

Vishay Semiconductors

Ultrafast Soft Recovery Diode, 60 A FRED Pt®

www.vishay.com

PRODUCT SUMMARY					
Package	TO-247AC,				
1 ackage	TO-247AC modified (2 pins)				
I _{F(AV)}	60 A				
V_{R}	600 V				
V _F at I _F	1.68 V				
t _{rr} typ.	See Recovery table				
T _J max.	175 °C				
Diode variation	Single die				

VS-60APU06HN3

VS-60EPU06HN3

FEATURES

- Ultrafast recovery time
- Low forward voltage drop
- 175 °C operating junction temperature
- AEC-Q101 qualified, meets JESD 201 class 1A whisker test
- Material categorization:
 For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Reduced RFI and EMI
- Higher frequency operation
- Reduced snubbing
- · Reduced parts count

DESCRIPTION/APPLICATIONS

These diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems.

The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for HF welding, power converters and other applications where switching losses are not significant portion of the total losses.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS		
Cathode to anode voltage	V_{R}		600	V		
Continuous forward current	I _{F(AV)}	T _C = 116 °C	60			
Single pulse forward current	I _{FSM}	T _C = 25 °C	600	Α		
Maximum repetitive forward current	I _{FRM}	Square wave, 20 kHz	120			
Operating junction and storage temperatures	T _J , T _{Stg}		- 55 to 175	°C		

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Breakdown voltage, blocking voltage	V _{BR} , V _R	Ι _R = 100 μΑ	600	-	-		
Forward voltage	V _F	I _F = 60 A	-	1.35	1.68	V	
		I _F = 60 A, T _J = 125 °C	-	1.20	1.42		
		I _F = 60 A, T _J = 175 °C	-	1.11	1.30		
Reverse leakage current	I _R	$V_R = V_R$ rated	-	-	50		
		T _J = 150 °C, V _R = V _R rated	-	-	500	μΑ	
Junction capacitance	C _T	V _R = 600 V	-	39	-	pF	

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS	
		$I_F = 1 A, dI_F/dt = 20$	00 A/μs, V _R = 30 V	-	34	45		
Reverse recovery time	t _{rr}	T _J = 25 °C		-	81	-	ns	
		T _J = 125 °C	$I_F=60~A$ $dI_F/dt=200~A/\mu s$ $V_R=200~V$	-	164	-	1	
Peak recovery current	I _{RRM}	T _J = 25 °C		-	7.4	-	Α	
		T _J = 125 °C		-	17.0	-		
Devene receiver charac	0	T _J = 25 °C		-	300	-	200	
Reverse recovery charge	Q _{rr}	T _J = 125 °C		-	1394	-	nC	

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Thermal resistance, junction to case	R _{thJC}		-	-	0.63	K/W	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.2	-	- K/W	
Weight			-	5.5	-	g	
vveigni			-	0.2	-	OZ.	
Mounting torque			1.2 (10)	-	2.4 (20)	N ⋅ m (lbf ⋅ in)	
Mauldina davia		Case style TO-247AC modified		60EF	PU06H	•	
Marking device		Case style TO-247AC		60APU06H			

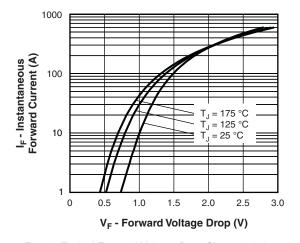


Fig. 1 - Typical Forward Voltage Drop Characteristics

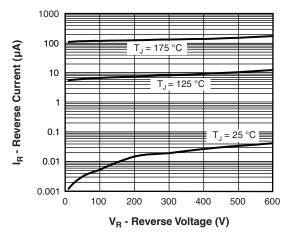


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Vishay Semiconductors

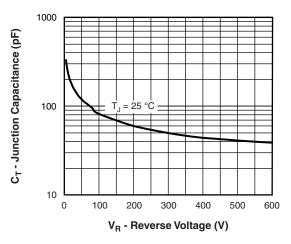


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

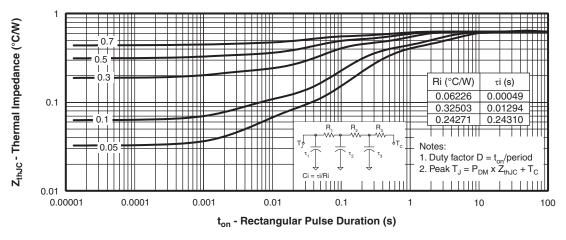


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

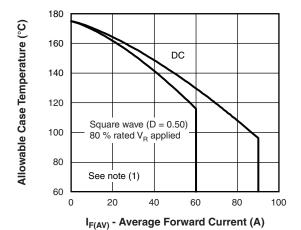
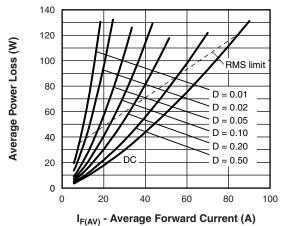



Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

VISHAY.

VS-60EPU06HN3, VS-60APU06HN3

www.vishay.com

Vishay Semiconductors

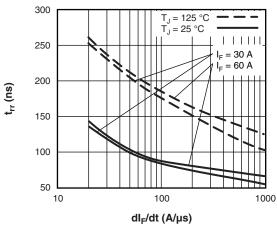


Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

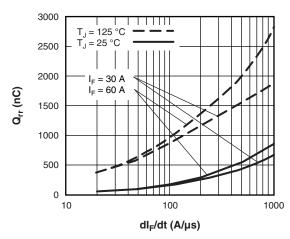


Fig. 8 - Typical Stored Charge vs. dl_F/dt

Note

 $^{(1)}$ Formula used: T_C = T_J - (Pd + Pd_{REV}) x R_{th,JC}; Pd = Forward power loss = I_{F(AV)} x V_{FM} at (I_{F(AV)}/D) (see fig. 6); Pd_{REV} = Inverse power loss = V_{R1} x I_R (1 - D); I_R at V_{R1} = 80 % rated V_R

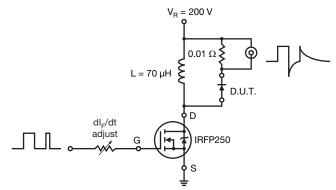
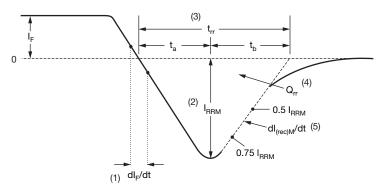
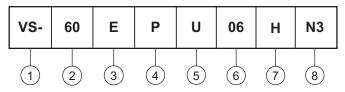



Fig. 9 - Reverse Recovery Parameter Test Circuit

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) $\rm t_{rr}$ reverse recovery time measured from zero crossing point of negative going $\rm I_F$ to point where a line passing through 0.75 $\rm I_{RRM}$ and 0.50 $\rm I_{RRM}$ extrapolated to zero current.
- (4) \boldsymbol{Q}_{rr} area under curve defined by \boldsymbol{t}_{rr} and \boldsymbol{I}_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during $t_{\rm b}$ portion of $t_{\rm rr}$


Fig. 10 - Reverse Recovery Waveform and Definitions

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (60 = 60 A)

3 - Circuit configuration:

• E = Single diode

• A = Single diode, 3 pins

4 - P = TO-247AC (modified)

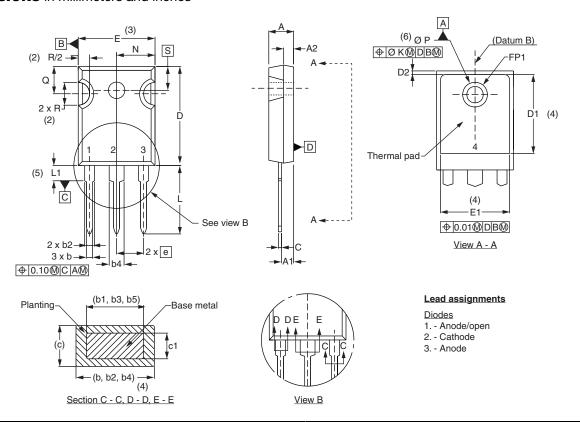
5 - U = Ultrafast recovery

6 - Voltage rating (06 = 600 V)

7 - H = AEC-Q101 qualified

8 - Environmental digit

N3 = Halogen-free, RoHS compliant and totally lead (Pb)-free


ORDERING INFORMATION (Example)						
PREFERRED P/N QUANTITY PER T/R MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION						
VS-60EPU06HN3	25	500	Antistatic plastic tube			
VS-60APU06HN3	25	500	Antistatic plastic tube			

