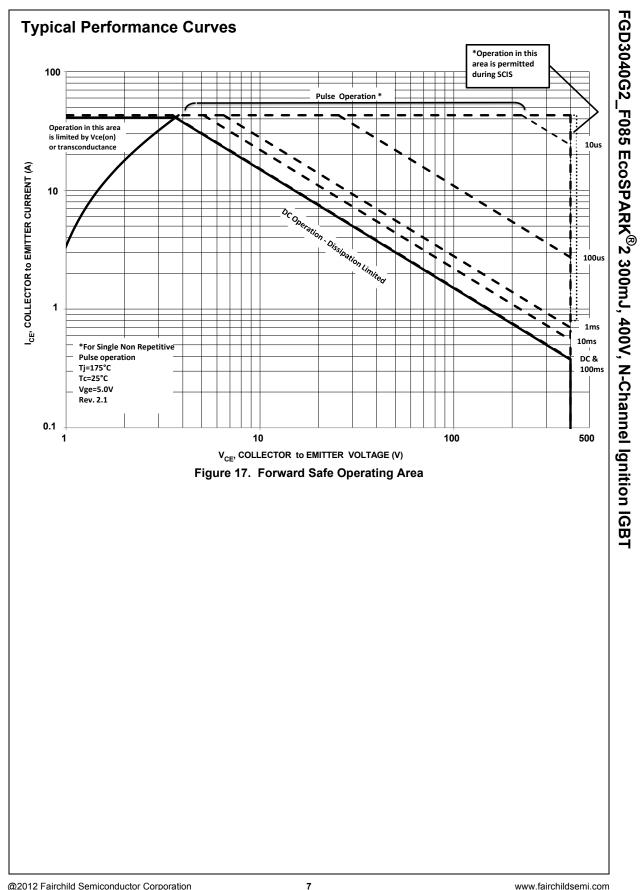
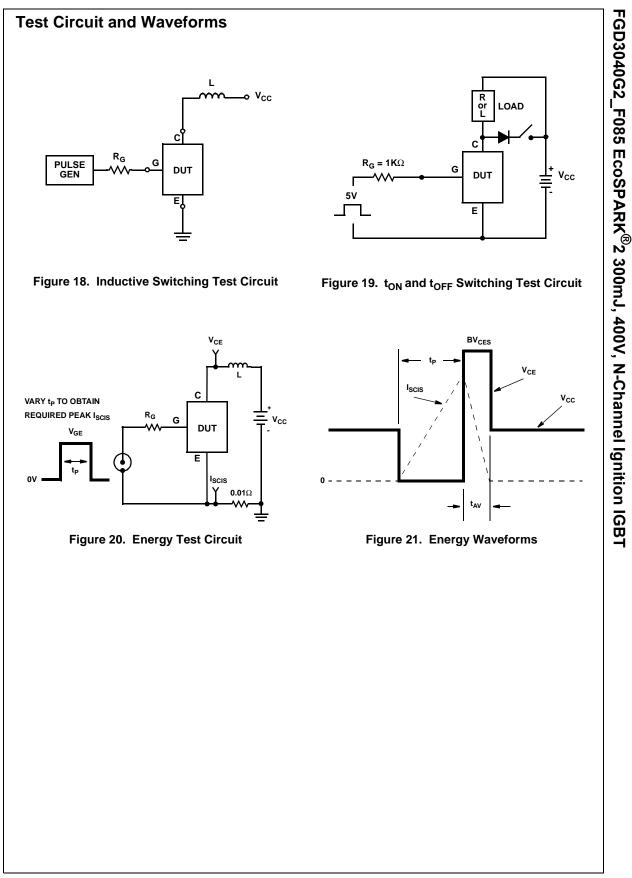
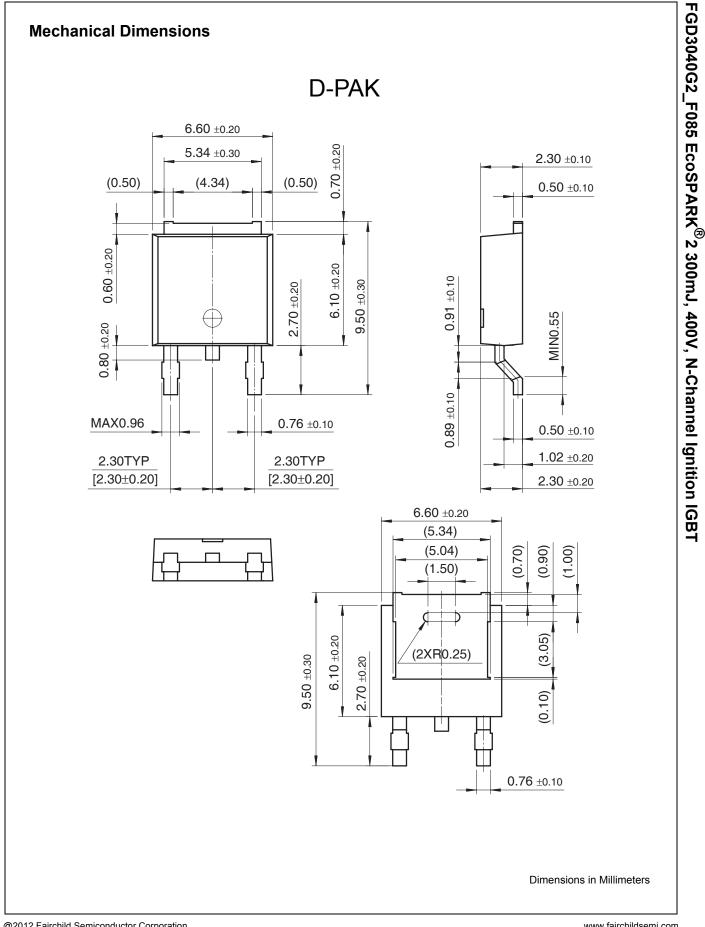

