

Automotive N-Channel 40 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	40				
$R_{DS(on)}(\Omega)$ at $V_{GS} = 10 V$	0.0011				
$R_{DS(on)}(\Omega)$ at $V_{GS} = 4.5 V$	0.0013				
I _D (A)	200				
Configuration	Single				

FEATURES

- TrenchFET[®] Power MOSFET
- · Package with Low Thermal Resistance
- 100 % $\rm R_g$ and UIS Tested
- AEC-Q101 Qualified^d
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ORDERING INFORMATION	
Package	TO-263-7L
Lead (Pb)-free and Halogen-free	SQM200N04-1m1L-GE3

ABSOLUTE MAXIMUM RATINGS ($T_C = 25$ °C, unless otherwise noted)						
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V _{DS}	40	V		
Gate-Source Voltage		V _{GS} ± 20		v		
Continuous Drain Current ^a	T _C = 25 °C		200			
	T _C = 125 °C	Ι _D	200			
Continuous Source Current (Diode Conduction) ^a		I _S	200	А		
Pulsed Drain Current ^b		I _{DM}	600			
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	100			
Single Pulse Avalanche Energy		E _{AS}	500	mJ		
Maximum Power Dissipation ^b	T _C = 25 °C	P	375	W		
	T _C = 125 °C	P _D	125			
Operating Junction and Storage Temperature Ra	nge	T _J , T _{stg}	- 55 to + 175	°C		

THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	LIMIT	UNIT	
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	40	°C/W	
Junction-to-Case (Drain)	case (Drain)		0.4	0/10	

Notes

- a. Package limited.
- b. Pulse test; pulse width \leq 300 $\mu s,\,duty\,cycle \leq$ 2 %.
- c. When mounted on 1" square PCB (FR-4 material).
- d. Parametric verification ongoing.

