COMPLIANT

Vishay Semiconductors

Medium Power Thyristors (Stud Version), 50 A

FEATURES

- High current rating
- Excellent dynamic characteristics
- dV/dt = 1000 V/µs option
- Superior surge capabilities
- Standard package
- Metric threads version available
- Types up to 1200 V V_{DRM}/V_{RRM}
- RoHS compliant

TYPICAL APPLICATIONS

- · Phase control applications in converters
- · Lighting circuits
- Battery charges
- Regulated power supplies and temperature and speed control circuit
- Can be supplied to meet stringent military, aerospace and other high reliability requirements

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
1		50	А			
I _{T(AV)}	T _C	94	°C			
I _{T(RMS)}		80	А			
1	50 Hz	1430	А			
I _{TSM}	60 Hz	1490	A			
l ² t	50 Hz	10.18	kA ² s			
1-1	60 Hz	9.30	KA-S			
V _{DRM} /V _{RRM}		100 to 1200	V			
tq	Typical	110	μs			
TJ		- 40 to 125	C°			

TO-208AC (TO-65)

PRODUCT SUMMARY

 $I_{T(AV)}$

Document Number: 93711 Revision: 19-Sep-08

50 A

Vishay Semiconductors

Medium Power Thyristors (Stud Version), 50 A

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE ⁽¹⁾ V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE ⁽²⁾ V	I _{DRM} /I _{RRM} MAXIMUM AT T _J = T _J MAXIMUM mA		
	10	100	150			
	20	200	300			
50RIA	40	400	500			
	60	600	700	15		
	80	800	900			
	100	1000	1100			
	120	1200	1300			

Notes

⁽¹⁾ Units may be broken over non-repetitively in the off-state direction without damage, if dl/dt does not exceed 20 A/µs

 $^{(2)}$ For voltage pulses with $t_p \leq 5\mbox{ ms}$

PARAMETER	SYMBOL		TEST CON	DITIONS	VALUES	UNITS
Maximum average on-state current at case temperature	I _{T(AV)}	180° sinuso	idal conduction		50 94	A °C
Maximum RMS on-state current	I _{T(RMS)}				80	А
		t = 10 ms	No voltage		1430	
Maximum peak, one-cycle		t = 8.3 ms	reapplied		1490	•
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		1200	A
		t = 8.3 ms	reapplied	Sinusoidal half wave,	1255	
		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	10.18	kA ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		9.30	
		t = 10 ms	100 % V _{BBM}		7.20	
		t = 8.3 ms	reapplied		6.56	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 to 10 ms, no voltage reapplied, $T_J = T_J$ maximum			101.8	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x I_{T(AV)} < I < \pi x$	$I_{T(AV)}), T_J = T_J maximum$	0.94	V
High level value of threshold voltage	V _{T(TO)2}	(π x I _{T(AV)} <	$I < 20 \text{ x} \pi \text{ x} I_{T(AV)}$	()), $T_J = T_J$ maximum	1.08	v
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum			4.08	mΩ
High level value of on-state slope resistance	r _{t2}	$(\pi \ge I_{T(AV)} < I < 20 \ge \pi \ge I_{T(AV)}), T_J = T_J \text{ maximum}$			3.34	1115.2
Maximum on-state voltage	V _{TM}	I _{pk} = 157 A,	T _J = 25 °C		1.60	V
Maximum holding current	I _H	$T_J = 25$ °C, anode supply 22 V, resistive load, initial $I_T = 2$ A			200	mA
Latching current	ΙL	Anode supp	ly 6 V, resistive	load	400	

Medium Power Thyristors (Stud Version), 50 A

Vishay Semiconductors

SWITCHING					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum rate of	$V_{DRM} \le 600 \text{ V}$	dl/dt	T _C = 125 °C, V _{DM} = Rated V _{DRM} , Gate pulse = 20 V, 15 Ω, t_p = 6 μs, t_r = 0.1 μs maximum	200	A/µs
rise of turned-on current $V_{DRM} \le 1600 V_{CRM}$		$I_{TM} = (2 \text{ x rated dl/dt}) \text{ A}$	100 A/µS	Αγμδ	
Typical delay time		t _d	T_{C} = 25 °C, V_{DM} = Rated V_{DRM} , I_{TM} = 10 A dc resistive circuit Gate pulse = 10 V, 15 Ω source, t_{p} = 20 µs	0.9	110
Typical turn-off time		tq	T_{C} = 125 °C, I_{TM} = 50 A, reapplied dV/dt = 20 V/µs dIr/dt = - 10 A/µs, V_{R} = 50 V	110	μs

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of	dV/dt	$T_J = T_J$ maximum linear to 100 % rated V_{DRM}	200	V/µs	
off-state voltage	uv/ui	$T_J = T_J$ maximum linear to 67 % rated V_{DRM}	500 ⁽¹⁾	v/µs	

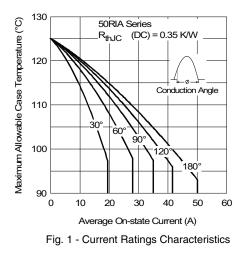
Note

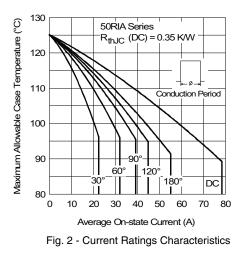
⁽¹⁾ Available with dV/dt = 1000 V/ μ s, to complete code add S90 i.e. 50RIA120S90