Downloaded from Elcodis.com electronic components distributor


Symbol	Par			rameter				I	Rating	s	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage			(I _C = 1mA)				400			V	
3V _{ECS}	Emitter to	Collector Voltage - R	everse E	Battery Cor	ndition (I _C = 10m	ıA)			28		V	
E _{SCIS25}	Self Clam	ping Inductive Switch	ing Enei	gy (Note 1)			300			mJ	
E _{SCIS150}	Self Clam				2)				170		mJ	
I _{C25}	Collector Current Continuous, at V_{GE} =			5.0V, T _C =	25°C				41		Α	
I _{C110}	Collector Current Continuous, at V_{GE} = 5.0V,				110°C				25.6		Α	
V _{GEM}	Gate to Emitter Voltage Continuous								±10		V	
P _D		ssipation Total, at T _C =							150		W	
	Power Dissipation Derating, for $T_C > 25^{\circ}C$								1		W/ºC	
TJ		Junction Temperatur		;					5 to +1		°C	
T _{STG}	-	unction Temperature						-5	5 to +1	75	°C	
TL 		d Temp. for Soldering			rom case for 10	s)			300		°C	
T _{PKG}		Idering according to J			200				260		°C	
ESD		trostatic Discharge V			0002				4		kV	
	CDM-Elec	ctrostatic Discharge V	oitage a	112					2		kV	
Packa	ige Mar	king and Ord	ering	Inforn	nation							
Device				ckage	Reel Size		Tape W	Vidth Quar		Quant	ntitv	
FGD	3040G2	FGD3040G2_F085	Т	D252	330mm		16mr			2500 u	-	
Symbol		Parameter	T _A = 25°	°C unless o	otherwise noted				_	r		
					Test Condit	ions		Min	Tvp	Max	Units	
					Test Condit	ions		Min	Тур	Мах	Units	
Off Sta	te Chara	cteristics			Test Condit	ions		Min	Тур	Max	Units	
	te Chara			I _{CE} = 2mA	Test Condit A, V _{GE} = 0,	ions		Min	Тур	Max	Units	
Off Sta BV _{CER}			Voltage	R _{GE} = 1K T _J = -40 t	A, V _{GE} = 0, Ω, o 150 ^o C	ions		Min 370	Тур 400	Max 430	V	
	Collector t	cteristics		$R_{GE} = 1K$ $T_J = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0$,	A, V _{GE} = 0, Ω, o 150°C nA, V _{GE} = 0V,	ions						
BV _{CER} BV _{CES}	Collector t	cteristics	Voltage	$R_{GE} = 1K T_{J} = -40 t I_{CE} = 10m R_{GE} = 0, T_{J} = -40 t $	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$,	ions		370	400	430	v	
BV _{CER}	Collector t Collector t Emitter to	cteristics	Voltage Voltage	$R_{GE} = 1K T_{J} = -40 t I_{CE} = 10m R_{GE} = 0, T_{J} = -40 t I_{CE} = -20m I_{CE} = $	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, S			370 390	400	430	V V	
BV _{CER} BV _{CES} BV _{ECS} BV _{GES}	Collector t Collector t Emitter to Gate to En	cteristics to Emitter Breakdown to Emitter Breakdown Collector Breakdown mitter Breakdown Volt	Voltage Voltage	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA	T _J = 25		370 390 28	400 420 -	430	v v v	
BV _{CER} BV _{CES} BV _{ECS} BV _{GES}	Collector t Collector t Emitter to Gate to En	cteristics	Voltage Voltage	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, S	T _J = 25 T _J = 150	0°C	370 390 28	400 420 -	430 450 -	V V V V	
