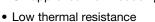


ADD-A-PAK Generation VII Power Modules Thyristor/Thyristor, 105 A

ADD-A-PAK

PRODUCT SUMMARY					
I _{T(AV)}	105 A				


MECHANICAL DESCRIPTION

The ADD-A-PAK generation VII, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- · High voltage
- Industrial standard package
- UL approved file E78996

- Compliant to RoHS directive 2002/95/EC
- · Designed and qualified for industrial level

BENEFITS

- · Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- · High surge capability
- Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES						
I _{T(AV)}	85 °C	105						
I _{T(RMS)}		165						
I _{TSM}	50 Hz	2000	Α					
	60 Hz	2094						
l²t	50 Hz	20	kA ² s					
1-1	60 Hz	18.26	KA-S					
l ² √t		200	kA²√s					
V _{RRM}	Range	400 to 1600	V					
T _{Stg}		- 40 to 130	°C					
T _J		- 40 10 130						

VSKU105.., VSKV105.. Series

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Thyristor/Thyristor, 105 A

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM,} I _{DRM} AT 130 °C mA			
	04	400	500	400				
VSK.105	08	800	900	800	15			
VSK.105		1200	1300	1200	15			
	16	1600	1700	1600				

ON-STATE CONDUCTION						
PARAMETER	SYMBOL	7	TEST CONDITION	VALUES	UNITS	
Maximum average on-state current	I _{T(AV)}	180° conduction T _C = 85 °C	180° conduction, half sine wave, $T_{C} = 85 ^{\circ}C$			А
Maximum continuous RMS on-state current		DC			165	
Maximum continuous Rivis on-state current	I _{T(RMS)}	T _C			78	°C
		t = 10 ms	No voltage	Sinusoidal	2000	
Maximum peak, one-cycle non-repetitive	١.	t = 8.3 ms	reapplied	half wave,	2094	^
on-state current	I _{TSM}	t = 10 ms	100 % V _{RRM}	initial T _J =	1682	Α
		t = 8.3 ms	reapplied	T _J maximum	1760	
Maximum I ² t for fusing		t = 10 ms	No voltage		20	kA ² s
	l ² t	t = 8.3 ms	reapplied	Initial T _J = T _J maximum	18.26	
		t = 10 ms			14.14	
		t = 8.3 ms	reapplied		12.91	
Maximum I ² √t for fusing	I ² √t ⁽¹⁾	t = 0.1 ms to 1 $T_J = T_J \text{ maximin}$	0 ms, no voltago um	200	kA²√s	
Marian and a Charachald allow	V (2)	Low level (3)			0.98	V
Maximum value of threshold voltage	V _{T(TO)} (2)	High level (4)	$T_J = T_J \text{ maxin}$	num	1.12	V
Maximum value of on-state	(2)	Low level (3)	T T		2.7	mΩ
slope resistance	r _t ⁽²⁾	High level (4)	$T_J = T_J \text{ maxin}$	num	2.34	
Maximum on-state voltage drop	V_{TM}	$I_{TM} = \pi \times I_{T(AV)}$	T _J = 25 °C	1.8	V	
Maximum non-repetitive rate of rise of	dl/dt	$T_J = 25$ °C, from 0.67 V_{DRM} ,		150	A/µs	
turned on current	ai, at			< 0.5 μs, t _p > 6 μs	100	7 γ μο
Maximum holding current	I _H	$T_J = 25$ °C, anode supply = 6 V, resistive load, gate open circuit				mA
Maximum latching current	ΙL	$T_J = 25 ^{\circ}\text{C}$, and	ode supply = 6 \	/, resistive load	400	

Notes

⁽¹⁾ I^2t for time $t_x = I^2\sqrt{t} \times \sqrt{t_x}$

⁽²⁾ Average power = $V_{T(TO)} \times I_{T(AV)} + r_t \times (I_{T(RMS)})^2$

^{(3) 16.7 %} $\times \pi \times I_{AV} < I < \pi \times I_{AV}$

⁽⁴⁾ $I > \pi \times I_{AV}$

ADD-A-PAK Generation VII Vishay Semiconductors Power Modules Thyristor/Thyristor, 105 A

