the IGBT module.

Clearance and creepage distances for EconoDUAL[™]3 and EconoPACK[™]+ Driver Boards:

Primary/Secondary is not less than 8 mm and Secondary/Secondary is not less than 4 mm.

3 Application Note


The following chapter describes the board's operation in evaluation setup. Please note that the following paragraphs describe the circuits of the 2ED100E12-F2 which has been modified (compared to the last revision of this AN) to drive IGBT4 modules and to reduce the susceptibility to erroneous triggering of the V_{cesat} -detection. Same changes may also be applied to the 6ED100E12-12-F2, but layout and part list of this board provided in chapter 7 still represent the initial design.

3.1 Power Supply

The 2ED100E12-F2 and the 6ED100E12-F2 have an integrated DC/DC converter for each leg, which generates the required secondary isolated unsymmetrical supply voltage of +16 V / -8 V. Top and Bottom driver voltages are independently generated by using one unipolar input voltage of 15 V. Additionally, the power supply is protected against gate – emitter short circuit of the IGBTs. In case of DC/DC converter overload, the output voltage drops. This Under Voltage Detection function insures gate voltages within specified range. The fault is reported to the driver's primary side.

3.2 Input logic – PWM signals

The Evaluation Driver Boards are dedicated for a half-bridge EconoDUALTM3 and sixpack EconoPACKTM+ IGBT configuration, therefore it is necessary to connect two separate PWM signals or 6 separate PWM signals. Individual signals for Top and Bottom IGBT are necessary if there is a half-bridge module or rather 6 dedicated signals if there is a sixpack module. The schematic for a single driver is depicted in Figure 6. The signals need to have the correct dead time. Both Evaluation Driver Boards do not provide automatic dead time generation and recommended minimum dead time t_{TD} is 1 µs, provided gate resistors like suggested in tables 5 and 7 are used. If larger gate resistors are used please refer to [1].

Figure 6 Schematic detail of the input circuit for a single driver.

The schematic in Figure 6 shows driver circuit with positive logic. IN+ is used as signal input whereas IN- is used as enable signal. Therefore a +5 V signal on the IN+ input pin and a GND signal on the IN- input pin is necessary to switch on the IGBT. To operate the whole circuit with negative logic the capacitors on the input pins have to be exchanged. Otherwise this would cause an additional delay. IN+ will then operate as an enable signal.

Application Note

3.3 Maximum switching frequency

The IGBT switching frequency is limited by the available power and by PCB temperature. According to theory the power losses generated in gate resistors are a function of gate charge, voltage step at the driver output and switching frequency. The energy is dissipated mainly through the PCB and raises the temperature around the gate resistors. When the available power of the DC/DC converter is not exceeded, the limiting factor for the switching frequency is the absolute maximum temperature for the FR4 material. The allowed operation temperature is 105 °C.

Generally the power losses generated in the gate resistors can be calculated according to formula (1):

$$P_{dis} = P_{Rgext} + P_{Rgint} = \Delta V_{out} \cdot f_s \cdot Q_{ge}$$
(1)

In this formula f_s resembles the switching frequency, ΔV_{out} represents the voltage step at the driver output P_{dis} is the dissipated power, Q_{ge} is the IGBT gate charge value corresponding to -8/+16V operation. This value can be approximately calculated from the datasheet value by multiplying by 0.8.

Most of the losses are shared between the internal $-P_{Rgint}$ and the external $-P_{Rgext}$ gate resistors. Negligible losses are also in the driver IC itself. Due to the PCB temperature criteria the power dissipated in external gate resistors P_{Rgext} is to be considerd for the thermal design. Temperatures can be calculated takeing relevant thermal resistances of this part of the board into account.

Based on experimentally determined board temperatures the following thermal resistances have been calculated using an equivalent circuit diagram as given in Figure 7:

Gate resistors to baseplate: $R_{thB-G} = 45 \text{ K/W}$ Gate resistors to ambient: $R_{thR-A} = 39 \text{ K/W}$

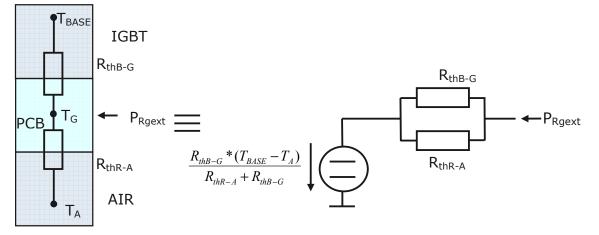
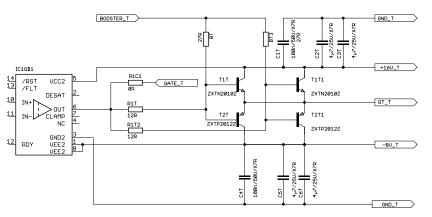


Figure 7 Thermal equivalent circuit

Application Note

Using these values and the equivalent circuit, it is possible to determine the maximum board temperature, if the power losses of the external gate resistors, the maximum ambient temperature and the maximum baseplate temperature are known:

$$T_{G} = T_{A} + \frac{R_{thB-G} * (T_{BASE} - T_{A})}{R_{thR-A} + R_{thB-G}} + P_{Rgext} * \frac{R_{thR-A} * R_{thB-G}}{R_{thR-A} + R_{thB-G}}$$


The maximum switching frequency will be determined when either the maximum allowable board temperature has been reached ($105^{\circ}C$) or when the limit of power transmission of the DC/DC converter (1.5 W per channel) is exceeded.

3.4 Booster

Two complementary pairs of transistors are used to amplify the driver ICs signal. This allows driving IGBTs that need more current than the driver IC can deliver. Two NPN transistors are used for switching the IGBT on and two PNP transistors for switching the IGBT off. Resistors in the individual base connections ensure proper parallel operation.

The transistors are dimensioned to have enough peak current to drive all 600 V and 1200 V EconoDUAL[™]3 and EconoPACK[™]+ modules. Peak current can be calculated like in formula (2):

$$I_{peak} = \frac{\Delta V_{out}}{R_{G_{int}} + R_{G_{ext}} + R_{Driver}}$$
(2)

Figure 8 Booster

Gate resistors are connected in between booster stage and IGBT module gate connection. Suggested values are provided in tables 5 and 7. For some modules the value for these resistors is 0 Ohm. In this case just a jumper is required. If resistors are needed ensure that these resistors have a suitable rating for repetitive pulse power to avoid degradation.