BV _{CER} BV _{CES} BV _{ECS} BV _{GES}	Collector t Collector t Emitter to Gate to En Collector t	cteristics to Emitter Breakdown to Emitter Breakdown Collector Breakdown mitter Breakdown Volt to Emitter Leakage Cu	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	T _J = 25	0°C	370 390 28	400 420 -	430 450 - 25	V V V µA mA	
BV _{CER} BV _{CES} BV _{ECS}	Collector t Collector t Emitter to Gate to En Collector t	cteristics to Emitter Breakdown to Emitter Breakdown Collector Breakdown mitter Breakdown Volt	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20n$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	T _J = 25 T _J = 150	0°C	370 390 28	400 420 -	430 450 - 25 1	V V V μΑ	
BV _{CER} BV _{CES} BV _{ECS} BV _{GES} I _{CER}	Collector t Collector t Emitter to Gate to En Collector t Emitter to	cteristics to Emitter Breakdown to Emitter Breakdown Collector Breakdown mitter Breakdown Volt to Emitter Leakage Cu	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20n$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_J = 25$ $T_J = 150$ $T_J = 25^{\circ}$	0°C	370 390 28	400 420 -	430 450 - 25 1 1	V V V µA mA	
BV _{CER} BV _{CES} BV _{ECS} BV _{GES}	Collector f Collector f Emitter to Gate to En Collector f Emitter to Series Ga	to Emitter Breakdown to Emitter Breakdown Collector Breakdown mitter Breakdown Volt to Emitter Leakage Cu Collector Leakage Cu	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20n$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_J = 25$ $T_J = 150$ $T_J = 25^{\circ}$	0°C	370 390 28	400 420 - ±14 - - -	430 450 - 25 1 1	V V V µA mA mA	
BV _{CER} BV _{CES} BV _{ECS} BV _{GES} I _{CER} I _{ECS} R ₁ R ₂	Collector t Collector t Emitter to Gate to En Collector t Emitter to Series Ga Gate to En	to Emitter Breakdown to Emitter Breakdown Collector Breakdown mitter Breakdown Volt to Emitter Leakage Cu Collector Leakage Cu te Resistance mitter Resistance	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20n$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_J = 25$ $T_J = 150$ $T_J = 25^{\circ}$	0°C	370 390 28 ±12 - - - - -	400 420 - ±14 - - -	430 450 - 25 1 1 40 -	V V V μA mA Ω	
BV _{CER} BV _{CES} BV _{ECS} BV _{GES} I _{CER} I _{ECS} R ₁ R ₂ Dn Sta	Collector t Collector t Emitter to Gate to En Collector t Emitter to Series Ga Gate to En te Chara	cteristics to Emitter Breakdown to Emitter Breakdown Collector Breakdown Mitter Breakdown Volt to Emitter Leakage Cu Collector Leakage Cu Collector Leakage Cu te Resistance mitter Resistance cteristics	Voltage Voltage age urrent urrent	$R_{GE} = 1K$ $T_{J} = -40 t$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 t$ $I_{CE} = -20n$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$ $V_{EC} = 240$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$ V,	$\begin{array}{c} T_{J} = 25\\ T_{J} = 150\\ T_{J} = 25^{\circ}\\ T_{J} = 150\\ T_{J} = 150\\ \end{array}$	0°C °C 0°C	370 390 28 ±12 - - - - -	400 420 - ±14 - - 120 -	430 450 - 25 1 1 40 - 30K	V V V μA mA ΩΩ	