TRIGGERING							
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS		
Maximum peak gate power	P _{GM}			12	W		
Maximum average gate power	P _{G(AV)}			3.0	VV		
Maximum peak gate current	I _{GM}			3.0	Α		
Maximum peak negative gate voltage	- V _{GM}			10			
Maximum gate voltage required to trigger	V _{GT}	T _J = - 40 °C	Anode supply = 6 V	4.0	V		
		T _J = 25 °C		2.5			
		T _J = 125 °C	- resistive load	1.7			
		T _J = - 40 °C		270			
Maximum gate current required to trigger	I _{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	150	mA		
		T _J = 125 °C	- resistive load	80			
Maximum gate voltage that will not trigger	V_{GD}	T _J = 125 °C, rated V _{DRI}	0.25	V			
Maximum gate current that will not trigger	I _{GD}	$T_J = 125 ^{\circ}\text{C}$, rated V_{DRI}	6	mA			

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM,} I _{DRM}	T _J = 130 °C, gate open circuit	20	mA				
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V				
Maximum critical rate of rise of off-state voltage	dV/dt	T_J = 130 °C, linear to 0.67 V_{DRM}	1000	V/µs				

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Junction operating and storage temperature range		T _J , T _{Stg}		- 40 to 130	°C		
Maximum internal thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.22	0000		
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.1	°C/W		
Mounting torque ± 10 % to heatsink busbar			A mounting compound is recommended and the torque should be rechecked after a period of	4	Nm		
			3 hours to allow for the spread of the compound.	3	14111		
Approximate weight				75	g		
Approximate weight				2.7	oz.		
Case style			JEDEC	TO-240AA	compatible		

△R CONDUCTION PER JUNCTION											
DEVICES	SINE HALF WAVE CONDUCTION RECTANGULAR WAVE CONDUCTION							UNITS			
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.105	0.04	0.048	0.063	0.085	0.125	0.033	0.052	0.067	0.088	0.127	°C/W

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Document Number: 94656 Revision: 17-May-10

ADD-A-PAK Generation VII Power Modules Thyristor/Thyristor, 105 A

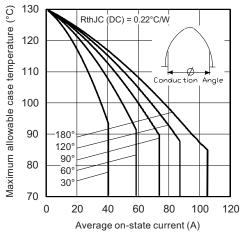


Fig. 1 - Current Ratings Characteristics

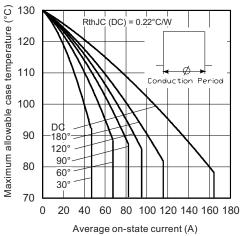


Fig. 2 - Current Ratings Characteristics

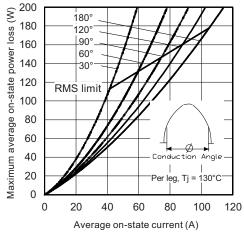


Fig. 3 - On-State Power Loss Characteristics

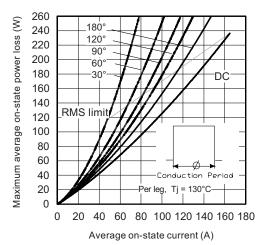
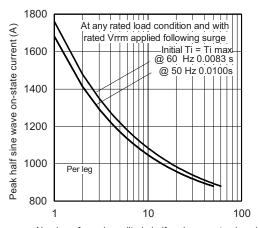



Fig. 4 - On-State Power Loss Characteristics

Number of equal amplitude half cycle current pulses (N) Fig. 5 - Maximum Non-Repetitive Surge Current

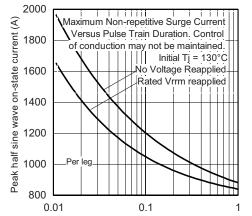


Fig. 6 - Maximum Non-Repetitive Surge Current

Pulse train duration (s)

