

TWR-K21D50M Tower Module

User's Manual Rev. 1.0

Table of Contents

1	TWR-K21D50M	3
2	Contents	4
3	TWR-K21D50M Features	4
4	Get to Know the TWR-K21D50M	5
5	Reference Documents	6
6	Hardware description	7
	6.1 Block Diagram	7
	6.2 Microcontroller	8
	6.3 Clocking	
	6.4 System Power	
	6.5 Debug Interface	
	6.6 OSITĂG	
	6.7 Accelerometer	
	6.8 Potentiometer, Pushbuttons, LEDs	
	6.9 General Purpose Tower Plug-in (TWRPI) Socket	
	6.10 USB	
7	TWR-K21D50M Jumper Options and Headers	13
8	Useful links	15

1 TWR-K21D50M

The TWR-K21D50M microcontroller module is designed to work either in standalone mode or as part of the Freescale Tower System, a modular development platform that enables rapid prototyping and tool re-use through reconfigurable hardware. Take your design to the next level and begin constructing your Tower System today by visiting <u>www.freescale.com/tower</u> for additional Tower System microcontroller modules and compatible peripherals. For TWR-K21D50M-specific information and updates, visit <u>www.freescale.com/TWR-K21D50M</u>

Figure 1. Freescale Tower System Overview

TWR-K21D50M Tower Module User's Manual

2 Contents

The TWR-K21D50M contents include:

- TWR-K21D50M board assembly
- 3 ft A to micro-B USB cable for debug interface and power or MK21DN512VMB5 USB interface
- CR2025 coin cell battery for VBAT power supply
- Quick Start Guide

3 TWR-K21D50M Features

- Tower-compatible microcontroller module
- MK21DN512VMB5 MCU (50 MHz, 512 KB Flash, 64 KB RAM, low power, 121 MAPBGA package)
- Dual-role USB interface with Micro-AB USB connector
- General-purpose Tower Plug-in (TWRPI) socket
- On-board debug circuit: MC9S08JM60 open source JTAG (OSJTAG) with virtual serial port
- Three-axis accelerometer (MMA8451Q)
- Four (4) user-controllable LEDs
- Two (2) user pushbutton switches for GPIO interrupts
- One (1) user pushbutton switch for MCU reset
- Potentiometer
- Independent, battery-operated power supply for Real Time Clock (RTC) and tamper detection modules

NOTE: The TWR-K21D50M contains some components that are reserved for future revisions of this board and are not functional with the MK21DN512VMB5 MCU.

Figure 2. Front side of TWR-K21D50M module

(TWRPI devices not shown)

Battery Receptacle

Figure 3. Back side of TWR-K21D50M

5 Reference Documents

The documents listed below should be referenced for more information on the Kinetis K Series, Tower System, and MCU Modules. These can be found in the documentation section of <u>http://www.freescale.com/TWR-K21D50M</u> or <u>http://www.freescale.com/kinetis</u>

- TWR-K21D50M-SCH: Schematics
- TWR-K21D50M-PWA: Design Package
- K21P81M50SF4RM: Reference Manual
- Tower Configuration Tool
- Tower Mechanical Drawing

6 Hardware description

The TWR-K21D50M is a Tower MCU Module featuring the K21DN512VMB5—a Kinetis K Series microcontroller in a 121 MAPBGA package with a USB 2.0 full-speed on-the-go (OTG) controller, system security and tamper detection, and a secure real-time clock with an independent battery supply. It is intended for use in the Freescale Tower System but can also operate stand-alone. An on-board OSJTAG debug circuit provides a JTAG interface and a power supply input through a single micro-USB connector.

The block diagram of the TWR-K21D50M board is presented in the following figure:

6.1 Block Diagram

Figure 4. Block Diagram of TWR-K21D50M

freescale[®]

6.2 Microcontroller

The TWR-K21D50M features the K21DN512VMB5 MCU. This 50 MHz microcontroller is part of the Kinetis K2x family and is implemented in a 121 MAPBGA package. The following table notes some of the features of the K21DN512VMB5 MCU.

