Evaluation Board User Guide
 UG-096

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluation Board for ADF4360-1 Integrated PLL and VCO Frequency Synthesizer

FEATURES

Self-contained board for generating RF frequencies Flexibility for reference input, PFD frequency, and loop bandwidth
Accompanying software allows complete control of synthesizer functions from a PC
USB/battery-operated 9 V supplies
Typical phase noise performance of $\mathbf{- 1 4 1 ~ d B c / H z}$ at $\mathbf{3 ~ M H z}$ offset Typical spurious performance of -70 dBc at $\mathbf{2 0 0} \mathbf{~ k H z}$ offset (2.0 GHz output)

GENERAL DESCRIPTION

The ADF4360-1EBZ1 evaluation board is designed to allow the user to evaluate the performance of the ADF4360-1 frequency synthesizer consisting of an integrated PLL and VCO (see Figure 1). It contains the ADF4360-1BCPZ, a USB connector, and SMA connectors for the RF outputs. Unpopulated SMA footprints are available for the power supplies, the chip enable (CE), and the external reference input. The evaluation board also contains the loop filter to complete the PLL. It can be modified as necessary for the PLL requirements of the user. A USB cable is included with the board to allow software programmability from a PC.

The package also contains a CD with Windows ${ }^{\star}$ software to allow quick, user-friendly programming of the synthesizer. The CD contains additional PLL data sheets, technical notes, articles, and ADIsimPLL ${ }^{\text {mw }}$ V3.4 (Analog Devices, Inc., PLL simulation software). More information is available at www.analog.com/pll.

Figure 1.

TABLE OF CONTENTS

Features 1
General Description 1
Evaluation Board Photograph 1
Revision History 2
Evaluation Board Hardware 3
RF Output Stages 3
Evaluation Board Software Quick Start Procedures 4
REVISION HISTORY
9/11—Rev. 0 to Rev. A
Changes to Features Section and Figure 1 1
Changes to Evaluation Board Hardware Section 3
Added Evaluation Board Software Quick Start Procedures Section 5
Changes to Using the Evaluation Board Software Section 7
Changes to Evaluation Board Schematics Section 9
Changes to Bill of Materials Section 12
7/10—Revision 0: Initial Version
Windows XP OS 4
Windows Vista OS and Windows 7 (32-Bit) OS 5
Windows 7 64-Bit OS 5
Using the Evaluation Board Software 6
Evaluation Board Schematic 8
Ordering Information 11
Bill of Materials. 11

EVALUATION BOARD HARDWARE

The evaluation board comes with a cable to connect it to the USB port of a PC. The silkscreen and cable diagram for the evaluation board are shown in Figure 2. The board schematics are shown in Figure 9 through Figure 11.

Figure 2. Evaluation Board Silkscreen—Top View
The board is powered from a single 9 V battery, or from the USB supply, by changing the position of Switch SW1. All components necessary for LO generation are catered for on-board. A 10 MHz TCXO from Fox Electronics provides the necessary reference input. Otherwise, an external reference signal can be connected via J3. The PLL comprises the ADF4360-1BCPZ and a passive loop filter. The VCO output from RFoutA is available through the standard SMA Connector J1 and the complementary $\mathrm{RF}_{\text {out }} \mathrm{B}$ VCO output is available from J 2 .

Users may provide their own power supplies using the J4 and J5 connectors, as shown in Figure 2. Hardware power-down using the CE pin can be controlled by inserting an SMA connector into J6 and removing R12.
The on-board filter is a third-order, passive, low-pass filter. The filter contains three capacitors (C13, C14, and C15) plus two resistors (R10 and R11). The footprint for R10 is located on the underside of the board. The design parameters for the loop filter are for a center frequency of 2250 MHz , a PFD frequency of 200 kHz , and a low-pass filter bandwidth of 10 kHz . To design a filter for different frequency setups, use the ADIsimPLL simulation software.

RF OUTPUT STAGES

The output stage of the board contains a tuned load for the particular frequency of operation. The particular network inserted in the board is optimized for 2250 MHz operation. This consists of a 1 nH shunt inductor, a 10 pF series capacitor, and a 1 nH series inductor. If in doubt, use a 50Ω resistor instead of the shunt inductor, a 100 pF bypass capacitor, and a series 0Ω resistor. It is important that the same components be placed on the RFout A and RFout B lines. In addition, it is essential that both outputs be terminated with 50Ω loads. Otherwise, the output power is not optimum, and in some cases, the part may malfunction.