3.5 Short circuit protection and clamp function

The short circuit protection of the Evaluation Driver Board basically relies on the detection of a voltage level higher as 9 V on the DESAT pin of the 1ED020I12-F driver IC and the implemented active clamp function. Thanks to this operation mode, the collector-emitter overvoltage, which is a result of the stray inductance and

Application Note

Downloaded from Elcodis.com electronic components distributor

the collector current slope, is limited. Depending on the stray inductance, the current and the DC voltage the overvoltage shoot during turn off changes.

Figure 9 shows the parts of the circuit needed for the desaturation function and the active clamping function.

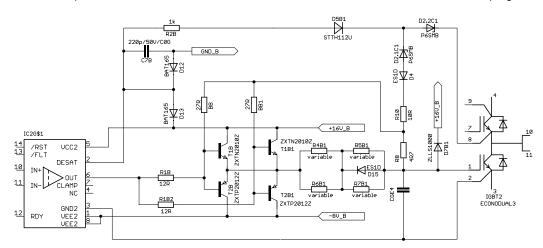


Figure 9 Desaturation protection and active clamping diodes

In case of a short circuit the saturation voltage U_{GE} will rise and the driver detects that there is a short circuit. The IGBT has to be switched off. There will be an overvoltage shoot due to the stray inductance of the module and the DC-Link. This overvoltage shoot has to be lower than the maximum IGBT blocking voltage. Therefore the evaluation driver board contains an active clamping function whereby the clamping will raise the voltage for the booster and also raise the voltage directly on the gate.

The typical turn-off waveform under short circuit condition and room temperature of a FF450R12ME4 module without any additional function is shown in Figure 10a.Typical waveform under short circuit condition with active clamp function is shown in 10b at room temperature.

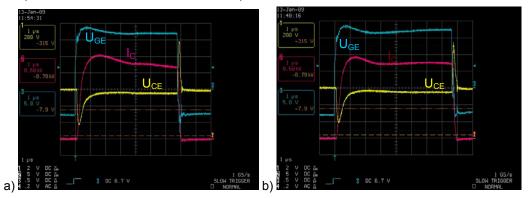
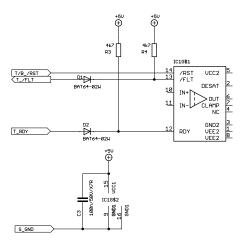
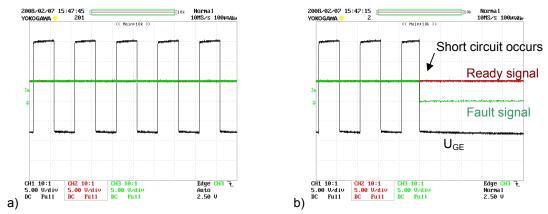



Figure 10 a) Short circuit without active clamp b) with active clamp function



3.6 Fault output

When a short circuit occurs, the voltage U_{CE} is detected by the desaturation protection of the 1ED020I12-F and the IGBT is switched off. The fault is reported to the primary side of the driver as long as there is no reset signal applied to the driver. The /FAULT signal is active low, the according schematic can be seen in Figure 11.

Figure 11 /Fault output for a single driver

The fault signal will be in low state in case of a short circuit until /RST is pulled down.

3.7 Temperature measurement

Based on the NTC built into both module types, the Driver Board offers IGBT base plate temperature measurement in the range of -40 °C...150 °C. The Evaluation driver boards work with a Sigma/Delta converter. Thus a digital signal is provided. This has the advantage that a normal I/O Pin on the microcontroller can be used and that the subsequent error is low. However an analog signal can be produced with the use of the following schematic.

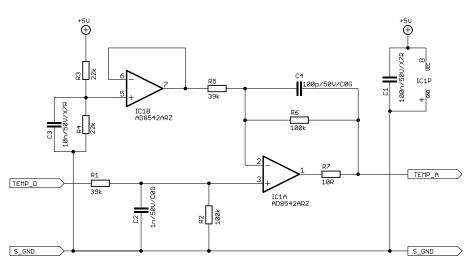


Figure 13 Schematic to convert digital Σ/Δ to analog output

Туре	Qty	Value / Device	Package size imperal	Part Name	Recommended Manufacturer	Assembled
Capacitor	1	100n/50V/X7R	C0603	C1		
Capacitor	1	1n/50V/C0G	C0603	C2		
Capacitor	1	10n/50V/X7R	C0603	C3		
Capacitor	1	100p/50V/C0G	C0603	C4		
Amplifier	1	AD8542ARZ	SOIC08	IC1	Analog Devices	
Resistor	2	39k	R0603	R1, R5		
Resistor	2	100k	R0603	R2, R6		
Resistor	2	22k	R0603	R3, R4		
Resistor	1	10R	R0603	R7		

Table 3 Bill of Material Σ/Δ to analog co	onverter
---	----------

The bill of material not only includes a part list, but also assembly notes. All electronic parts used in the design are lead-free with 260 °C soldering profile.

The tolerances for resistors should be less or equal ± 1 %, for capacitors of the type C0G less or equal ± 5 % and for capacitors of the type X7R less or equal ± 10 %

Switching losses

Using the baseplate temperature and a thermal model the junction temperature can be estimated. The complexity of the thermal model needed for this purpose depends on application and heatsinking conditions as well as on requirements on accuracy and dynamic response. In case of a broken wire the output switches down to 0 V. Output voltage vs. baseplate temperature is shown in Figure 14, assuming that the circuit according to Figure 12 is used to convert the digital signal to an analog signal.

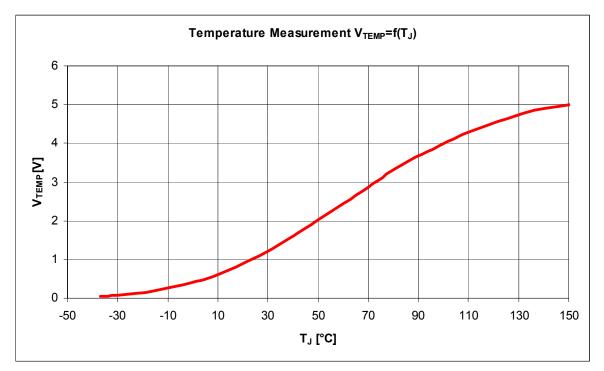


Figure 14 Characteristics of the temperature measurement

Note: This temperature measurement is not suitable for short circuit detection or short term overload and may be used to protect the module from long term overload conditions or malfunction of the cooling system.