Feature	Description
Ultra low power	 11 low-power modes with power and clock gating for optimal peripheral activity and recovery times. Full memory and analog operation down to 1.71 V for extended battery life Low-leakage wake-up unit with up to six internal modules and sixteen pins as wake-up sources in low-leakage stop (LLS) and very low-leakage stop (VLLS) modes Low-power timer for continual system operation in reduced power states
Flash and SRAM	 512-KB flash featuring fast access times, high reliability, and four levels of security protection 64 KB of SRAM No user or system intervention to complete programming and erase functions, and full operation down to 1.71 V
Mixed-signal capability	 High-speed 16-bit ADC with configurable resolution Single or differential output modes for improved noise rejection 500-ns conversion time achievable with programmable delay block triggering Two high-speed comparators providing fast and accurate motor over-current protection by driving PWMs to a safe state Optional analog voltage reference provides an accurate reference to analog blocks and replaces external voltage references to reduce system cost
Performance	 50-MHz ARM Cortex-M4 core with DSP instruction set, single cycle MAC, and single instruction multiple data (SIMD) extensions Up to four channel DMA for peripheral and memory servicing with reduced CPU loading and faster system throughput Crossbar switch enables concurrent multi-master bus accesses, increasing bus bandwidth Independent flash banks allow concurrent code execution and firmware updating with no performance degradation or complex coding routines

Table 1. Features of MK21DN512VMB5

Timing and Control	 Three FlexTimers with a total of 12 channels 	
-	 Hardware dead-time insertion and quadrature decoding for motor 	
	control	
	– Carrier modulator timer for infrared waveform generation in remote	
	control applications	
	 Four-channel 32-bit periodic interrupt timer provides time base for 	
	RTOS task scheduler, or trigger source for ADC conversion and	
	programmable delay block	
Connectivity and	 Full-Speed USB Device/Host/On-The-Go with device charge detect canability 	
communications	 Ontimized charging current/time for nortable USB devices enabling 	
	longer battery life	
	 USB low-voltage regulator that supplies up to 120 mA off chip at 3.3 	
	volts to power external components from 5-volt input	
	– Four UARTs:	
	 one UART that supports RS232 with flow control, RS485, 	
	ISO7816, IrDA, and CEA709.1-B (LON)	
	 three UARTs that support RS232 with flow control and RS485 	
	 One Inter-IC Sound (I²S) serial interface for audio system interfacing 	
	Two DSPI modules and two I ² C modules	
Reliability, Safety and	 Hardware encryption co-processor for secure data transfer and storage 	e.
Security	Faster-than-software implementations with minimal CPU loading.	
	Supports a wide variety of algorithms - DES, 3DES, AES, MDS, SHA-1, SHA-256	
	 System security and tamper detection with secure real-time clock (RTC) 	C)
	and independent battery supply. Secure key storage with	-,
	internal/external tamper detection for unsecured flash, temperature,	
	clock, and supply voltage variations and physical attack detection	
	 Memory protection unit provides memory protection for all masters o 	n
	the crossbar switch, increasing software reliability	
	 Cyclic redundancy check (CRC) engine validates memory contents and 	
	communication data, increasing system reliability	
	 Independently-clocked COP guards against clock skew or code runawa 	iy
	for fail-safe applications such as the IEC 60730 safety standard for	
	household appliances	
	 External watchdog monitor drives output pin to safe state for external 	i
	components in the event that a watchdog timeout occurs	
	 Included in Freescale's product longevity program, with assured supply 	У
	tor a minimum of 10 years after launch	

6.3 Clocking

Kinetis K Series MCUs start up from an internal digitally controlled oscillator (DCO). Software can enable the main external oscillator (EXTAL0/XTAL0) if desired. The external oscillator/resonator can range from 32.768 KHz up to 32 MHz. An 8-MHz crystal is the default external source for the MCG oscillator inputs (XTAL/EXTAL). A 32.768-kHz crystal is connected to the RTC oscillator inputs by default.

By populating isolation resistors, other external clock sources for the K21DN512VMB5 include the CLKINO signal, which can be provided through the TWR-ELEV module or pin 20 of TWRPI connector J3.