BV _{CER} BV _{CES} BV _{ECS} ICER ICER IECS R ₁ R ₂ On Sta	Collector t Collector t Emitter to Gate to En Collector t Emitter to Series Ga Gate to En te Chara	to Emitter Breakdown to Emitter Breakdown Collector Breakdown Mitter Breakdown Volt to Emitter Leakage Cu Collector Leakage Cu Collector Leakage Cu te Resistance mitter Resistance cteristics to Emitter Saturation V	Voltage Voltage urrent urrent	$R_{GE} = 1K T_{J} = -40 t T_{J} = -40 t T_{CE} = 10m R_{GE} = 0, T_{J} = -40 t T_{CE} = -20m T_{J} = 25^{\circ}C T_{J} = 25^{\circ}C T_{CE} = 250 V_{CE} = 250 V_{CE} = 240 V_{CE} =$	A, $V_{GE} = 0$, Ω , o 150°C TA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$ V, V,	$T_{J} = 25$ $T_{J} = 150$ $T_{J} = 25^{\circ}$ $T_{J} = 150$ $T_{J} = 25^{\circ}$	0°C °C 0°C	370 390 28 ±12 - - - - -	400 420 - ±14 - - 120 - 1.15	430 450 - 25 1 1 40 - 30K 1.25	V V V μA mA Ω Ω V	
BV _{CER} BV _{CES} BV _{GES} I _{CER} I _{ECS} R ₁ R ₂ On Sta	Collector f Collector f Emitter to Gate to En Collector f Series Ga Gate to En te Chara Collector f	to Emitter Breakdown to Emitter Breakdown Collector Breakdown mitter Breakdown Volt to Emitter Leakage Cu Collector Leakage Cu Collector Leakage Cu te Resistance mitter Resistance cteristics to Emitter Saturation V	Voltage age urrent urrent voltage voltage	$R_{GE} = 1K T_{J} = -40 t T_{J} = -40 t T_{CE} = 10m R_{GE} = 0, T_{J} = -40 t T_{CE} = -20m T_{J} = -20m T_{J} = 25^{\circ}C T_{GES} = \pm 22 T_{CE} = 250 T_{CE} = 24^{\circ}T_{CE} = 24^{\circ}T_{CE} = 24^{\circ}T_{CE} = 24^{\circ}T_{CE} = 10A$	A, $V_{GE} = 0$, Ω , o 150°C hA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$ V, V, $V_{GE} = 4V$, $V_{GE} = 4.5V$,	$T_{J} = 25^{\circ}$ $T_{J} = 15^{\circ}$ $T_{J} = 15^{\circ}$ $T_{J} = 25^{\circ}$ $T_{J} = 15^{\circ}$	2°C 2°C 2°C 2°C 2°C 2°C	370 390 28 ±12 - - - 10K	400 420 - ±14 - - 120 - 1.15 1.35	430 450 - 25 1 1 40 - 30K 1.25 1.50	V V V μA mA Ω Ω Ω V V	
BV _{CER} BV _{CES} BV _{ECS} ICER ICER IECS R ₁ R ₂ On Sta	Collector f Collector f Emitter to Gate to En Collector f Series Ga Gate to En te Chara	to Emitter Breakdown to Emitter Breakdown Collector Breakdown Mitter Breakdown Volt to Emitter Leakage Cu Collector Leakage Cu Collector Leakage Cu te Resistance mitter Resistance cteristics to Emitter Saturation V	Voltage age urrent urrent voltage voltage	$R_{GE} = 1K T_{J} = -40 t T_{J} = -40 t T_{CE} = 10m R_{GE} = 0, T_{J} = -40 t T_{CE} = -20m T_{J} = -20m T_{J} = 25^{\circ}C T_{GES} = \pm 22 T_{CE} = 250 T_{CE} = 24^{\circ}T_{CE} = 24^{\circ}T_{CE} = 24^{\circ}T_{CE} = 10A T_{CE} = 10A T_{CE} = 10A$	A, $V_{GE} = 0$, Ω , o 150°C TA, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$ V, V,	$T_{J} = 25$ $T_{J} = 150$ $T_{J} = 25^{\circ}$ $T_{J} = 150$ $T_{J} = 25^{\circ}$	2°C 2°C 2°C 2°C 2°C 2°C	370 390 28 ±12 - - - 10K	400 420 - ±14 - - 120 - 1.15	430 450 - 25 1 1 40 - 30K 1.25	V V V μA mA Ω Ω V	

