TURBOSWITCH ${ }^{\text {TM }}$ "B" . ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCT CHARACTERISTICS

$\mathbf{I}_{\mathbf{F}(\mathrm{AV})}$	5 A
$\mathbf{V}_{\mathbf{R R M}}$	600 V
$\mathbf{V}_{\mathrm{F}}(\max)$	1.3 V
\mathbf{t}_{rr} (typ)	45 ns

FEATURES AND BENEFITS

- SPECIFIC TO THE FOLLOWING OPERATIONS: SNUBBING OR CLAMPING, DEMAGNETIZATION AND RECTIFICATION, FREEWHEEL OR BOOSTER DIODE
- ULTRA-FAST RECOVERY
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
- DESIGNED FOR HIGH PULSED CURRENT OPERATIONS
- SURFACE MOUNT DEVICE
- TAPE AND REEL OPTION :-TR

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast voltage power diodes from 600 V to 1200 V .
TURBOSWITCH "B" family drastically cuts losses in all high voltage operations which require extremely fast, soft and noise-free power diodes. They are particulary suitable in the primary circuit

PRELIMINARY DATASHEET

of an SMPS as snubber, clamping or demagnetizer diodes, and also in most power converters as high performance Rectifier diodes.
Packaged in DPAK Surface Mount enveloppe, these 600 V devices are particulary intended for use on 240 V domestic mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V
$\mathrm{~V}_{\text {RSM }}$	Non Repetitive Surge Reverse Voltage	600	V
$\mathrm{I}_{\text {F(RMS })}$	RMS Forward Current	8	A
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Current	$\mathrm{tp}=5 \mu \mathrm{~s}$ $\mathrm{~F}=5 \mathrm{KHz}$	65
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Tj	Max. Junction Temperature	150	${ }^{\circ} \mathrm{C}$

TM : TURBOSWITCH is a trademark from SGS-THOMSON Microelectronics.

THERMAL AND POWER DATA

Symbol	Parameter	Conditions	Value	Unit
$\mathrm{R}_{\text {th }(\mathrm{j}-\mathrm{c})}$	Junction to Case Thermal Resistance			
P_{1}	Conduction Power Dissipation	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}=1.5 \mathrm{~A}, \delta=0.5$ $\mathrm{~T}_{\mathrm{L}}={ }^{\circ} \mathrm{C}$	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\max }$	Total Power Dissipation $\mathrm{P}_{\max }=\mathrm{P}_{1}+\mathrm{P}_{3} \quad\left(\mathrm{P}_{3}=10 \% \mathrm{P}_{1}\right)$	$\mathrm{T}_{\mathrm{L}}=76^{\circ} \mathrm{C}$	W	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Tests Conditions	Tests Conditions		Min.	Typ.	Max.	Unit
I_{R} *	Reverse leakage Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=0.8 \times \mathrm{V}_{\mathrm{RRM}}$			100	$\mu \mathrm{A}$
		$\mathrm{Tj}=125^{\circ} \mathrm{C}$				0.75	mA
VF_{F} **	Forward Voltage drop	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$			1.4	V
		$\mathrm{Tj}=125^{\circ} \mathrm{C}$	$\mathrm{I}_{F}=5 \mathrm{~A}$			1.3	

Pulse test : * tp = 5 ms , duty cycle <2 \%
** tp $=380 \mu \mathrm{~s}$, duty cycle $<2 \%$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
trr	Reverse Recovery Time	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~A} \quad \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \quad \mathrm{I}_{\mathrm{r}}=0.25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{~d} \mathrm{~F}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$		45	95	ns
$t_{\text {fr }}$	Maximum Reverse Recovery Current	$\mathrm{Tj}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-40 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		20	7.5	A
S factor	Softness Factor	$\mathrm{Tj}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		1		/

TURN-ON SWITCHING

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
$t_{\text {rr }}$	Forward Recovery Time	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \quad \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s}$ Measured at $1.1 \times V_{\text {Fmax }}$			500	ns
VPF	Peak Forward Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \quad \mathrm{~d} \mathrm{Il}_{\mathrm{F}} / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} \quad \mathrm{~d} \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		10	8	V

PACKAGE MECHANICAL DATA

DPAK

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

SGS-THOMSON