Switching losses

4 Switching losses

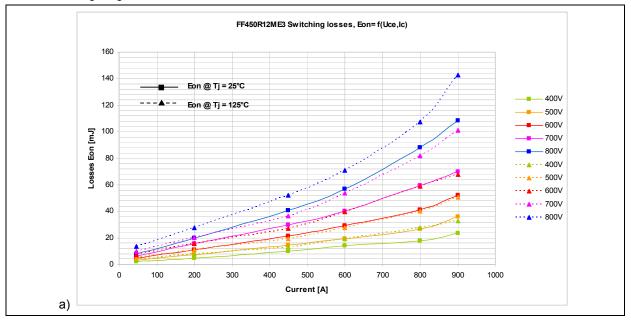
The setup used for preparing this application note varies from the setup used to characterize the devices in three aspects:

DC-link inductance:

The DC-link inductance of the setup used for these test is has a value of approximately 35 nH for all modules investigated here in contrast to varying values between 35 nH to 80 nH used for device characterization (see device datasheets for details). For a detailed discussion on the impact of DC-link inductance on switching losses please refer to [2].

Gate voltage:

This Evaluation Board provides a gate voltage of -8 V for turning off and 16 V for turning on wheras charactization is done with a driver providing +/- 15 V of gate voltage.


Gate driver output impedance:

According to IEC 60747-9 for characterization of an IGBT the driver used should resemble an ideal voltage source as far as possible. For the Evaluation Board a driver output stage has been choosen that considers board space as well as cost constraints. Therefore it can not provide close to zero output impedance.

All aspects discussed above have an impact on the switching speed of the module and hence also on the switching losses. Gate resistor values have been choosen so that di/dt at turn-on compareable to characterization has been achieved. Nevertheless small deviations in the turn-on losses persist. For the turn-off losses there is little impact of driving conditions for trench-fieldstop IGBTs like the ME3 and ME4 devices. For NPT IGBTs, like used in the MS4 modules, the considerations made for turn-on losses also apply for turn-off losses.

4.1 Turn-on losses

The turn-on losses are expected to be close to the values of the datasheet of the modules. As an example the turn-on losses for an EconoDUAL[™]3 FF450R12ME3 as well as for a FF450R12ME4 module are shown in the following diagrams.

Switching losses

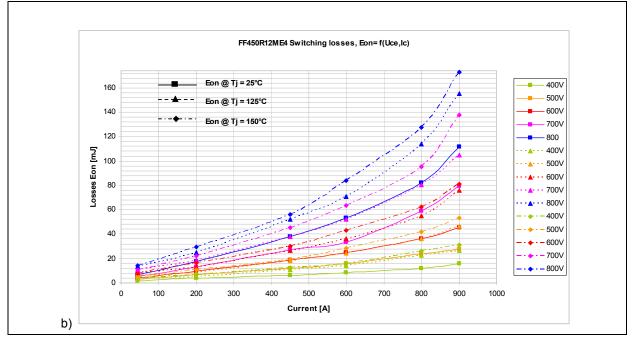
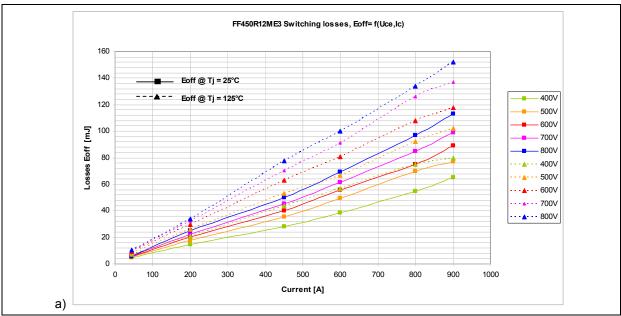



Figure 15 Turn-on losses with a) FF450R12ME3 and b) FF450R12ME4 module

4.2 Turn-off losses

In general the turn-off losses increase linear with the DC-Link voltage. In the case of the driver board it does not increase linear because the active clamping function increases the turn-off losses due to a decrease of the di/dt.

Application Note

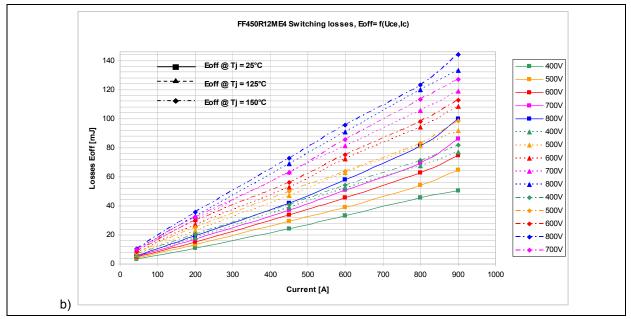


Figure 16 Turn-off losses with a) FF450R12ME3 and b) FF450R12ME4 module

All losses are measured according the IEC 60747-9 standard. E_{on} is the integration of $U_{CE} \cdot I_C$ from 10% of I_C and 2% U_{CE} . For E_{off} it is vice versa. Here it is the integration from 10% of U_{CE} to 2% of I_C .

5 Definition of layers for Evaluation Driver Boards

Both driver boards were made keeping the following rules for the copper thickness and the space between different layers shown in Figure 17.

Layers:

Figure 17 Copper and isolation for layers

6 Schematic, Layout and Bill of Material EconoDUAL[™]3 board

To meet the individual customer requirement and make the Evaluation Driver Board for the EconoDUAL™3 module simple for development or modification, all necessary technical data like schematic, layout and components are included in this chapter.

6.1 Schematic

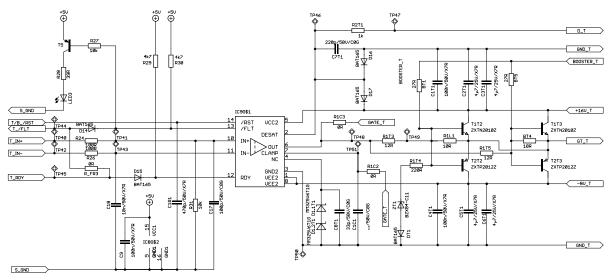


Figure 18 IGBT driver – Top transistor

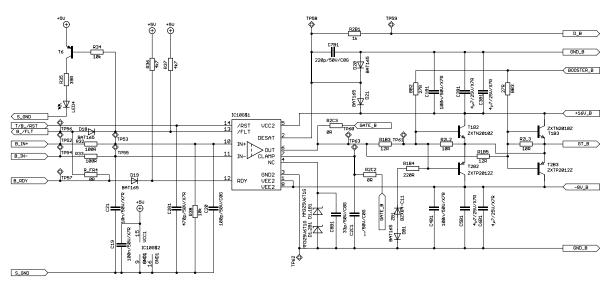
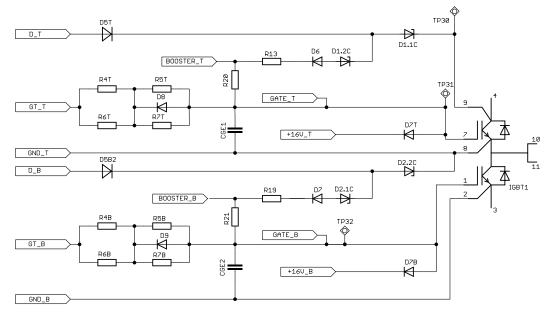



