CY7C1021D

1-Mbit (64 K $\times 16$) Static RAM

Features

■ Temperature Ranges:
a Industrial: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
a Automotive-A: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
■ Pin and Function Compatible with CY7C1021B

- High Speed
$\square \mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$
■ Low Active Power
$\square \mathrm{I}_{\mathrm{CC}}=80 \mathrm{~mA}$ at 10 ns
- Low CMOS Standby Power
$\square I_{S B 2}=3 \mathrm{~mA}$
■ 2.0 V Data Retention
■ Automatic Power Down when Deselected
■ CMOS for Optimum Speed and Power
- Independent Control of Upper and Lower Bits

■ Available in Pb-free 44-pin 400-Mil Wide Molded SOJ and 44-pin TSOP II Packages

Functional Description

The CY7C1021D is a high performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power down feature that significantly reduces power consumption when deselected. The input and output pins (IO_{0} through IO_{15}) are placed in a high impedance state when the device is deselected (CE HIGH), outputs are disabled (OE HIGH), $\overline{\mathrm{BHE}}$ and BLE are disabled (BHE, BLE HIGH), or during a write operation ($\overline{C E}$ LOW and $\overline{W E}$ LOW).
Write to the device by taking Chip Enable ($\overline{\mathrm{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins $\left(\mathrm{IO}_{0}\right.$ through $\left.\mathrm{IO}_{7}\right)$, is written into the location specified on the address pins (A_{0} through A_{15}). If Byte High Enable (BHE) is LOW, then data from I/O pins (IO_{8} through IO_{15}) is written into the location specified on the address pins (A_{0} through A_{15}).
Read from the device by taking Chip Enable ($\overline{\mathrm{CE}})$ and Output Enable ($\overline{\mathrm{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable ($\overline{\mathrm{BLE}}$) is LOW, then data from the memory location specified by the address pins appears on IO_{0} to IO_{7}. If Byte High Enable ($\overline{\mathrm{BHE}}$) is LOW, then data from memory appears on IO_{8} to IO_{15}. See the Truth Table on page 10 for a complete description of read and write modes.

Logic Block Diagram

Contents

Pin Configuration 3
Selection Guide 3
Maximum Ratings 4
Operating Range 4
Electrical Characteristics 4
Capacitance 5
Thermal Resistance 5
AC Test Loads and Waveforms 5
Switching Characteristics 6
Data Retention Characteristics 7
Data Retention Waveform 7
Switching Waveforms 7
Truth Table 10
Ordering Information 11
Ordering Code Definitions 11
Package Diagrams 12
Acronyms 14
Document Conventions 14
Units of Measure 14
Document History Page 15
Sales, Solutions, and Legal Information 16
Worldwide Sales and Design Support 16
Products 16
PSoC Solutions 16

Pin Configuration

Figure 1. 44-pin SOJ / 44-pin TSOP II (Top View) ${ }^{[1]}$

$\mathrm{A}_{4}-1$	44	A_{5}
$\mathrm{A}_{3} \square 2$	43	$\square \mathrm{A}_{6}$
$\mathrm{A}_{2} \square 3$	42	$\square \underline{A_{7}}$
$\mathrm{A}_{1} \square 4$	41	$\square \overline{\text { OE }}$
$\mathrm{A}_{0} \square 5$	40	$\square \overline{\mathrm{BH}}$
$\overline{C E} \square 6$	39	$\checkmark \overline{\text { BLE }}$
$1 \mathrm{O}_{0} \square 7$	38	$\checkmark \mathrm{IO}_{15}$
$\mathrm{IO}_{1} \square 8$	37	$\checkmark \mathrm{IO}_{1}$
$1 \mathrm{O}_{2} \square 9$	36	$\square \mathrm{IO}_{13}$
$1 \mathrm{I}_{3} \square 10$	35	$\checkmark \mathrm{IO}_{12}$
$V_{\text {cc }} \square 11$	34	$\checkmark \mathrm{V}_{\text {SS }}$
$V_{\text {ss }} \square 12$	33	$\square \mathrm{V}_{\mathrm{cc}}$
$\mathrm{IO}_{4} \square 13$	32	$\square 1 \mathrm{O}_{1}$
$1 \mathrm{O}_{5}-14$	31	$\checkmark \mathrm{IO}_{10}$
$\mathrm{IO}_{6} \square 15$	30	$\checkmark \mathrm{IO}_{9}$
$1 \mathrm{IO}_{7} \square 16$	29	$\checkmark \mathrm{IO}_{8}$
WE -17	28	$\square \mathrm{NC}$
$\mathrm{A}_{15}^{\square} \square 18$	27	$\square \mathrm{A}_{8}$
$\mathrm{A}_{14}^{\square} \square 19$	26	$\square \mathrm{A}_{9}$
$\mathrm{A}_{13} \square 20$	25	$\square \mathrm{A}_{10}$
$\mathrm{A}_{12} \square 21$	24	- A_{11}
NC■22	23	$\checkmark \mathrm{NC}$