6.4 System Power

When installed into a Tower System, the TWR-K21D50M can be powered from either an on-board source or from another source in the assembled Tower System.

In stand-alone operation, the main power source (5.0 V) for the TWR-K21D50M module is derived from either the OSJTAG USB micro-B connector (J2) or the K21DN512VMB5 USB micro-AB connector (J19). Two low-dropout regulators provide 3.3 V and 1.8 V supplies from the 5.0 V input voltage. Additionally, the 3.3 V regulator built into the K21DN512VMB5 MCU can be selected to power the 3.3 V bus. All of the user-selectable options can be configured using two headers, J11 and J17. Refer to sheet 5 of the TWR-K21D50M schematics for more details.

DryIce and RTC VBAT

The Drylce tamper detection module and the Real Time Clock (RTC) module on the K21DN512VMB5 have two modes of operation: system power-up and system power-down. During system power-down, the tamper detection module and the RTC are powered from the backup power supply (VBAT) and electrically isolated from the rest of the MCU. The TWR-K21D50M provides a battery receptacle for a coin cell battery that can be used as the VBAT supply. This receptacle can accept common 3-V lithium coin cell batteries that are 20 mm in diameter.

6.5 Debug Interface

There are two debug interface options provided: the on-board OSJTAG circuit and an external ARM JTAG connector. The ARM-JTAG connector (J1) is a standard 2x10-pin connector that provides an external debugger cable access to the JTAG interface of the K21DN512VMB5. Alternatively, the on-board OSJTAG debug interface can be used to access the debug interface of the K21DN512VMB5.

6.6 OSJTAG

An on-board MC9S08JM60 based Open Source JTAG (OSJTAG) circuit provides a JTAG debug interface to the K21DN512VMB5. A standard USB A male to micro-B male cable (provided) can be used for debugging via the USB connector (J2). The OSJTAG interface also provides a USB to serial bridge. Drivers for the OSJTAG interface are provided in the P&E Micro OSBDM/OSJTAG Tower Toolkit. These drivers and more utilities can be found online at <u>http://www.pemicro.com/osbdm</u>.

Cortex Debug Connector

The Cortex Debug connector is a 20-pin (0.05") connector providing access to the SWD, JTAG, cJTAG, and EzPort signals available on the K21 device. The pinout and K21 pin connections to the debug connector (J1) are shown in Table 2.

Pin	Function	TWR-K21D50M Connection
1	VTref	3.3 V MCU supply (MCU_PWR)
2	TMS / SWDIO	PTA3/UART0_RTS_b/FTM0_CH0/ JTAG_TMS/SWD_DIO
3	GND	GND
4	TCK / SWCLK	PTA0/UART0_CTS_b/FTM0_CH5/ JTAG_CLK/SWD_CLK/EZP_CLK
5	GND	GND
6	TDO / SWO	PTA2/UART0_TX/FTM0_CH7/ JTAG_TDO/TRACE_SWO/EZP_DO
7	Кеу	—
8	TDI	PTA1/UART0_RX/FTM0_CH6/ JTAG_TDI/EZP_DI
9	GNDDetect	PTA4/FTM0_CH1/MS/NMI_b/ EZP_CS_b
10	nRESET	RESET_b
11	Target Power	5 V supply (via jumper J6)
12	TRACECLK	PTE0/mADC0_SE10/SPI1_PCS1/UART1_TX/ TRACE_CLKOUT /I2C1_SDA/RTC_CLKOUT
13	Target Power	5 V supply (via jumper J6)
14	TRACEDATA[0]	PTE4/LLWU_P2/SPI1_PCS0/UART3_TX/ TRACE_D0
15	GND	GND
16	TRACEDATA[1]	PTE3/ADC0_DM2/mADC0_DM1/SPI1_SIN/UART1_RTS_b/ TRACE_D1 /SPI1_SOUT
17	GND	GND
18	TRACEDATA[2]	PTE2/LLWU_P1/ADC0_DP2/mADC0_DP1/SPI1_SCK/UART1_CTS_b/ TRACE_D2
19	GND	GND
20	TRACEDATA[3]	PTE1/LLWU_P0/mADC0_SE11/SPI1_SOUT/UART1_RX/ TRACE_D3 /I2C1_SCL/SPI1_SIN

Table 2. Cortex Debug connector

6.7 Accelerometer

An MMA8451Q digital accelerometer is connected to the K21DN512VMB5 MCU through an I²C interface (I2C1) and GPIO/IRQ signals (PTB0 and PTB1).