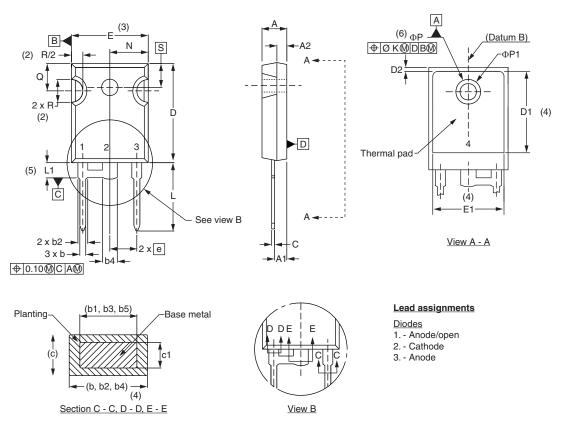
LINKS TO RELATED DOCUMENTS					
Dimensions	TO-247AC modified	www.vishay.com/doc?95253			
Dimensions	TO-247AC	www.vishay.com/doc?95223			
Part marking information	TO-247AC modified	www.vishay.com/doc?95442			
Part marking information	TO-247AC	www.vishay.com/doc?95007			

Vishay Semiconductors

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.65	5.31	0.183	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	0.99	1.40	0.039	0.055	
b1	0.99	1.35	0.039	0.053	
b2	1.65	2.39	0.065	0.094	
b3	1.65	2.37	0.065	0.094	
b4	2.59	3.43	0.102	0.135	
b5	2.59	3.38	0.102	0.133	
С	0.38	0.86	0.015	0.034	
c1	0.38	0.76	0.015	0.030	
D	19.71	20.70	0.776	0.815	3
D1	13.08	-	0.515	-	4

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.72	-	0.540	-	
е	5.46	BSC	0.215	BSC	
FK	2.54		0.0)10	
L	14.20	16.10	0.559	0.634	
L1	3.71	4.29	0.146	0.169	
Ν	7.62	BSC	0	.3	
ΦР	3.56	3.66	0.14	0.144	
ФР1	-	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	4.52	5.49	1.78	0.216	
S	5.51	BSC	0.217	'BSC	


Notes

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC outline TO-247 with exception of dimension c

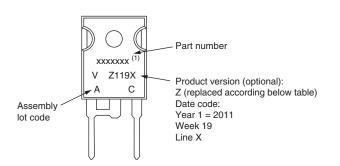
Vishay Semiconductors

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STINIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.65	5.31	0.183	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	0.99	1.40	0.039	0.055	
b1	0.99	1.35	0.039	0.053	
b2	1.65	2.39	0.065	0.094	
b3	1.65	2.37	0.065	0.094	
b4	2.59	3.43	0.102	0.135	
b5	2.59	3.38	0.102	0.133	
С	0.38	0.86	0.015	0.034	
c1	0.38	0.76	0.015	0.030	
D	19.71	20.70	0.776	0.815	3
D1	13.08	-	0.515	-	4

SYMBOL	MILLIMETERS INCHES		NOTES		
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.72	-	0.540	-	
е	5.46	BSC	0.215	BSC	
ΦК	2.	2.54)10	
L	14.20	16.10	0.559	0.634	
L1	3.71	4.29	0.146	0.169	
Ν	7.62	BSC	0	.3	
ΦР	3.56	3.66	0.14	0.144	
ФР1	-	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	4.52	5.49	1.78	0.216	
S	5.51	BSC	0.217	BSC	

Notes


- (1) Dimensioning and tolerance per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) ΦP to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC outline TO-247 with exception of dimension c

Part Marking Information

Vishay Semiconductors

TO-247AC modified E

Example: This is a xxxxxxx (1) with assembly lot code AC,

assembled on WW 19, 2011 in the assembly line "X"

Note

(1) If part number contain "H" as last digit, product is AEC-Q101 qualified

ENVIRONMENTAL NAMING CODE (Z)	PRODUCT DEFINITION
A	Termination lead (Pb)-free
В	Totally lead (Pb)-free
E	RoHS compliant and termination lead (Pb)-free
F	RoHS compliant and totally lead (Pb)-free
M	Halogen-free, RoHS compliant and termination lead (Pb)-free
N	Halogen-free, RoHS compliant and totally lead (Pb)-free
G	Green

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.