TRIGGERING					
PARAMETER	SYMBOL	TES	T CONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}	$T_J = T_J$ maximum, $t_p \le 5$	5 ms	10	W
Maximum average gate power	P _{G(AV)}			2.5	vv
Maximum peak positive gate current	I _{GM}			2.5	А
Maximum peak positive gate voltage	+V _{GM}			20	V
Maximum peak negative gate voltage	-V _{GM}			10	v
	I _{GT}	T _J = - 40 °C	Maximum required gate trigger current/voltage are the lowest value which will trigger all units 6 V anode to cathode applied	250	mA
DC gate current required to trigger		T _J = 25 °C		100	
		T _J = 125 °C		50	
DO ante un litera annuine d'ite trianne	N	T _J = - 40 °C		3.5	v
DC gate voltage required to trigger	V _{GT}	T _J = 25 °C		2.5	
DC gate current not to trigger	I _{GD}	$T_J = T_J$ maximum, $V_{DRM} = Rated voltage$	Maximum gate current/voltage not to trigger is the maximum value	5.0	mA
DC gate voltage not to trigger	V _{GD}	$T_J = T_J maximum$	which will not trigger any unit with rated V _{DRM} anode to cathode applied	0.2	V

Vishay Semiconductors

Medium Power Thyristors (Stud Version), 50 A




THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS		UNITS	
Maximum operating junction and storage temperature range	T _J , T _{Stg}		- 40 to 125	°C	
Maximum thermal resistance, junction to case	R _{thJC}			K/W	
Maximum thermal resistance, case to heatsink	R _{thCS}				
		Non-lubricated threads	3.4 + 0 - 10 %	N ⋅ m (lbf ⋅ in)	
Allowable mounting torque			(30)		
		Lubricated threads	2.3 + 0 - 10 %		
			(20)		
Approximate weight			28	g	
Approximate weight			1.0	oz.	
Case style	See dimensions - link at the end of datasheet TO-208AC		C (TO-65)		

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS			
180°	0.078	0.057					
120°	0.094	0.098					
90°	0.120	0.130	$T_J = T_J maximum$	K/W			
60°	0.176	0.183					
30°	0.294	0.296					

Note

• The table above shows the increment of thermal resistance RthJC when devices operate at different conduction angles than DC

Medium Power Thyristors (Stud Version), 50 A

Vishay Semiconductors

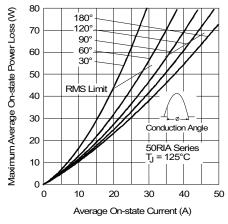


Fig. 3 - On-State Power Loss Characteristics

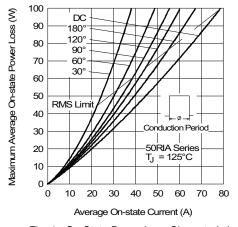


Fig. 4 - On-State Power Loss Characteristics

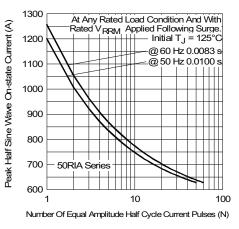


Fig. 5 - Maximum Non-Repetitive Surge Current

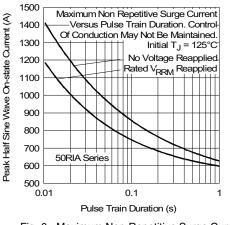


Fig. 6 - Maximum Non-Repetitive Surge Current

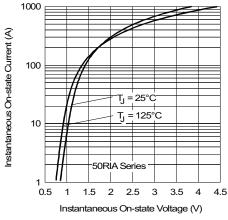
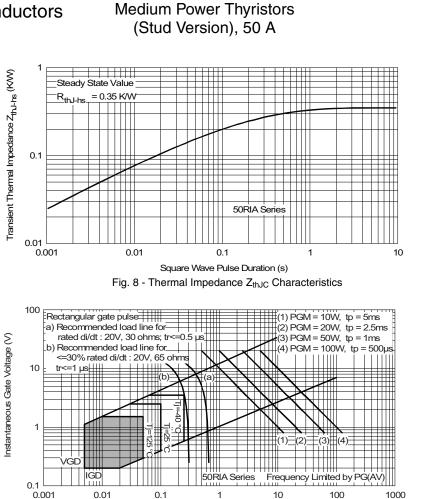
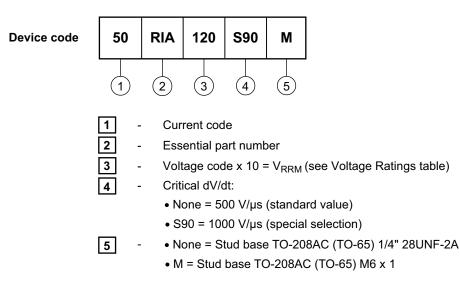




Fig. 7 - Forward Voltage Drop Characteristics

Vishay Semiconductors

ORDERING INFORMATION TABLE

Instantaneous Gate Current (A) Fig. 9 - Gate Characteristics

LINKS TO RELATED DOCUMENTS				
Dimensions	http://www.vishay.com/doc?95334			

www.vishay.com 6 For technical questions, contact: ind-modules@vishay.com

VISHAY

Vishay Semiconductors

TO-208AC (TO-65)

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.