6.8 Potentiometer, Pushbuttons, LEDs

The TWR-K21D50M also features:

- a potentiometer connected to an ADC input signal (ADC0_SE12).
- two pushbutton switches (SW2 and SW3 connected to PTC7 and PTC6, respectively)
- four user-controllable LEDs connected to GPIO signals (optionally isolated using jumpers):
 - Green LED (D5) to PTD4
 - Yellow LED (D6) to PTD5
 - o Red LED (D8) to PTD6
 - o Blue LED (D9) to PTD7

6.9 General Purpose Tower Plug-in (TWRPI) Socket

The TWR-K21D50M features a socket (J3 and J4) that can accept a variety of different Tower Plug-in modules featuring sensors, RF transceivers, and other peripherals. The General Purpose TWRPI socket provides access to I²C, SPI, IRQs, GPIOs, timers, analog conversion signals, TWRPI ID signals, reset, and voltage supplies. The pinout for the TWRPI Socket is defined in Table 3.

J4					
Pin	Description				
1	1 5 V VCC				
2 3.3 V VCC					
3 GND					
4	3.3 V VDDA				
5	VSS (Analog GND)				
6	VSS (Analog GND)				
7	VSS (Analog GND)				
8	ADC: Analog 0				
9	ADC: Analog 1				
10 VSS (Analog GND)					
11	VSS (Analog GND)				
12	ADC: Analog 2				
13	VSS (Analog GND)				
14	VSS (Analog GND)				
15	GND				
16	GND				
17 ADC: TWRPI ID 0					
18	ADC: TWRPI ID 1				
19	GND				
20	Reset				

Table 3. General Purpose TWRPI socket pinout

J3				
Pin	Description			
1	GND			
2	GND			
3	I2C: SCL			
4	I2C: SDA			
5	GND			
6	GND			
7	GND			
8	GND			
9	SPI: MISO			
10	SPI: MOSI			
11	SPI: SS			
12	SPI: CLK			
13	GND			
14	GND			
15	GPIO: GPIO0/IRQ			
16	GPIO: GPIO1/IRQ			
17	UART: UART_RX or GPIO: GPIO2			
18	UART: UART_TX or GPIO: GPIO3			
19	UART: UART_CTS or GPIO: GPIO4/Timer			
20	UART: UART_RTS or GPIO: GPIO5/Timer			

6.10 USB

The K21DN512VMB5 features a full-speed/low-speed USB module with OTG/Host/Device capability and built-in transceiver. The TWR-K21D50M routes the USB D+ and D- signals from the K21DN512VMB5 MCU directly to the on-board micro-USB connector (J19).

A power supply switch with an enable input signal and over-current flag output signal is used to supply power to the USB connector when the K21DN512VMB5 is operating in host mode. PTC8 is connected to the flag output signal and PTC9 is used to drive the enable signal. Both PTC8 and PTC9 port pins can be isolated with jumpers (J23 and J22, respectively) if needed.

7 TWR-K21D50M Jumper Options and Headers

The following is a list of all of the jumper options on the TWR-K21D50M. The default installed jumper settings are indicated by white text on a black background.