Downloaded from Elcodis.com electronic components distributor

SQM200N04-1m1L

Vishay Siliconix

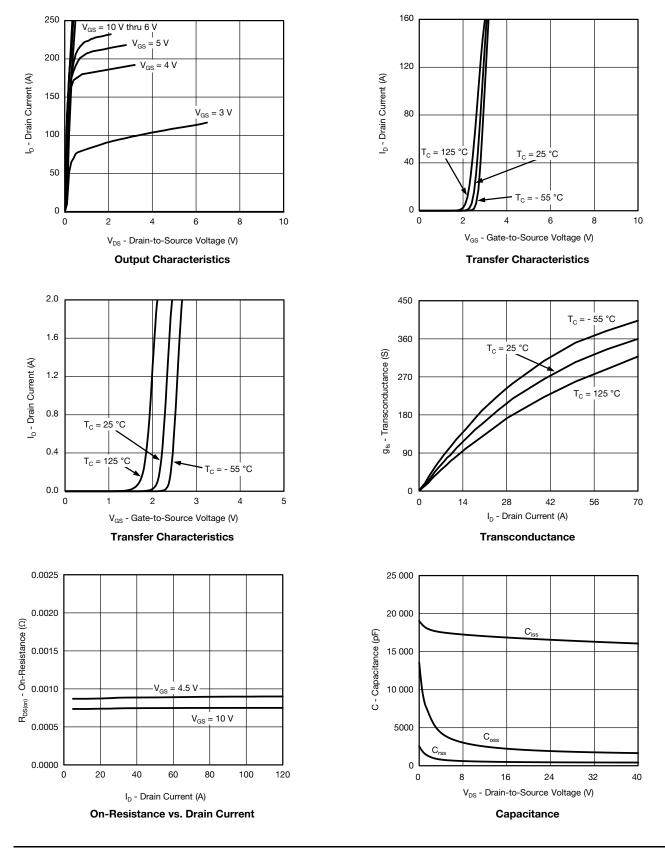
$ \begin{array}{ c c c c c } \hline Gate-Source Leakage & I_{I_{GSS}} & V_{DS} = 0 \lor, V_{GS} = 1 OV & - & - & \pm 1 \\ \hline I_{GSS} & V_{DS} = 0 \lor, V_{GS} = 40 \lor & - & - & 50 \\ \hline V_{DS} = 40 \lor, T_{J} = 125 \degree C & - & - & 50 \\ \hline V_{GS} = 0 \lor & V_{DS} = 40 \lor, T_{J} = 125 \degree C & - & - & 50 \\ \hline V_{GS} = 0 \lor & V_{DS} = 40 \lor, T_{J} = 175 \degree C & - & - & 50 \\ \hline V_{GS} = 0 \lor & V_{DS} = 40 \lor, T_{J} = 175 \degree C & - & - & 50 \\ \hline V_{GS} = 0 \lor & V_{DS} = 40 \lor, T_{J} = 175 \degree C & - & - & 50 \\ \hline V_{GS} = 0 \lor & V_{DS} = 5 \lor & 200 & - & - & - & 0.00 \\ \hline V_{GS} = 10 \lor & V_{DS} \geq 5 \lor & 200 & - & - & 0.000 \\ \hline V_{GS} = 10 \lor & I_D = 30 \land, T_J = 125 \degree C & - & - & 0.00 \\ \hline V_{GS} = 10 \lor & I_D = 30 \land, T_J = 125 \degree C & - & - & 0.00 \\ \hline V_{GS} = 10 \lor & I_D = 30 \land, T_J = 175 \degree C & - & - & 0.00 \\ \hline V_{GS} = 10 \lor & I_D = 30 \land, T_J = 175 \degree C & - & - & 0.00 \\ \hline V_{GS} = 10 \lor & I_D = 30 \land, T_J = 175 \degree C & - & - & 0.00 \\ \hline V_{GS} = 10 \lor & I_D = 30 \land, T_J = 175 \degree C & - & - & 0.00 \\ \hline Dutput Capacitance & C_{iss} & V_{DS} = 15 \lor, I_D = 30 \land - & 219 & - \\ \hline Dutput Capacitance & C_{iss} & V_{DS} = 15 \lor, I_D = 30 \land - & 219 & - \\ \hline Dutput Capacitance & C_{iss} & V_{GS} = 0 \lor & V_{DS} = 25 \lor, f = 1 \ MHz & - & 16 524 & 20 \ C & - & - & 484 & 60 \\ \hline Total Gate Charge & Q_{Q} & V_{GS} = 10 \lor & V_{DS} = 25 \lor, f = 1 \ MHz & - & 484 & 60 \\ \hline Total Gate Charge & Q_{Q} & V_{GS} = 10 \lor & V_{DS} = 20 \lor, I_D = 20 \land A & - & 275 & 41 \\ \hline Gate Source Charge & Q_{Qd} & - & 45.4 & - \\ \hline Gate Resistance & R_{g} & f = 1 \ MHz & 4.2 & 8.5 & 12 \\ \hline Turn-On \ Delay \ Time^\circ & t_{d(orn)} & V_{DS} = 20 \lor, R_{L} = 1 \ \Omega & V_{DS} = 20 \lor, R_{L} = 1 \ \Omega & - & 13 & 20 \\ \hline Fise \ Time^\circ & t_f & V_{DS} = 20 \lor, R_{Q} = 1 \ \Omega & V_{GS} = 10 \lor V_{GS} = 10 \lor, R_{g} = 1 \ \Omega & - & 126 \ 18 \\ \hline Source \ Drain \ Diode \ Ratings \ and \ Charcetristics^b & - & - & 126 \ 18 \\ \hline Source \ Drain \ Diode \ Ratings \ and \ Charcetristics^b \\ \hline Pulsed \ Current^a & I_{SM} & I_{SM} & I_{SM} \ \end{array}$	ETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT	
$ \begin{array}{c c c c c c c } \hline Gate-Source Intershold Voltage $V_{GS(th)}$ & $V_{DS} = V_{GS}, l_{D} = 250 \ \mu A$ & 1.5 & 2.0 & 2.3 \\ \hline Gate-Source Leakage l_{GSS} & $V_{DS} = 0 \ V, V_{GS} = 4.20 \ V$ & - & - & 1 \\ \hline V_{GS} = 0 \ V, V_{DS} = 40 \ V & - & - & - & 1 \\ \hline V_{GS} = 0 \ V, V_{DS} = 40 \ V, T_{J} = 125 \ ^{\circ}C & - & - & 50 \\ \hline V_{GS} = 0 \ V, V_{DS} = 40 \ V, T_{J} = 175 \ ^{\circ}C & - & - & 50 \\ \hline V_{GS} = 0 \ V, V_{DS} = 40 \ V, T_{J} = 175 \ ^{\circ}C & - & - & 50 \\ \hline On-State Drain Current^a & _{D(n)}$ & $V_{GS} = 10 \ V$ & $V_{DS} = 5 \ V$ & $200 \ - & - & 0.0008 \ 0.00 \\ \hline On-State Drain Current^a & _{D(n)}$ & $V_{GS} = 10 \ V$ & $V_{DS} = 5 \ V$ & $200 \ - & - & 