	Symbol	Parameter	Test Condit	tions	Min	Тур	Мах	Units
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynam	ic Characteristics						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q _{G(ON)}	Gate Charge			-	21	-	nC
V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ -2.8-VSwitching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ -0.94 μ s t_{R} Current Rise Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ -1.97 μ s $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$,-4.815 μ s t_{fL} Current Fall Time-Inductive $V_{CE} = 5V$, $R_G = 1K\Omega$ -2.015 μ sThermal CharacteristicsR _{0JC} Thermal Resistance Junction to Case1°C/WNotes:1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, $I_{SCIS}=14.2A$, $V_{CC}=100V$ during inductor charging and $V_{CC}=0V$ during the time in clamp.	V _{GE(TH)}	Gate to Emitter Threshold Voltage						V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12V, I _{CE} = 10A				-	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Switch	ing Characteristics						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		•			-	0.9	4	μS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Current Rise Time-Resistive			-	1.9	7	μS
tric Current Fair Time-Inductive I _{CE} = 6.5A, T _J = 25°C, - 2.0 15 μ s Thermal Characteristics R _{0JC} Thermal Resistance Junction to Case - - 1 °C/W Notes: 1: Self Clamping Inductive Switching Energy (E _{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I _{SCIS} =14.2A, V _{CC} =100V during inductor charging and V _{CC} =0V during the time in clamp.	t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	V _{CE} = 300V, L = 1mH,		-	4.8	15	μS
Image: Second State State Thermal Characteristics R _{0JC} Thermal Resistance Junction to Case - - 1 °C/W Notes: 1: Self Clamping Inductive Switching Energy (E _{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V during inductor charging and V _{CC} =0V during the time in clamp.	te.	Current Fall Time-Inductive	$V_{GE} = 5V, R_G = 1K\Omega$		_	2.0	15	us
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W
	Therma R _{θJC} Notes: 1: Seli Tj=25°C	Thermal Resistance Junction to Case f Clamping Inductive Switching Energy ; L=3mHy, I _{SCIS} =14.2A,V _{CC} =100V d	gy (E _{SCIS25}) of 300 mJ is luring inductor charging		test con during th	- ditions e time	1 that s in cla	°C/W





@2012 Fairchild Semiconductor Corporation FGD3040G2_F085 Rev.C1

@2012 Fairchild Semiconductor Corporation FGD3040G2_F085 Rev.C1

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ **EcoSPARK**[®] EfficentMax™ ESBC™

F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST®

FlashWriter[®] * FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptiHiT™

PDP SPM™ Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ OFĔT QS™ Quiet Series™ RapidConfigure™ ΤМ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM ®* GENERAL

wer p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™

The Power Franchise®

The Right Technology for Your Success™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOLOGIC[®]

®

OPTOPLANAR[®]

DISCI AIMER

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

XS™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.