Figure 19 IGBT driver – Bottom transistor

Application Note

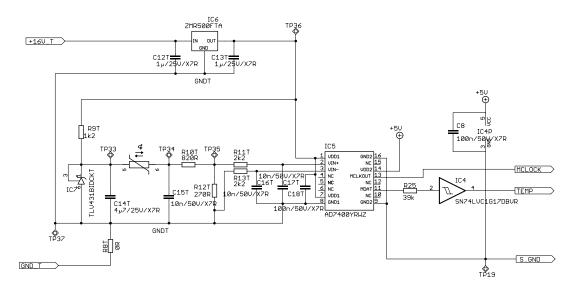


Figure 21 IGBT driver – Temperature measurement

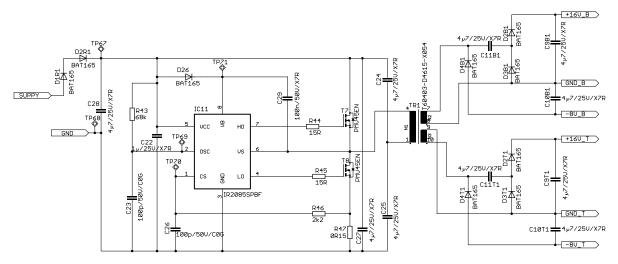


Figure 22 IGBT driver – DC/DC converter

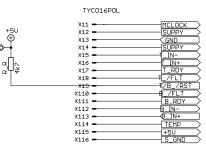


Figure 23 IGBT driver – External connection

6.2 Assembly drawing

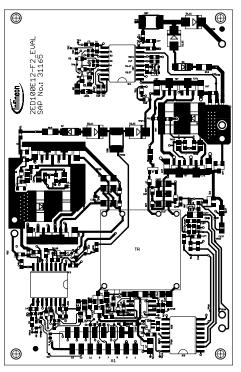


Figure 24 Assembly drawing of the EconoDUAL™3 driver board

For detail information use the zoom function of your PDF viewer to zoom into the drawing.

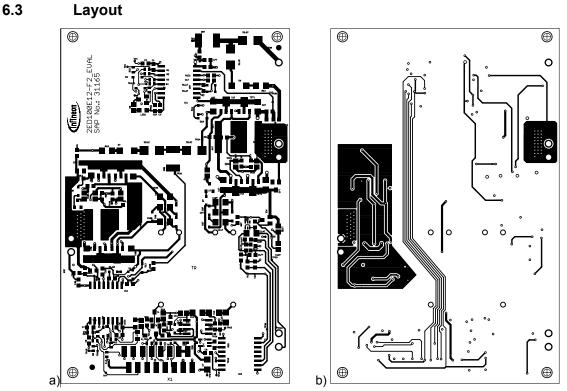


Figure 25 EconoDUAL[™]3 IGBT driver – a) Top layer and b) Layer 2

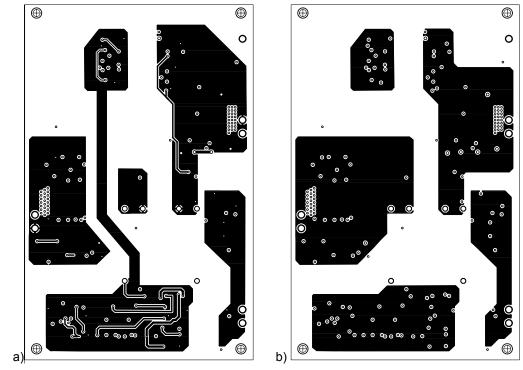


Figure 26 EconoDUAL™3 IGBT driver – a) Layer 3 and b) Bottom layer

Application Note

6.4 Bill of Material

The bill of material not only includes a part list, but also assembly notes. All electronic parts used in the design are lead-free with 260 °C soldering profile. The external gate resistors are not assembled, a list for the resistor values is presented in chapter 6.5.

The tolerances for resistors should be less or equal ± 1 %, for capacitors of the type C0G less or equal ± 5 % and for capacitors of the type X7R less or equal ± 10 %.

Table 4	Qty	Value / Device	/ Device Package Part Name size imperal		Recommended	Assembled	Description
oonooitor	4	100p/50V/C0G	C0603	C1,C4,C10,C12	Manufacturer		-
capacitor	4	1000/500/600	00003	C1B, C1T, C4B, C4T,			
capacitor	9	100n/50V/X7R	C0603	C3, C6, C8, C13, C18T			
capacitor	2	/50V/C0G	C0603	C1C,C2C		no	
capacitor	2	470p/50V/X7R	C0603	C1R,C2R			
capacitor	5	10n/50V/X7R	C0603	C2, C5, C15T, C16T, C17T			
capacitor	19	4µ7/25V/X7R	C-EUC1206	C2B, C2T, C3B, C3T,C5B,C5T, C6B, C6T,C9B, C9T, C10B, C10T, C11B, C11T, C14T, C7, C14, C15, C16	Murata		
capacitor	itor 2 220p/50V/C0G C0603 C7B,C7T						
capacitor	2	33p/50V/C0G	C0603	C8B,C8T		no	
capacitor	3	1µ/25V/X7R	C0805	C11,C12T,C13T			
capacitor	2	optional/50V/C0G	C0603	CGE1,CGE2			
connector	1	TYCO16POL	TYCO16POL	X1	TYCO	no	
diode	2	STTH112U	SOD6	D5B,D5T			
diode	4	ES1D	DO214AC	D6,D7,D8,D9			
diode	2	ZLLS1000	SOT23	D7B,D7T			
Driver IC	2	1ED020I12-F	P-DSO-16	IC1,IC2	Infineon		
Half-Bridge Driver IC	1	IR2085SPBF	SO08	IC3	International Rectifier		
Shottky Diode	2	BAT165	SOD323R	DB,DT	Infineon	no	
Isolated Sigma- Delta Modulator	1	AD7400YRWZ	P-DSO-16	IC5			
LED	2		CHIP- LED0805	LED1, LED2			
resistor	4	27R	R0603	BB, BT, BB1, BT3			
resistor	4	10R	R0603	BT2,R1L,R2L,R2L1		no	
resistor	4	100R	R0402	R1,R2,R7,R8			
resistor	4	12R	R0805	R1B,R1T,R1B2,R1T2			Pulsresistor
resistor	2	220R	R0805	R1B1,R1T1		no	
resistor	5	0R	R0603	R1C,R1C1,R2C,R2C1, R8T		no	
resistor	2	0R	R0402	R_FR1,R_FR2			
resistor	2	1k	R0603	R2B,R2T			
resistor	5	4k7	R0402	R3,R4,R9,R10,R_R			
resistor	resistor 2 4R7 R0603		R20,R21				
resistor	4	10k	R0402	R6,R12,R22,R23			
resistor	2	39R	R0805	R5,R11			
resistor	8	variable	R2010	R4B, R4T, R5B, R5T, R6B, R6T, R7B, R7T	TT electronics		Pulsresistor
resistor	1	1k2	R0603	R9T			
resistor	1	820R	R0603	R10T			1