0.0008 \ 0.00 \\ \hline V_{GS} = 10 \ V$ & $I_{D} = 30 \ A, T_{J} = 125 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V$ & $I_{D} = 30 \ A, T_{J} = 125 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V$ & $I_{D} = 30 \ A, T_{J} = 125 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V$ & $I_{D} = 30 \ A, T_{J} = 125 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V$ & $I_{D} = 30 \ A, T_{J} = 125 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V$ & $I_{D} = 30 \ A, T_{J} = 175 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 4.5 \ V$ \ I_{D} = 20 \ A & - & 0.0009 \ 0.00 \\ \hline V_{GS} = 4.5 \ V$ \ I_{D} = 30 \ A & - & 219 \ - \\ \hline Dynamic^b \ V_{GS} = 10 \ V$ \ V_{DS} = 25 \ V, f = 1 \ MHz \ - & 2060 \ 257 \\ \hline Reverse Transfer Capacitance \ C_{rss} \ C_{rss} \ Transfer Capacitance \ C_{rss} \ C_{rss} \ C_{rss} \ V_{GS} = 10 \ V$ \ V_{DS} = 20 \ V, \ I_{D} = 20 \ A \ - & 275 \ 41 \\ \hline Gate Source Charge^c \ Q_{Gg} \ Q_{gg} \ C_{gg} \ f = 1 \ MHz \ - & 266 \ - \\ \hline Gate Parin Charge^c \ Q_{Gg} \ C_{gg} \ C_{gg} \ F = 1 \ MHz \ - & 266 \ - \\ \hline Gate Resistance \ R_{g} \ C_{gg} \ F = 1 \ MHz \ - & 2275 \ 41 \\ \hline Gate Resistance \ R_{g} \ C_{gg} \ C_{gg} \ F = 1 \ MHz \ - & 2275 \ 41 \\ \hline Gate Resistance \ R_{g} \ C_{gg} \$					•	•			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ource Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D = 250 μA	40	-	-	v	
$ \begin{array}{ c c c c c } \hline U & U & U & V & V & V & V & V & V & V &$	ource Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	1.5	2.0	2.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ource Leakage	I _{GSS}	V _{DS} =	$0 \text{ V}, \text{ V}_{\text{GS}} = \pm 20 \text{ V}$	-	-	± 100	nA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 0 V$	$V_{DS} = 40 V$	-	-	1		
$ \begin{array}{ c c c c c c } \hline On-State Drain Current^a & _{D(on)} & V_{GS} = 10 \ V & V_{DS} \geq 5 \ V & 200 & - & - & - & - & 0.000 \\ \hline V_{GS} = 10 \ V & _{D} = 30 \ A, \ T_{J} = 125 \ ^{\circ}C & - & - & - & 0.000 \\ \hline V_{GS} = 10 \ V & _{D} = 30 \ A, \ T_{J} = 125 \ ^{\circ}C & - & - & - & 0.000 \\ \hline V_{GS} = 10 \ V & _{D} = 30 \ A, \ T_{J} = 125 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V & _{D} = 30 \ A, \ T_{J} = 125 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V & _{D} = 30 \ A, \ T_{J} = 175 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 10 \ V & _{D} = 30 \ A, \ T_{J} = 175 \ ^{\circ}C & - & - & 0.000 \\ \hline V_{GS} = 4.5 \ V & _{D} = 30 \ A & T_{J} = 175 \ ^{\circ}C & - & - & 0.000 \\ \hline D_{000000000000000000000000000000000000$	te Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = 40 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	-	-	50	μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 0 V$	$V_{DS} = 40 \text{ V}, \text{ T}_{J} = 175 ^{\circ}\text{C}$	-	-	500		
$ \begin{array}{ c c c c c c } \mbox{Drain-Source On-State Resistance}^a & P_{DS(on)} & P_{OS} = 10 \ V & I_D = 30 \ A, \ T_J = 125 \ ^\circ C & - & - & 0.00 \ V_{GS} = 10 \ V & I_D = 30 \ A, \ T_J = 175 \ ^\circ C & - & - & 0.00 \ V_{GS} = 15 \ V, \ I_D = 20 \ A & - & 0.0009 & 0.00 \ V_{GS} = 4.5 \ V & I_D = 20 \ A & - & 0.0009 & 0.00 \ V_{GS} = 15 \ V, \ I_D = 30 \ A, \ T_J = 175 \ ^\circ C & - & - & 0.00 \ V_{OD} \ D_{ODOD} & 0.00 \ D_{ODOD} \ D_{ODOD} & 0.00 \ D_{ODOD} \ D_$	e Drain Current ^a	I _{D(on)}	V _{GS} = 10 V	$V_{DS} \ge 5 V$	200	-	-	Α	
