

Features

- TV to 28V Wide Supply Voltage Range
- Peak-Current-Mode Control
- Up to 360mA Output Current
- Analog Linear Dimming Control
- PWM Dimming Control
- Programmable Switching Frequency
- Shutdown Control
- Output Overvoltage Protection
- Fully Assembled and Tested

Ordering Information

PART			ТҮРЕ		
MAX16812EVKIT+			EV Kit		

+Denotes lead-free and RoHS-compliant.

DESIGNATION	QTY	DESCRIPTION
C1, C9, C10, C11	4	4.7μF ±10%, 50V X7R ceramic capacitors (1210) Murata GRM32R71H475K
C2, C18	0.1µF ±10%, 50V X7R ceramic 2 capacitors (0603) Murata GRM188R71H104K	
C3, C8	2	3.3µF ±10%, 16V X7R ceramic capacitors (0805) Murata GRM21BR71C335KA73
C4, C6	2	0.22µF ±10%, 25V X7R ceramic capacitors (0603) Murata GRM188R71E224K
C5, C15, C16, C17	4 capacitors (0603)	
C7	1	220pF ±10%, 50V X7R ceramic capacitor (0603) Murata GRM188R71H221K
C12	1	1µF ±10%, 16V X7R ceramic capacitor (0603) Murata GRM188R71C105K

General Description

The MAX16812 evaluation kit (EV kit) demonstrates the

MAX16812 peak-current-mode PWM high-brightness LED

(HBLED) driver IC. The MAX16812 EV kit is configured in

a step-up/step-down topology with peak-current-mode and average LED current control for the external LEDs.

The EV kit is capable of supplying stable LED output

currents up to 360mA and operates at supply voltages between 7V and 28V. The maximum output voltage of

The MAX16812 EV kit features two different types of

dimming controls, using either an analog linear input voltage or a digital PWM input signal to control the

LEDs' brightness. This EV kit also has an undervoltage lockout (UVLO) feature that disables the EV kit and

overvoltage protection to protect the EV kit under no-load conditions. The MAX16812 EV kit is a fully assembled and tested surface-mount printed-circuit

the LED string can be up to 15V.

board (PCB).

Component List DESIGNATION QTY DESCRIPTION

DESIGNATION	GII	DESCHIFTION
C13	1	0.47µF ±10%, 25V X7R ceramic capacitor (0805) Murata GRM219R71E474K
C14	1	0.047µF ±10%, 25V X7R ceramic capacitor (0603) Murata GRM188R71E473K
C19, C20	0	Not installed, capacitors
D1	1	3A, 60V Schottky diode (SMB) Diodes Inc. B360B
D2	1	150mA, 100V diode (SOD-323) Diodes Inc. 1N4148WS-7-4
JU1	1	3-pin header
JU2, JU3	2	2-pin headers
L1	1	68µH, 3A inductor Coilcraft DO3340P-683ML
N1	1	60V, 4.3A n-channel MOSFET (6-pin SuperSOT) Fairchild Semiconductor FDC5612
R1	1	100k Ω ±1% resistor (0603)
R2, R9	2	100k Ω potentiometers (single turn)
R3	1	$1k\Omega \pm 1\%$ resistor (0603)
R4, R15	2	$10k\Omega \pm 1\%$ resistors (0603)

Maxim Integrated Products 1

valuates: MAX16812

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Evaluates: MAX16812

DESIGNATION	QTY	DESCRIPTION	
R5	1	2.49 k $\Omega \pm 1\%$ resistor (0603)	
R6	1	113kΩ ±1% resistor (0603)	
R7	1	$100\Omega \pm 5\%$ resistor (0603)	
R8	1	200k Ω ±1% resistor (0603)	
R10, R11	2	$0.6\Omega \pm 1\%$, 500mW sense resistors (1206) IRC/TT Electronics LRC-LRF-1206LF-01-R600-F	
R12	1	$10\Omega \pm 1\%$ resistor (0603)	
R13	1	1.8Ω ±1%, 250mW sense resistor (1206) Panasonic ERJ-8RQF1R8V	

DESIGNATION QTY DESCRIPTION $1.5\Omega \pm 1\%$, 250mW sense R14 1 resistor (1206) Panasonic ERJ-8RQF1R5V R16 $2.32k\Omega \pm 1\%$ resistor (0603) 1