EVALUATION BOARD SOFTWARE QUICK START PROCEDURES

The control software and USB drivers for EVAL-ADF43601EBZ1 accompany the EVAL-ADF4360-1EBZ1 on a CD. To install the software, use the following steps:

1. Open ADF4360_Setup.msi.
2. The install wizard guides you through the installation process. The software and USB drivers will be installed in the default directory called C: \backslash Program Files \backslash Analog Devices \backslash ADF4360.

The software requires Microsoft's .NET Framework Version 2.0 or later to be installed on your machine. The installer automatically downloads the framework from the Microsoft website if you do not have this installed. If you do not have an Internet connection or have a slow connection on the PC, then you can install the .NET framework directly from the CD. Do this by double-clicking dotnetfx.exe. Once installed, run the ADF4360_Setup.msi again.
WINDOWS XP OS
Once you have installed the software, install the USB drivers. To do so, use the following steps:

1. Plug in a USB cable to the USB connector on the evaluation board. The Found New Hardware box appears. See Figure 3.
2. Choose Install from a list or specified location (Advanced).

Figure 3. New Hardware Wizard
3. Browse to C:\Program Files \backslash Analog Devices \backslash ADF4360 or the location where you installed the ADF4360 software.
4. Click Continue Anyway when asked about Windows Logo testing.
5. If the install was successful, the message box in Figure 4 appears.

Figure 4. Successful Install

WINDOWS VISTA OS AND WINDOWS 7 (32-BIT) OS

For Windows Vista or Windows 7 (32-bit), you need to manually install the drivers. To do so, use the following steps:

1. Find the new unknown device (the evaluation board) in Device Manager and double-click it to open the properties. The device should be Unknown device, under Other devices (see Figure 5).

Figure 5. Device Manager
2. Click Update Driver in the properties window (see Figure 6).

Figure 6. Unknown Device Properties
3. On the Update Driver Software dialog box, choose Browse my computer for driver software.
4. Browse to C:\Program Files \backslash Analog Devices \backslash ADF4360.
5. Click OK or Next.
6. If prompted by Windows Security, choose Install this driver software anyway.
7. If the install was successful, the message box in Figure 7 appears.

Figure 7. Successful Install

WINDOWS 7 64-BIT OS

If you are using Windows 7 64-bit OS, it is recommended to download Windows XP Mode (a Windows XP emulator) from Microsoft to run the evaluation board software.

Windows XP Mode allows the device driver package to digitally sign allowing you to use Windows 7 64-bit OS in native mode.

USING THE EVALUATION BOARD SOFTWARE

The control software for the EVAL-ADF4360-xEBZ1 accompanies the EVAL-ADF4360-xEBZ1 on a CD. To install the software, see the Evaluation Board Software Quick Start Procedures section.

To run the software, click the ADF4360.exe file on the desktop or in the Start menu.

The main interface window appears (Figure 8). Confirm that Analog Devices RFG.L Eval Board connected is displayed at the top of the window. Otherwise, the software has no connection to the evaluation board.

The evaluation board can be connected and disconnected while the software is running. Note that when connecting the board, it takes about 5 seconds for the status label to change.
Under the File menu, the current settings can be saved to, and loaded from, a text file.

Use the REF IN Frequency text box to set the correct reference frequency and the reference frequency divider. The reference TCXO on the evaluation board runs at 10 MHz .

The Settings section controls the charge pump current setting, the output power setting, and the multiplexer output setting.
Use the Frequency Settings section to control the output frequency. The user can input the desired output frequency in the RF Output Frequency text box (in megahertz).