$ \begin{array}{ c c c c c c } \hline Prain-Source On-State Resistance^a & P_{DS(on)} & V_{GS} = 10 \ V & I_D = 30 \ A, \ T_J = 175 \ ^{\circ}C & - & 0.00 \\ \hline V_{GS} = 4.5 \ V & I_D = 20 \ A & - & 0.000 & 0.00 \\ \hline V_{GS} = 4.5 \ V & I_D = 20 \ A & - & 0.000 & 0.00 \\ \hline V_{GS} = 4.5 \ V & I_D = 30 \ A & - & 0.000 & 0.00 \\ \hline Porward Transconductance^b & g_{fs} & V_{DS} = 15 \ V, \ I_D = 30 \ A & - & 0.000 & 0.00 \\ \hline Dynamic^b & & & & & & & & & & & & & & & & & & &$			$V_{GS} = 10 V$	I _D = 30 A	-	0.0008	0.0011	Ω	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ouroo On Stato Basistanaa	р	V _{GS} = 10 V	I _D = 30 A, T _J = 125 °C	-	-	0.0019		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Surce On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D = 30 A, T _J = 175 °C	-	-	0.0023		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 4.5 V$	I _D = 20 A	-	0.0009	0.0013		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 30 A		-	219	-	S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	c ^b					-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	apacitance	C _{iss}		V _{DS} = 25 V, f = 1 MHz	-	16 524	20 655	pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Capacitance	C _{oss}	$V_{GS} = 0 V$		-	2060	2575		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Transfer Capacitance	C _{rss}	1		-	484	605		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ate Charge ^c	Qg		V _{DS} = 20 V, I _D = 20 A	-	275	413	nC	
Gate Resistance R_g $f = 1 \text{ MHz}$ 4.2 8.5 12.7 Turn-On Delay Time ^c $t_{d(on)}$ $V_{DD} = 20 \text{ V}, \text{ R}_L = 1 \Omega$ $ 13$ 20 C Rise Time ^c t_r $V_{DD} = 20 \text{ V}, \text{ R}_L = 1 \Omega$ $ 12$ 18 Turn-Off Delay Time ^c t_f $I_D \cong 20 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega$ $ 126$ 18 Source-Drain Diode Ratings and Characteristics ^b Pulsed Current ^a I_{SM} $ 60$	ource Charge ^c	Q _{gs}	V _{GS} = 10 V		-	56.6	-		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ain Charge ^c	Q _{gd}	1		-	45.4	-		
Rise Time ^c tr $V_{DD} = 20 \text{ V}, \text{ R}_L = 1 \Omega$ -1218Turn-Off Delay Time ^c td(off) $I_D \cong 20 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega$ -44366Fall Time ^c tf-12618Source-Drain Diode Ratings and Characteristics ^b Pulsed Current ^a I_{SM} 60	sistance	R _g	f = 1 MHz		4.2	8.5	12.8	Ω	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	n Delay Time ^c	t _{d(on)}			-	13	20		
Fall Time ^c t _f - 126 18 Source-Drain Diode Ratings and Characteristics ^b - 126 18 Pulsed Current ^a I _{SM} - - 60	nec	t _r			-	12	18	ns	
Fall Time ^c t _f - 126 18 Source-Drain Diode Ratings and Characteristics ^b - - 60 Pulsed Current ^a I _{SM} - - 60	f Delay Time ^c	t _{d(off)}			-	443	665		
Pulsed Current ^a I _{SM} 60	ec				-	126	189		
	Drain Diode Ratings and Charac	teristics ^b	·						
Environd Voltage $V_{i} = 60.4 V_{i} = 0.1$	Current ^a	I _{SM}			-	-	600	Α	
Forward Voltage V_{SD} $I_F = 60 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.8 1.1	Voltage	V _{SD}	$I_{F} = 60 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$		-	0.8	1.5	V	

Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

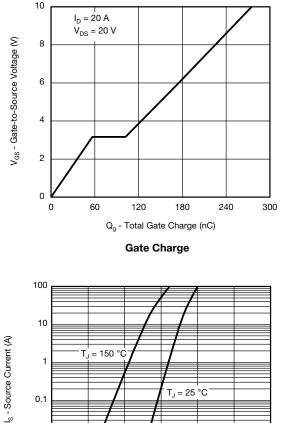
c. Independent of operating temperature.

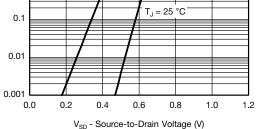

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Downloaded from Elcodis.com electronic components distributor

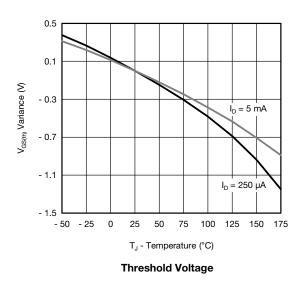
2

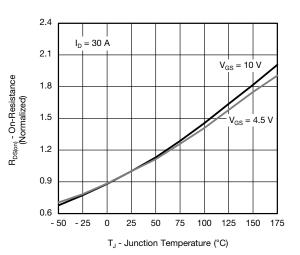
TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

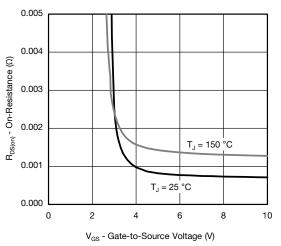

S12-2164-Rev. A, 24-Sep-12


3

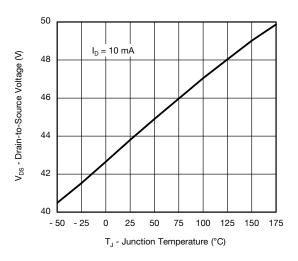
For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>




TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)



Source Drain Diode Forward Voltage



On-Resistance vs. Junction Temperature

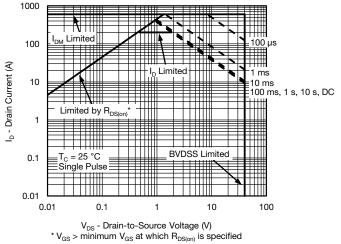
On-Resistance vs. Gate-to-Source Voltage

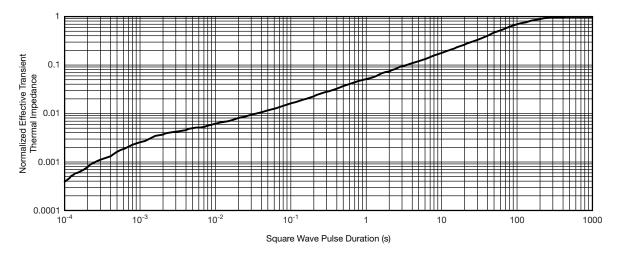
Drain Source Breakdown vs. Junction Temperature

S12-2164-Rev. A, 24-Sep-12

4

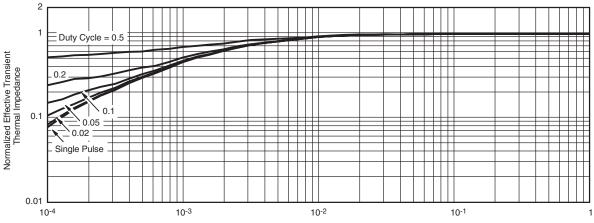
For technical questions, contact: automostechsupport@vishay.com


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


SQM200N04-1m1L

Vishay Siliconix

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)



Normalized Thermal Transient Impedance, Junction-to-Ambient

THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Square Wave Pulse Duration (s)

Normalized Thermal Transient Impedance, Junction-to-Case

Note

• The characteristics shown in the two graphs

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

- Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62679.

Downloaded from Elcodis.com electronic components distributor

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.