Table 4 Bill of Material for EconoDUAL[™]3 Driver Board

Application Note

Downloaded from Elcodis.com electronic components distributor

	_						1
resistor	3	2k2	R0603	R11T,R13T,R17			
resistor	1	270R	R0603	R12T			
resistor	2	10R	R1206	R13,R19			
resistor	2	15R	R0603	R15,R16			
resistor	1	68k	R0603	R14			
resistor	1	0R15	R0805	R18			
resistor	1	39k	R0603	R25			
Schmitt-Trigger	1	SN74LVC1G17D BVR	SOT23-5	IC4			
Shottky Diode	17	BAT165	SOD323R	D2B,D2R,D2T,D3, D3B,D3T,D4,D4B, D4T,D5,D10,D11, D12,D13,D1, D1R,D2	Infineon		
Shunt Regulator	1	TLV431BIDCKT	SC70-6L	SC70-6L IC7			
Transformer	1	T60403-D4615- X054	D4615-X054	TR	Vacuum- schmelze		
Transistor	2	BC856	SOT23	T1,T2	Infineon		
Transistor	4	ZXTN2010Z	SOT89	T1B, T1B1, T1T, T1T1	Zetex		
Transistor	4	ZXTP2012Z	SOT89	T2B, T2B1, T2T, T2T1	Zetex		
TrenchMOS	2	PMV45EN	SOT23	T3,T4	philips		
Unipolar TVS Diode	2	P6SMB440A	SMB	D1.1C,D2.1C	Vishay		
Unipolar TVS Diode	2	P6SMB510A	SMB	D2.1C,D2.2C	Vishay		
Zener diode	4	MM3Z5V6T1G	SOD323-R	D1.1B, D1.1T, D1.2B, D1.2T	On Semiconductor	no	
Zener diode	1	ZMR500FTA	SOT23	IC6			
Zener diode	2	BZX84-C11	SOT23	ZB,ZT		no	

6.5 Gate resistor list

Table 5External gate resistors R_{Gext} are listed below, all packages are 2010

Module	R _{Gon} [Ω]	$R_{Goff}[\Omega]$	R4T, R4B, R6T, R6B [Ω]	R5T, R5B, R7T, R7B [Ω]	Assembled	
FF600R06ME3	2.0	1,25	2,5	1,5	no	
FF150R12ME3G	5.6	3,7	7,5	3,7	no	
FF225R12ME3	1.5	0	0	3	no	
FF225R12ME4	0	0	0	0	no	
FF300R12ME3	1.1	0	0	2,2	no	
FF300R12ME4	0	0	0	0	no	
FF450R12ME3	1	0,25	0,5	1,5	no	
FF450R12ME4	1	0	0	2	no	
FF150R12MS4	5.1	3,2	6,2	4	no	
FF225R12MS4	3	1,5	3	3	no	
FF300R12MS4	1.5	0,5	1	2	no	

7 Schematic, Layout and Bill of Material EconoPACK[™]+ board

To meet the individual customer requirement and make the Evaluation Driver Board for the EconoPACK™+ module a simple for development or modification, all necessary technical data like schematic, layout and components are included in this chapter.

The tolerances for resistors should be less or equal ± 1 %, for capacitors of the type C0G less or equal ± 5 % and for capacitors of the type X7R less or equal ± 10 %.

7.1 Schematic

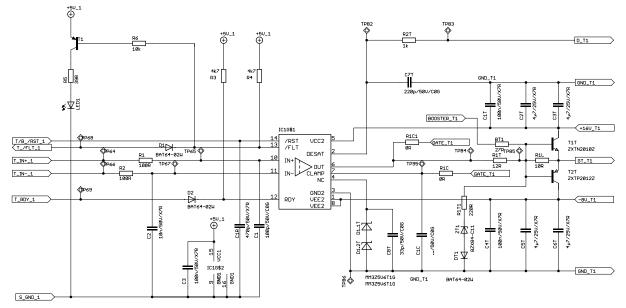


Figure 27 IGBT driver – Top transistor of first leg

Application Note

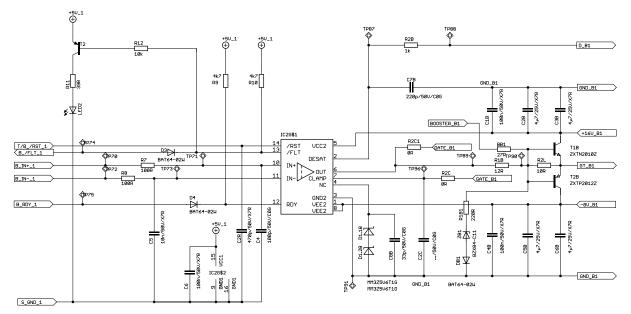
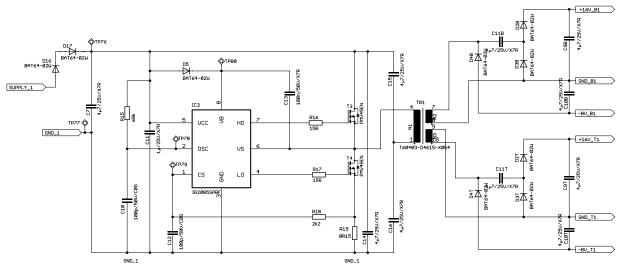