ADD-A-PAK Generation VII Vishay Semiconductors Power Modules Thyristor/Thyristor, 105 A

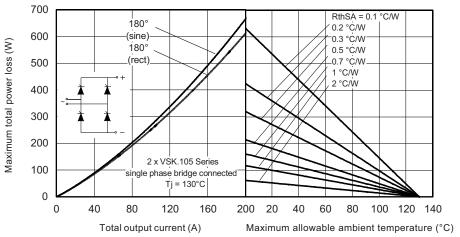


Fig. 7 - On-State Power Loss Characteristics

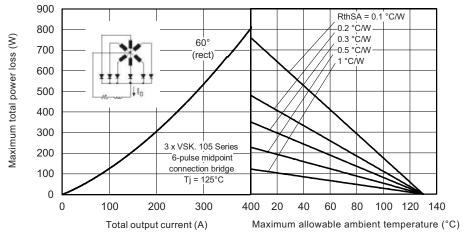


Fig. 8 - On-State Power Loss Characteristics

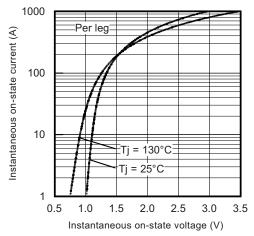


Fig. 9 - On-State Voltage Characteristics

ADD-A-PAK Generation VII Power Modules Thyristor/Thyristor, 105 A

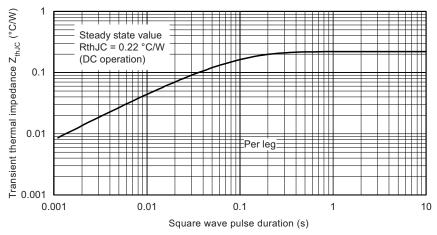


Fig. 10 - Thermal Impedance ZthJC Characteristics

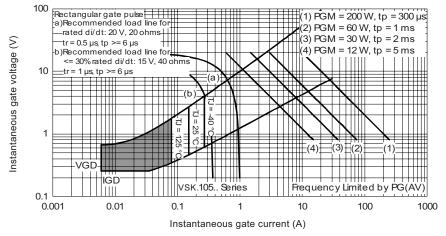


Fig. 11 - Gate Characteristics

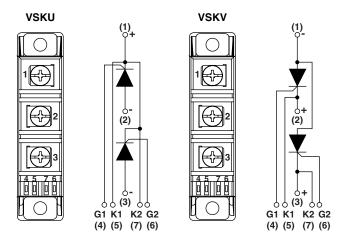
ORDERING INFORMATION TABLE

Device code

- Module type
- 2 Circuit configuration (see end of datasheet)
- 3 Current code (105 A)
- 4 Voltage code (see Voltage Ratings table)

Note

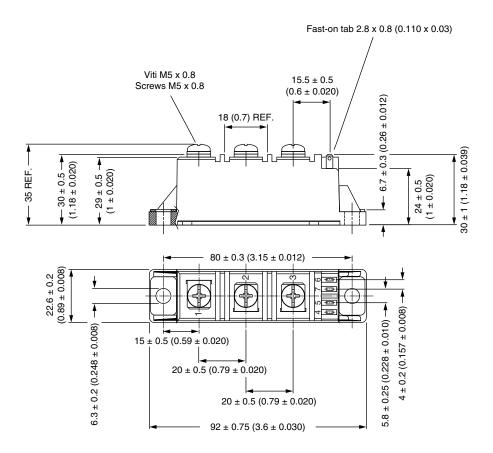
• To order the optional hardware go to www.vishay.com/doc?95172



ADD-A-PAK Generation VII Vish Power Modules Thyristor/Thyristor, 105 A

Vishay Semiconductors

CIRCUIT CONFIGURATION



LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95368				

ADD-A-PAK Generation VII - Thyristor

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.