Option	Jumper	Setting	Description	
MCII nower connection	1-2 Connect on-board 3.3 V or 1.8 V supply (V_BRD) to MCU VDD		Connect on-board 3.3 V or 1.8 V supply (V_BRD) to MCU VDD	
Nico power connection	70	2-3	Connect K21 USB regulator output to MCU VDD	
	1-2 Connect VBAT to on-board 3.3 V or 1.8 supply			
VBAT power source	J7	2-3	Connect VBAT to the higher voltage between MCU supply (MCU_PWR) or coin cell supply (VBATD)	
JTAG board power selection	J6	ON	Connect OSJTAG 5V output (P5V_TRG_USB) to JTAG port (supports powering board from JTAG pod supporting 5V supply output)	
		OFF	Disconnect OSJTAG 5V output (P5V_TRG_USB) from JTAG port	
OSJTAG bootloader selection	19	ON	OSJTAG bootloader mode (OSJTAG firmware reprogramming)	
		OFF	Debugger mode	
		1-2	Connect K21 USB regulator output (VOUT_3V3) to on-board supply (V_BRD)	
V_BRD power source (Board Power Selector)	J17	J17	3-5	Connect 3.3 V on-board regulator output (P3V3) to on-board supply (V_BRD)
		5-7	Connect 1.8 V on-board regulator output (P1V8) to on-board supply (V_BRD)	
	J11	1-2	OSJTAG 5V output (P5V_TRG_USB) connected to on-board regulator input (VREG_IN)	
VREG IN Selector		5-6	VBUS signal on micro-USB connector J19 connects to K21_VREGIN to allow stand-alone USB operation	
		6-8	VBUS signal from Tower Elevator connector connects to K21_VREGIN to allow USB operation with complete Tower System	
	121	ON	Connect PTD7 to USB ID pin	
	JZI	OFF	Disconnect PTD7 from USB ID pin	

Table 4. TWR-K21D50M Jumper Options

TWR-K21D50M Tower Module User's Manual

Option	Jumper	Setting	Description								
	J22	ON	Connect PTC9 to USB power enable on								
USB power enable			power switch MIC2026								
		OFF	Disconnect PTC9 from USB power enable on								
			power switch MIC2026								
		ON	Connect PTC8 to over-current flag on power								
USB over-current flag	J23		switch MIC2026								
		OFF	Disconnect PTC8 from over-current flag on								
			power switch MIC2026								
		Connect on-board 1.8 V or 3.3 V supply									
General Purpose TWRPI	J10		(V_BRD) to TWRPI 3-V power (GPT_VBRD)								
V_BRD power enable		OFF	Disconnect on-board 1.8 V or 3.3 V supply								
		_	(V_BRD) from TWRPI 3-V power (GPT_VBRD)								
		1-2 Connect PTB0 to INT1 pin of accelerometer									
Accelerometer IBO connection	J18	3-4	Connect PTB1 to INT2 pin of accelerometer								
		310	510	,10		010			110	OFF	Disconnect PTB0 and/or PTB1 from INT1
			011	and/or INT2 of accelerometer							
Detentiometer connection	110	Connect potentiometer to ADC0_SE12									
Potentionneter connection	JIZ	OFF	Disconnect potentiometer from ADC0_SE12								
	J15	1-2	Connect PTD4 to green LED (D5)								
			3-4	Connect PTD5 to yellow LED (D6)							
LED connections		5-6	Connect PTD6 to red LED (D8)								
		7-8	Connect PTD7 to blue LED (D9)								
		OFF	Disconnect PTD[4:7] from associated LED								
		1-2	Connect PTA14 to RESET_OUT_B signal								
GPIU RESEI_OUI_B	J13	2-3	Connect PTA17 to RESET_OUT_B signal								
Connection		OFF	Leave RESET_OUT_B signal disconnected								

8 Useful links

- www.freescale.com
 - <u>freescale.com/Kinetis</u>
 - <u>freescale.com/TWR-K21D50M</u>
 - <u>freescale.com/codewarrior</u> (CodeWarrior v10.2 or later)
- www.iar.com/freescale
- www.pemicro.com
 - <u>http://www.pemicro.com/osbdm</u>
 - OSBDM/OSJTAG Virtual Serial Toolkit
- www.segger.com
 - <u>http://www.segger.com/jlink-flash-download.html</u>

Revision History

Revision	Date	Description
1.0	July, 2012	Initial release.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

> Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, Altivec, C-5, CodeTest, CodeWarrior, ColdFire, C_Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorlQ, Qorriva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off, Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MadniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2012. All rights reserved.

TWR-K21D50M-UM Rev. 1.0 08/2012