Figure 28 IGBT driver – Bottom transistor of first leg

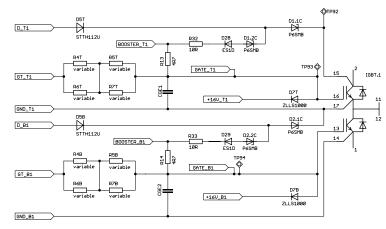


Figure 30 Gate resistors of first leg

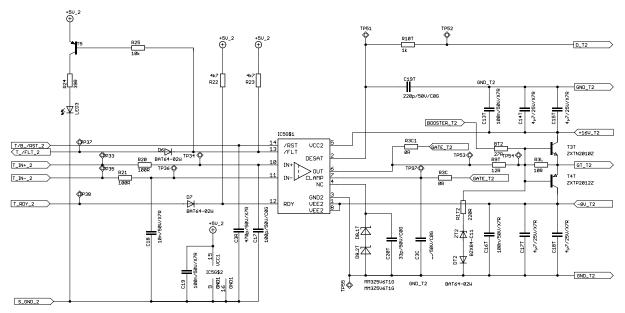


Figure 31 IGBT driver – Top transistor of second leg

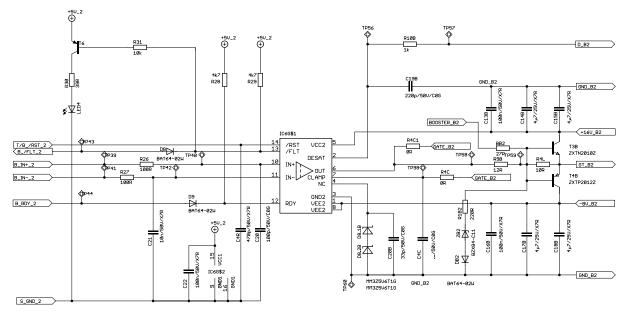
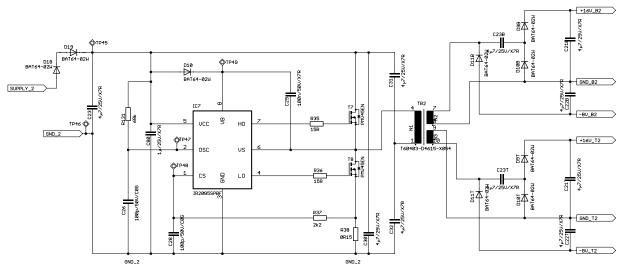



Figure 32 IGBT driver – Bottom transistor of second leg

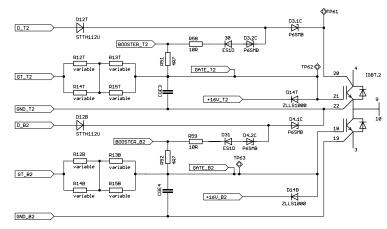


Figure 34 Gate resistors of second leg

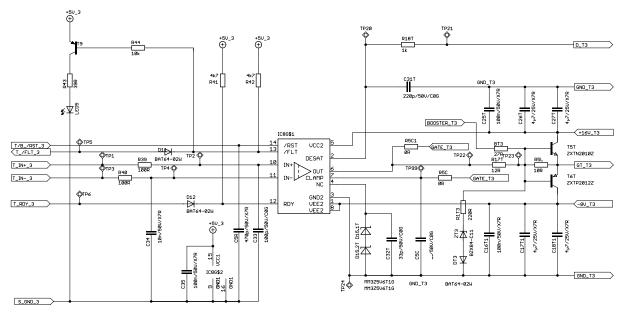


Figure 35 IGBT driver – Top transistor of third leg

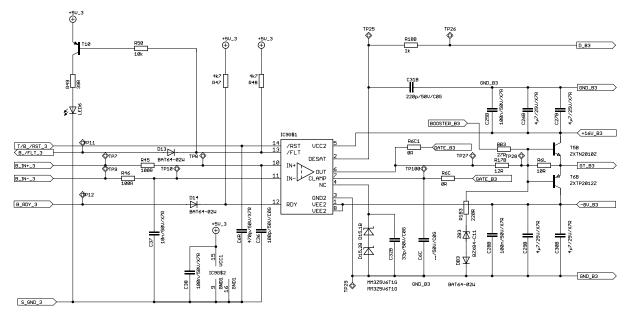


Figure 36 IGBT driver – Bottom transistor of third leg

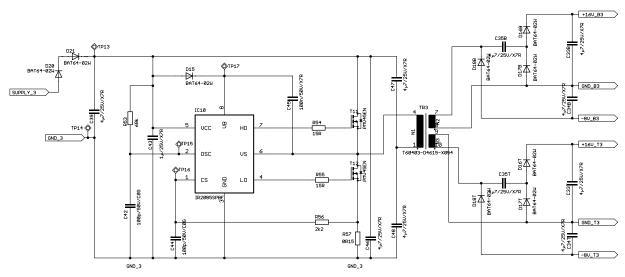
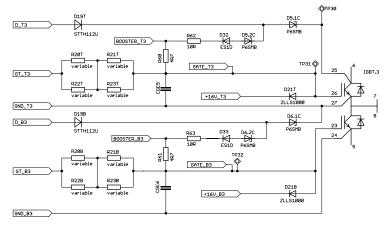
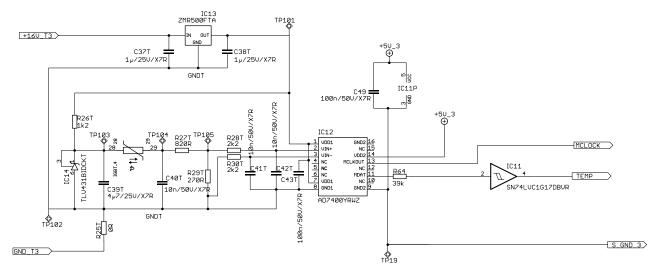
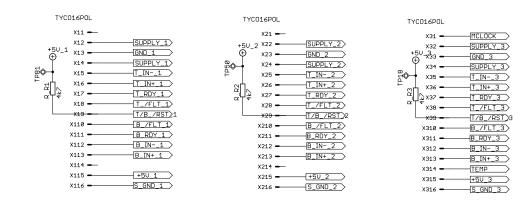




Figure 37 DC/DC converter of third leg



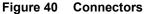


Figure 38 Gate resistors of third leg

Application Note

7.2 Assembly drawing

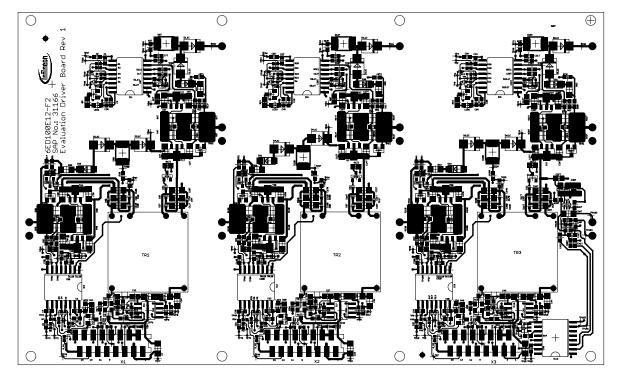


Figure 41 Assembly drawing of the EconoPACK™+ driver board

For detail information use the zoom function of your PDF viewer to zoom into the drawing.