Component List (continued)

TP1, TP2, TP3 З PC mini red test points Maxim integrated high-voltage LED driver with analog and PWM U1 1 dimming control MAX16812ATI+ (28-pin TQFN, 5mm x 5mm x 0.8mm) 3 Shunts ____ 1 PCB: MAX16812 Evaluation Kit+ ____

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Coilcraft, Inc.	847-639-6400	www.coilcraft.com
Diodes Inc.	805-446-4800	www.diodes.com
Fairchild Semiconductor	888-522-5372	www.fairchildsemi.com
IRC/TT Electronics	361-992-7900	www.irctt.com
Murata Mfg. Co., Ltd.	770-436-1300	www.murata.com
Panasonic Corp.	714-373-7366	www.panasonic.com

Note: Indicate that you are using the MAX16812 when contacting these component suppliers.

2

_____Quick Start Recommended Equipment

Before beginning, the following equipment is needed:

- 5V to 28V, 2A power supply
- Two digital voltmeters
- A series-connected LED string rated at 350mA (15V, max)
- One current probe to measure LED current

Procedures

The MAX16812 EV kit is fully assembled and tested. Follow the steps below to verify operation. **Caution: Do** not turn on the power supply until all connections are completed. Avoid powering up the EV kit without connecting a load to the LED+ and LED- pads.

- Connect the power supply's positive terminal to the VIN PCB pad on the EV kit. Connect the power supply's ground terminal to PGND PCB pad.
- 2) Connect digital voltmeters across the IN and PGND PCB pads and the LED+ and LED- PCB pads.
- 3) Install a shunt across jumper JU1 (MAX16812 EV kit enabled).
- 4) Install a shunt across jumper JU2 and verify that a shunt is not installed across jumper JU3 (analog dimming control).
- 5) Connect the anode-end of the LED string to the LED+ pad.
- 6) Connect the cathode-end of the LED string to the LED- pad.
- 7) Adjust potentiometer R9 clockwise.
- 8) Clip the current probe across the LED wire to measure the LED current.
- 9) Turn on the power supply and increase the input voltage to 7V.
- 10) Adjust potentiometer R2 counterclockwise until the LED current amplitude is 350mA.
- 11) Measure the voltage between the LED+ to LED-PCB pads.

_Detailed Description

The MAX16812 evaluation kit (EV kit) demonstrates the MAX16812 IC peak-current-mode PWM HBLED driver. The MAX16812 EV kit is configured in a step-up/stepdown topology with peak-current-mode and average LED current control for a string of user-supplied external HBLEDs. The EV kit is capable of supplying stable LED output currents up to 350mA and operates at supply voltages between 7V and 28V.

///XI//

The MAX16812 EV kit sets the inductor peak current to 2A using parallel resistors R10 and R11. The average LED current is set to a maximum of 360mA using parallel resistors R13 and R14, and by adjusting potentiometer R2.

The MAX16812 EV kit is set to a 300kHz switching frequency using resistor R8. Refer to the *Internal Oscillator Switching Frequency* section in the MAX16812 IC data sheet for information on setting other switching frequencies. A PCB pad is available to monitor the MAX16812 reference voltage output (REF). A PCB pad is also provided for the external LED intensity voltage-control input DIM.

Input Supply UVLO

Jumper JU1 controls the MAX16812 EV kit enable mode. Place a shunt across pins 1-2 to enable the MAX16812 EV kit when VIN voltage rises above the IC's 5V UVLO default threshold. Place a shunt across pins 2-3 to disable the EV kit. See Table 1 for JU1 jumper selection.

Table 1. JU1 Jumper Selection (EN)

SHUNT POSITION	EN PIN	EV KIT FUNCTION
1-2	Connected to IN	Enabled
2-3	Connected to GND	Disabled

Peak Inductor Current-Limit Setting

The parallel combination of current-sense resistors R10 and R11 sets the EV kit's peak inductor current limit to 2A. Use the following equation to calculate the peak current limit:

$$I_{\rm ILIM} = \frac{600 \text{mV}}{\text{R}_{\rm TOTAL}}$$

where $I_{\rm ILIM}$ is the inductor peak current and R_{TOTAL} is the total parallel resistance placed at the R10 and R11 PCB pads.

