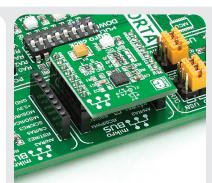


1. Introduction

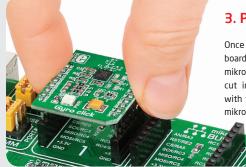
Gyro Click[™] is an accessory board in mikroBUS[™] form factor. It's a compact and easy solution for adding gyroscope to your design. It features L3GD20 three-axis digital gyroscope module. Gyro Click[™] communicates with the target board microcontroller via mikroBUS[™] SPI (MOSI, MISO, SCK, CS), I²C (SDA, SCL), INT and RST lines. The board is designed to use 3.3V power supply only. LED diode (GREEN) indicates the presence of power supply.

2. Soldering the headers

Before using your click board $^{\text{TM}}$, make sure to solder 1x8 male headers to both left and right side of the board. Two 1x8 male headers are included with the board in the package.



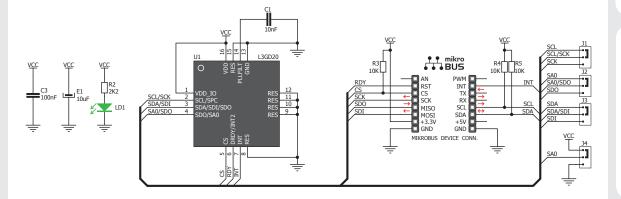
Turn the board upside down so that bottom side is facing you upwards. Place shorter parts of the header pins in both soldering pad locations.



Turn the board upward again. Make sure to align the headers so that they are perpendicular to the board, then solder the pins carefully.

4. Essential features

Gyro Click™ with it's L3GD20 IC is capable of providing the measured angular rate to the external world through a digital interface (I²C, SPI). The L3GD20 has a full scale of ±250/ ±500 / ±2000 dps and is capable of measuring rates with a user-selectable bandwidth. All these features make this board ideal for gaming and virtual reality input devices, motion control, GPS navigation systems and more.



3. Plugging the board in

Once you have soldered the headers your board is ready to be placed into desired mikroBUSTM socket. Make sure to align the cut in the lower-right part of the board with the markings on the silkscreen at the mikroBUSTM socket. If all of the pins are aligned correctly, push the board all the way into the socket.

5. Gyro Click™ Board Schematic

MikroElektronika assumes no responsibility or liability for any errors or inaccuracies that may appear in the present document.

Specification and information contained in the present schematic are subject to change at any time without notice. Copyright © 2013 MikroElektronika. All rights reserved.

6. SMD Jumpers

The Gyro Click TM board communicates with the main board microcontroller via I^2C or SPI interface depending on the position

of the **J1**, **J2** and **J3** SMD jumpers. These jumpers are soldered in I²C interface position by default. There is an option to select the alternate address with jumper **J4** in the case of I²C interface (default position is logic 1).

7. Code Examples

Once you have done all the necessary preparations, it's time to get your click board up and running. We have provided the examples for mikroC, mikroBasic and mikroPascal compilers on our **Libstock** website. Just download them and you are ready to start.

8. Support

MikroElektronika offers **Free Tech Support** (www.mikroe.com/esupport) until the end of product lifetime, so if something goes wrong, we are ready and willing to help!