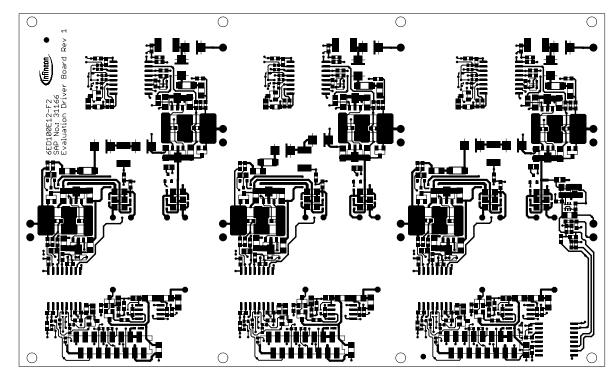


Figure 42 EconoPACK™+ IGBT driver – Top layer

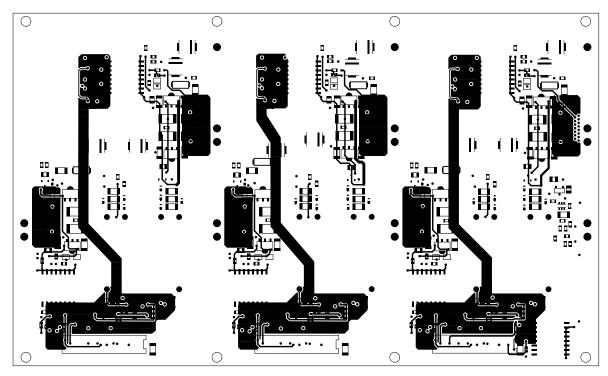


Figure 43EconoPACK™+ IGBT driver – Layer 2Application Note3

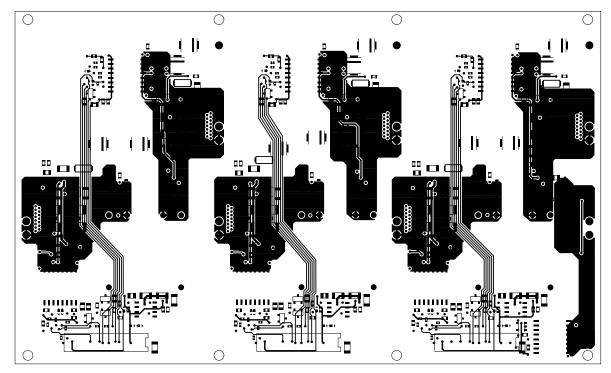


Figure 44 EconoPACK™+ IGBT driver – Layer 3

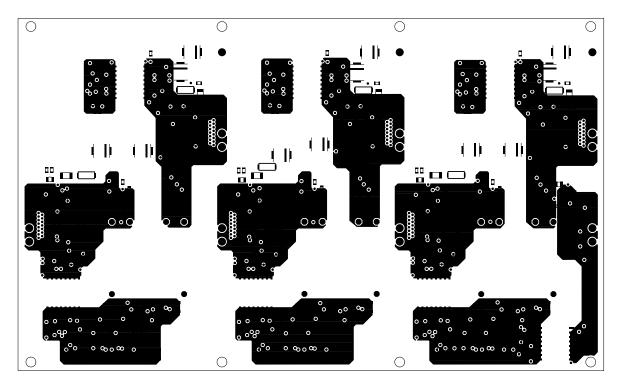


Figure 45 EconoPACK™+ IGBT driver – Bottom Layer 4

Application Note

Downloaded from Elcodis.com electronic components distributor

7.4 Bill of material

The bill of material not only includes a part list, but also assembly notes. All electronic parts used in the design are lead-free with 260 °C soldering profile. The external gate resistors are not assembled, a list for the resistor values is presented in chapter 7.5.

Туре	Qty	Value / Device	Package size imperal	Part Name	Recommended Manufacturer	Assembled
Capacitor	6	/50V/C0G	C0603	C1C, C2C, C3C, C4C, C5C, C6C		no
Capacitor	9	10n/50V/X7R	C0603	C2, C5, C18, C21, C34, C37, C40T, C41T, C42T		
Capacitor	6	33p/50V/C0G	C0603	C8B, C8T, C20B, C20T, C32B, C32T		no
Capacitor	23	100n/50V/X7R	C0603	C1B, C1T, C3, C4B, C4T, C6, C13, C13B, C13T, C16B, C16T, C19, C22, C25B, C25T, C28B, C28T, C29, C35, C38, C43T, C45, C49		
Capacitor	12	100p/50V/C0G	C0603	C1, C4, C10, C12, C17, C20, C26, C28, C33, C36, C42, C44		
Capacitor	6	220p/50V/C0G	C0603	C7B, C7T, C19B, C19T, C31B, C31T		
Capacitor	6	470p/50V/X7R	C0603	C1R, C2R, C3R, C4R, C5R, C6R		
Capacitor	6	optional/50V/C0G	C0603	CGE1, CGE2, CGE3, CGE4, CGE5, CGE6		no
Capacitor	5	1µ/25V/X7R	C0805	C11, C27, C37T, C38T, C43		
Capacitor	55	4µ7/25V/X7R	C1206	C2B, C2T, C3B, C3T, C5B, C5T, C6B, C6T, C7, C9B, C9T, C10B, C10T, C11B, C11T, C14, C14B, C14T, C15, C15B, C15T, C16, C17B, C17T, C18B, C18T, C21B, C21T, C22B, C22T, C23, C23B, C23T, C26B, C26T, C27B, C27T, C29B, C29T, C30, C30B, C30T, C31, C32, C33B, C33T, C34B, C34T, C35B, C35T, C39, C39T, C46, C47, C48	Murata	
Transformer	3	T60403-	D4615-X054	TR1, TR2, TR3	Vacuum- schmelze	
LED	6	LEDCHIP-	LED0805	LED1, LED2, LED3, LED4, LED5, LED6		
Schottky Diodes	39	BAT64-02W	SCD80	D1, D2, D2B, D2T, D3, D3B, D3T, D4, D4B, D4T, D5, D6, D7, D8, D9, D9B, D9T, D10, D10B, D10T, D11, D11B, D11T, D12, D13, D14, D15, D16, D16B, D16T, D17, D17B, D17T, D18, D18B, D18T, D19, D20, D21	Infineon	
Rectifier Diode	6	ES1D	DO214AC	D28, D29, D30, D31, D32, D33		