Refer to the *Internal Switching MOSFET Current Limit* section in MAX16812 IC data sheet for additional information on setting the peak current-limit threshold.

Setting External LEDs Current

Resistors R13 and R14 set the MAX16812 EV kit average LED current up to a maximum 360mA. The potentiometer R2 allows the external LED current to be adjusted from 175mA (min) to 360mA (max). The LED string current can be programmed using the following equation:

$$I_{\text{LED}}(A) = \frac{V_{\text{REFI}}}{4 \times 0.82\Omega}$$

where I_{LED} is the LED current, V_{REFI} is the voltage at TP1, and 0.82 Ω is the parallel resistance of R13 and R14.

PWM Dimming Control (Jumpers JU2 and JU3)

PWM dimming is achieved by turning on and off the MOSFET (N1) in series with the LED string. LED dimming is achieved on the MAX16812 EV kit by applying a digital PWM signal or an analog DC voltage at the DIM PCB input pad, or by adjusting potentiometer R9.

The voltage at the MAX16812 DIM pin can be adjusted using potentiometer R9 to control the external LEDs' brightness. When adjusting the DC voltage using R9, install a shunt across jumper JU2 and remove the shunt at jumper JU3. The MAX16812 IC DIM pin voltage can be monitored by placing a voltmeter across the DIM and AGND PCB pads. LED dimming can also be accomplished by removing the shunt at jumper JU2 and connecting an external power source at the DIM PCB pad. The DC voltage at the DIM PCB pad sets the MAX16812 duty cycle of the driver controlling the gate of the dimming MOSFET (N1), which controls the external LED brightness.

Use the following equation to calculate the voltage at the DIM PCB pad, necessary for the N1 dimming FET output duty cycle (D):

$\mathsf{DIM} \approx \mathsf{D} \ge 1.24\mathsf{V}$

where DIM is the DC voltage at the MAX16812 EV kit DIM PCB pad in volts and D is the output duty cycle of the LED current.

To control LED dimming using a PWM signal at the DIM PCB pad, remove the shunt from jumper JU2 and place a shunt across jumper JU3. Connect a digital PWM signal with a 5V TTL or 3.3V CMOS logic level and switching frequencies up to 2kHz. See Table 2 for jumpers JU2 and JU3 settings for PWM dimming operation.

Table 2. PWM Dimming Operation(Jumpers JU2 and JU3)

SHUNT I	POSITION	EV KIT DIMMING OPERATION	
JU2	JU3	EV KIT DIMMING OPERATION	
Not installed	Not installed	Analog DC voltage applied at DIM PCB pad	
Not installed	Installed	PWM signal applied at DIM PCB pad	
Installed	Not installed	Analog DC voltage at DIM pin adjusted using potentiometer R9	
Installed	Installed	Not applicable	

For additional information on operating the MAX16812 EV kit in linear dimming or PWM dimming operation, refer to the *PWM Dimming* section in the MAX16812 IC data sheet.

During PWM dimming, there may be audible noise due to the piezo effect of the output capacitors connected at LED+. To alleviate the audible noise, remove ceramic capacitors C9, C10, and C11, and add electrolytic capacitors at the C19 and C20 pads. For proper PWM dimming operation, when using electrolytic capacitors, it may be required to change some of the compensation components.

Output Overvoltage Protection

The maximum voltage on the LED+ pin is limited to 54.4V with respect to GND, by a feedback network formed by resistors R5 and R6. When the voltage at LED+ exceeds the programmed 54.4V threshold, PWM switching is terminated and no further energy is transferred to the load connected between LED+ and LED-.

If the MAX16812 EV kit is turned on with no load, the voltage at LED+ may rise to unsafe levels. Even though the EV kit has overvoltage protection, it is recommended to connect the specified load before powering up the EV kit. Refer to the *Setting the Overvoltage Threshold* section in the MAX16811/MAX16812 IC data sheet for setting the overvoltage threshold.