In the Registers tab, the user can manually input the desired value to be written to the registers.
In the Sweep and hop tab, the user can make the device sweep a range of frequencies, or hop between two set frequencies.
In the Latches to write section, at the bottom of the window, the values to be written to each register are displayed. If the background on the text box is green, then the value displayed is different to the value actually on the device. Click Write \mathbf{x} Latch to write that value to the device.
The Write All Latches button writes to each register.
The F2, F3, and F4 keys switch between the three tabs.

```
| ADF 4360-x Evaluation Software
回回
    File Help
```

Main features (F2) Registers (F3) Sweep and hop (F4)

```

Current Setting 2:


RF Prescaler: \(16 / 17 \quad \vee\)

> Intemal Divide by 2: Not Selected
Output Divide by 2: Not Selected

PowerDown

Normal operation \(\vee\)
Anti-Backlash Width
3.0 nsecs
\(\checkmark\)

\section*{Mute til Lock Detect: Disabled}

Band Select Clock Divider Value: 8 \(\checkmark\)

Latches to write


\section*{EVALUATION BOARD SCHEMATIC}



Figure 10. EVAL-ADF4360-1EBZ1 Schematic (Continued)


Figure 11. EVAL-ADF4360-1EBZ1 Schematic (Continued)

\section*{ORDERING INFORMATION}

\section*{BILL OF MATERIALS}

Table 1.
\begin{tabular}{|c|c|c|}
\hline Reference Designator & Part Description & Manufacturer/Part No. \\
\hline \[
\begin{aligned}
& \text { C1, C3, C5, C29, C30, C32, } \\
& \text { C37, C38, C39, C40, C41, } \\
& \text { C42, C43 }
\end{aligned}
\] & Capacitor, 0402, \(0.1 \mu \mathrm{~F}, 16 \mathrm{~V}\) & Kemet C0402C104K4RAC \\
\hline C2, C4, C6, C8 & Capacitor, 0402, \(10 \mathrm{pF}, 50 \mathrm{~V}\) & Kemet C0402C100J5GACTU \\
\hline C7 & Capacitor, Case A, 22 HF, 6.3 V & AVX TAJA226K006R \\
\hline C9, C10, C27 & Capacitor, \(0603,1 \mathrm{nF}, 50 \mathrm{~V}\) & AVX 06035A102JAT2A \\
\hline C11, C12, C21, C24 & Capacitor, 0402, \(10 \mathrm{nF}, 16 \mathrm{~V}\) & Yageo (Phycomp) CC0402ZRY5V7BB103 \\
\hline C13 & Capacitor, loop filter, \(0603,820 \mathrm{pF}, 50 \mathrm{~V}\) & Phycomp 223886115821 \\
\hline C14 & Capacitor, loop filter, 0603, \(10 \mathrm{nF}, 50 \mathrm{~V}\) & AVX 08055C103KAT2A \\
\hline C15 & Capacitor, loop filter, \(0603,390 \mathrm{pF}, 50 \mathrm{~V}\) & Phycomp 223886115391 \\
\hline C16 & Multilayer ceramic capacitor, \(50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 1 \mathrm{nF}, \pm 10 \%, 0402\) & Murata GRM155R71H102KA01D \\
\hline C17, C19 & Capacitor, 0603, \(10 \mathrm{pF}, 50 \mathrm{~V}\) & AVX 06035A100JAT2A \\
\hline C18, C28 & Capacitor, \(0603,1 \mu \mathrm{~F}, 25 \mathrm{~V}\) & Taiyo Yuden TMK107BJ105KA-T \\
\hline C20, C23 & Capacitor, Case A, \(1 \mu \mathrm{~F}, 16 \mathrm{~V}\) & AVX TAJA105K016R \\
\hline C22, C25 & Capacitor, Case A, \(4.7 \mu \mathrm{~F}, 10 \mathrm{~V}\) & AVX TPSA475K010R1400 \\
\hline C26 & Capacitor, Case A, \(10 \mu \mathrm{~F}, 6.3 \mathrm{~V}\) & Kemet T491A106M016AT \\
\hline C31, C33 & Capacitor, 0805, \(10 \mu \mathrm{~F}, 6.3 \mathrm{~V}\) & Murata GRM21BR71A106KE51L \\
\hline C34 & Capacitor, 0402, \(22 \mathrm{pF}, 50 \mathrm{~V}\) NPO & Kemet C0402C220J5GACTU \\
\hline C35, C36 & Capacitor, 0402, \(12 \mathrm{pF}, 50 \mathrm{~V}\) & Kemet C0402C120J5GACTU \\