Table 6 Bill of Material for EconoPACK™+ Driver Board

Application Note

Downloaded from Elcodis.com electronic components distributor

Type Qty		Value / Device	Package size imperal	Part Name	Recommended Manufacturer	Assembled
Diode	6	BAT64-02W	SCD80	DB1, DB2, DB3, DT1, DT2, DT3	Infineon	no
Unipolar TVS Diode	6	P6SMB/440V	SMB	D1.1C, D2.1C, D3.1C, D4.1C, D5.1C, D6.1C,		
Unipolar TVS Diode	6	P6SMB/510V	SMB	D1.2C, D2.2C, D3.2C, D4.2C, D5.2C, D6.2C		
Diode	6	STTA112U	SOD6	D5B, D5T, D12B, D12T, D19B, D19T		
Zener Diode	12	MM3Z5V6T1G	SOD323-R	D1.1B, D1.1T, D1.2B, D1.2T, D8.1B, D8.1T, D8.2B, D8.2T, D15.1B, D15.1T, D15.2B, D15.2T	On Semiconductor	no
Zener Diode	6	BZX84-C11	SOT23	ZB1, ZB2, ZB3, ZT1, ZT2, ZT3		no
Diode	6	ZLLS1000	SOT23	D7B, D7T, D14B, D14T, D21B, D21T	Zetex	
Driver IC	6	1ED020I12-F	P-DSO-16	IC1, IC2, IC5, IC6, IC8, IC9		
Half-Bridge Driver	3	IR2085SPBF	SO08	IC3, IC7, IC10	International Rectifier	
Schmitt- Trigger	1	SN74LVC1G17DBVR	SOT23-5	IC11		
Isolated Sigma-Delta Modulator	1	AD7400YRWZ	P-DSO-16	IC12	Analog Devices	
Voltage regulator	1	ZMR500FTA	SOT23	IC13		
Shunt Regulator	1	TLV431BIDCKT	SC70-6L	IC14		
Resistor	6	0R	R0402	R_FR1, R_FR2, R_FR3, R_FR4, R_FR5, R_FR6		
Resistor	15	4k7	R0402	R_R1, R_R2, R_R3, R3, R4, R9, R10, R22, R23, R28, R29, R41, R42, R47, R48		
Resistor	6	10k	R0402	R6, R12, R25, R31, R44, R50		
Resistor	12	100R	R0402	R1, R2, R7, R8, R20, R21, R26, R27, R39, R40, R45, R46		
Resistor	7	0R	R0603	R1C, R2C, R3C, R4C, R5C, R6C, R25T		no
Resistor	6	0R	R0603	R1C1, R2C1, R3C1, R4C1, R5C1, R6C1		no
Resistor	6	27R	R0603	BB1, BB2, BB3, BT1, BT2, BT3		
Resistor	6	1k	R0603	R2B, R2T, R10B, R10T, R18B, R18T		
Resistor	1	1k2	R0603	R26T		
Resistor	5	2k2	R0603	R18, R28T, R30T, R37, R56		
Resistor	6	4R7	R0603	R13, R14, R51, R52, R60, R61		
Resistor	6	10R	R0603	R1L, R2L, R3L, R4L, R5L, R6L		no
Resistor	6	15R	R0603	R16, R17, R35, R36, R54, R55		
Resistor	1	39k	R0603	R64		
Resistor	3	68k	R0603	R15, R34, R53		
Resistor	1	270R	R0603	R29T		
Resistor	1	820R	R0603	R27T		
Resistor	3	0R15	R0805	R19, R38, R57		

Application Note

Туре	Qty	Value / Device	Package size imperal	Part Name	Recommended Manufacturer	Assembled
Resistor	6	12R	R0805	R1B, R1T, R9B, R9T, R17B, R17T		
Resistor	6	39R	R0805	R5, R11, R24, R30, R43, R49		
Resistor	6	220R	R0805	R1B1, R1B2, R1B3, R1T1, R1T2, R1T3		no
Resistor	6	10R	R1206	R32, R33, R58, R59, R62, R63		
Resistor	24	variable	R2010	R4B, R4T, R5B, R5T, R6B, R6T, R7B, R7T, R12B, R12T, R13B, R13T, R14B, R14T, R15B, R15T, R20B, R20T, R21B, R21T, R22B, R22T, R23B, R23T	TT electronics	no: See Table 8
Transistor	6	BC856	SOT23	T1, T2, T5, T6, T9, T10		
TrenchMOS	6	PMV45EN	SOT23	T3, T4, T7, T8, T11, T12	Philips	
Transistor	6	ZXTN2010Z	SOT89	T1B, T1T, T3B, T3T, T5B, T5T	Zetex	
Transistor	6	ZXTP2012Z	SOT89	T2B, T2T, T4B, T4T, T6B, T6T	Zetex	
Connector	3	8-188275-6	16POL	X1, X2, X3	Тусо	

How to order Evaluation Driver Boards

7.5 Gate resistor list

Module	R _{Gext} [Ω]	R4T, R4B, R6T, R6B [Ω]	R5T, R5B, R7T, R7B [Ω]			
		R12T, R12B, R14T, R14B [Ω]	R13T, R13B, R15T, R15B [Ω]			
		R20T, R20B, R22T, R22B [Ω]	R21T, R21B, R23T, R23B [Ω]			
FS150R12KE3G	8.2	5.6	5.6			
FS225R12KE3	3.3	1.5	1.5			
FS300R12KE3	2.4	1.1	1.1			
FS450R12KE3	1.6	1	1			

 Table 7
 External gate resistors R_{Gext} are listed below, all packages are 2010

8 How to order Evaluation Driver Boards

Every Evaluation Driver Board has its own SAP number and can be ordered via your Infineon Sales Partner. Information can also be found at the Infineons Web Page: <u>www.infineon.com</u>

CAD-data for the board decribed here are available on request. The use of this data is subjected to the disclaimer given in this AN. Please contact, <u>IGBT.Application@infineon.com</u>.

Downloaded from Elcodis.com electronic components distributor

References

9 References

- [1] Infineon Technologies AG: AN2007-04, How to calculate and to minimize the dead time requirement for IGBTs properly, V1.0, May 2007
- [2] Bäßler, M., Ciliox A., Kanschat P.: On the loss softness trade-off: Are different chip versions needed for softness improvement? PCIM Europe 2009, Nuremberg, May 2009

V1.2, 2009-08

http://www.infineon.com

Published by Infineon Technologies AG