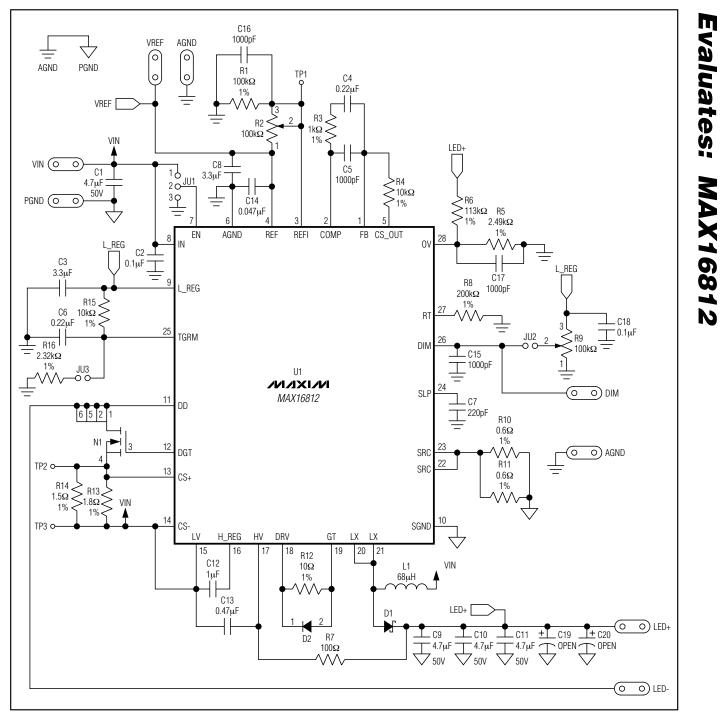


Figure 1. MAX16812 EV Kit Schematic

5

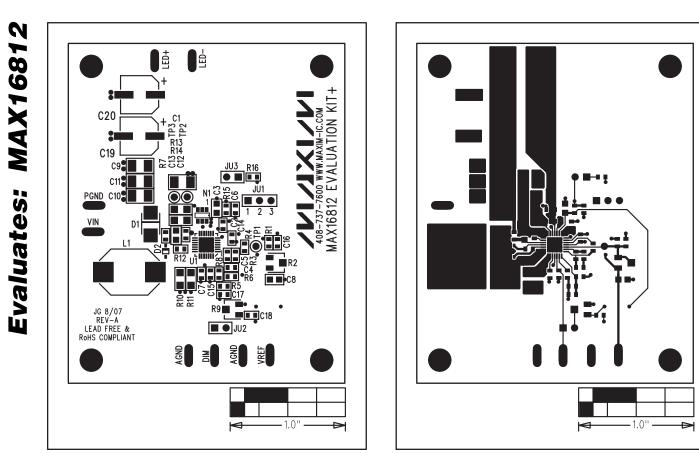
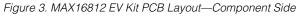



Figure 2. MAX16812 EV Kit Component Placement Guide— Component Side

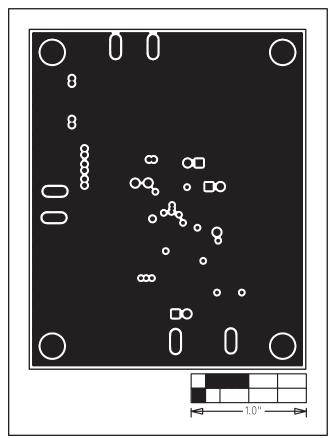


Figure 4. MAX16812 EV Kit PCB Layout—GND Layer 2

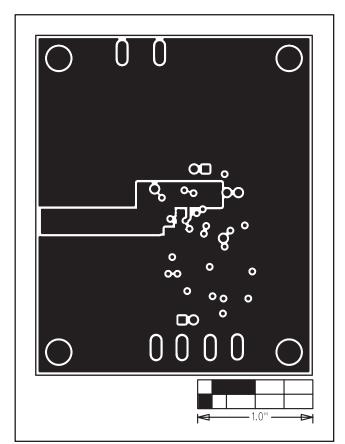


Figure 5. MAX16812 EV Kit PCB Layout—VCC Layer 3

Evaluates: MAX16812

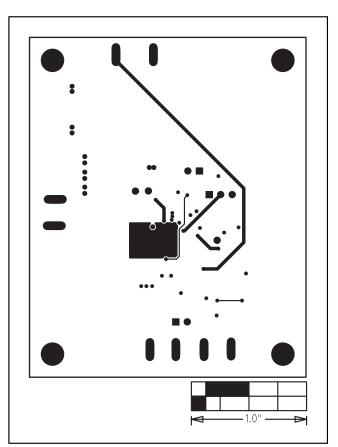


Figure 6. MAX16812 EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8

© 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600