\hline D1 & LED, SMD red & Avago HSMS-C170 \\
\hline D2 & Diode, 1 A, 50 V & Multicomp 1N4001 \\
\hline D3 & Schottky diode, 20 V & Micro Commercial Components, Inc., SD103C-TP \\
\hline D4 & LED, SMD red & Avago HSMS-C170 \\
\hline J1, J2 & Jack SMA end launch tab & Johnson Components 142-0701-851 \\
\hline J3 to J6 & Jack SMA end launch tab (not inserted) & \\
\hline J7 & USB mini-B & Molex 56579-0576 \\
\hline L1, L2 & Ceramic chip inductor, 0402 (not inserted) & \\
\hline L3, L4 & Ceramic chip inductor, \(1 \mathrm{nH}, 5 \%, 0402\) & Coilcraft 0402CS-1N0X_LU \\
\hline L5, L6 & Ceramic chip inductor, \(1 \mathrm{nH}, 5 \%, 0402\) & Coilcraft 0402CS-1N0X_LU \\
\hline LK1, LK2 & Header, 1-row, 2-way and jumper socket black & Harwin Plc M20-9990245 and Harwin Plc M7567-05 \\
\hline P1 & Battery clip, PCB mounting & Keystone Electronics Corp. 593+594 \\
\hline R1 to R4, R13, R22 to R24, R27, R36, R38 & Resistor, 0603, \(0 \Omega\) & Multicomp MC 0.063W 0603 OR \\
\hline R5 & Resistor, 0603, \(51 \Omega\) & Multicomp MC 0.063W 0603 1\% 51R \\
\hline R6, R15 & Resistor, 0603, \(4.7 \mathrm{k} \Omega\) & Multicomp MC 0.063W 0603 1\% 4K7 \\
\hline R7, R8, R12, R28, R29, R30 & Resistor, 0603, \(10 \mathrm{k} \Omega\) & Multicomp MC 0.063W 0603 1\% 10K \\
\hline R9 & Resistor, 0603, \(100 \Omega\) & Multicomp MC 0.063W 0603 1\% 100R \\
\hline R10 & Resistor, loop filter, 0805, \(8.2 \mathrm{k} \Omega\) & Multicomp MC 0.1W 0805 1\% 8K2 \\
\hline R11 & Resistor, loop filter, 0805, \(4.7 \mathrm{k} \Omega\) & Multicomp MC 0.1W 0805 1\% 4K7 \\
\hline R14, R16 & Resistor, 0603, \(330 \mathrm{k} \Omega\) & Multicomp MC 0.063W 0603 1\% 330K \\
\hline R17 to R19 & Resistor, 0603, \(330 \Omega\) & Multicomp MC 0.063W 0603 1\% 330R \\
\hline R20, R21 & Resistor, 0603, \(2.2 \mathrm{k} \Omega\) & Multicomp MC 0.063W 0603 1\% 2K2 \\
\hline R25, R26 & Resistor, 0603, \(470 \Omega\) & Multicomp MC 0.063W 0603 1\% 470R \\
\hline R31, R32 & Resistor, 0603, \(100 \mathrm{k} \Omega\) & Multicomp MC 0.063W 0603 1\% 100K \\
\hline R34 & Resistor, 0603, \(140 \mathrm{k} \Omega\) & Multicomp MC 0.063W 0603 1\% 140K \\
\hline R35 & Resistor, 0603, \(78.7 \mathrm{k} \Omega\) & Multicomp MC 0.063W 0603 1\% 78K7 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Reference Designator & Part Description & Manufacturer/Part No. \\
\hline SW1 & Switch, PCB SPDT & APEM TL36P0050 \\
T1 to T8, T13 to T16 & Terminal, PCB, red, PK100 & Vero Technologies, Ltd. 20-313137 \\
T9 to T12 & Test point (not inserted) & \\
U1 & Integrated integer-N synthesizer & Analog Devices, ADF4360-1BCPZ \\
U2 & High accuracy low dropout linear 5 V regulator & Analog Devices, ADP3300ARTZ-3 \\
U3 & High accuracy low dropout linear 3V regulator & Analog Devices, ADP3300ARTZ-3 \\
U4 & ADP3334 Adjustable LDO regulator & Analog Devices, ADP3334ARMZ \\
U5 & IC Serial EEPROM 8-SOIC & Microchip 24LC64-ISN \\
U6 & USB Microcontroller & Cypress CY7C68013A-56LFXC \\
Y1 & 10 MHz TCXO (FOX801) & Fox Electronics FOX801-BELF \\
\hline
\end{tabular}

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

\section*{Legal Terms and Conditions}

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILTY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ( \(\$ 100.00\) ). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.```