Selection Guide

	Description	-10 (Industrial Automotive-A)	Unit
Maximum Access Time	10	ns	
Maximum Operating Current	80	mA	
Maximum CMOS Standby Current	3	mA	

[^0]
Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$
Supply Voltage on
V_{CC} to Relative $\mathrm{GND}^{[2]}$................................ 0.5 V to +6.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[2]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[2]}$........................... -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) .. 20 mA
Static Discharge Voltage
(per MIL-STD-883, Method 3015) > 2001 V
Latch Up Current .. $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$	Speed
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	10 ns
Automotive-A			

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		-10 (Industrial / Automotive-A)		Unit
				Min	Max	
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	V
V_{OL}	Output LOW Voltage	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		-	0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{\text {[2] }}$			-0.5	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	$\mu \mathrm{A}$
Ioz	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-1	+1	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	V ${ }_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{max}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	100 MHz	-	80	mA
			83 MHz	-	72	mA
			66 MHz	-	58	mA
			40 MHz	-	37	mA
${ }^{\text {SB1 }}$	Automatic CE Power Down Current -TTL Inputs	$\operatorname{Max} \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\max }$		-	10	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power Down Current - CMOS Inputs	$\begin{aligned} & \operatorname{Max}_{\mathrm{VCC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text {, or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		-	3	mA

Note

2. $\mathrm{V}_{\mathrm{IL}}(\min)=-2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ for pulse durations of less than 5 ns .

Capacitance

Parameter ${ }^{[3]}$	Description	Test Conditions	Max	Unit
C_{IN}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF
$\mathrm{C}_{\text {OUT }}$	Output capacitance		8	pF

Thermal Resistance

Parameter ${ }^{[3]}$	Description	Test Conditions	44-pin SOJ	44-pin TSOP II	Unit
$\Theta_{\text {JA }}$	Thermal resistance (junction to ambient)	Still Air, soldered on a 3 $\times 4.5$ inch, four-layer printed circuit board	59.52	53.91	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			36.75	21.24	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance (junction to case)					

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms ${ }^{[4]}$

High-Z characteristics:

(c)

Notes

3. Tested initially and after any design or process changes that may affect these parameters
4. AC characteristics (except High Z) are tested using the load conditions shown in Figure 2 (a). High Z characteristics are tested for all speeds using the test load shown in Figure 2 (c).

Switching Characteristics

Over the Operating Range

Parameter ${ }^{[5]}$	Description	-10 (Industrial / Automotive-A)		Unit
		Min	Max	
Read Cycle				
$\mathrm{t}_{\text {power }}{ }^{\text {[6] }}$	V_{CC} (typical) to the first access	100	-	$\mu \mathrm{s}$
t_{RC}	Read Cycle Time	10	-	ns
t_{AA}	Address to Data Valid	-	10	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3	-	ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid	-	10	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	-	5	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7]}$	0	-	ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$	-	5	ns
tızCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3	-	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High $Z^{[7,8]}$	-	5	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power-Up	0	-	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down	-	10	ns
$\mathrm{t}_{\text {dbe }}$	Byte Enable to Data Valid	-	5	ns
t LZBE	Byte Enable to Low Z	0	-	ns
$\mathrm{t}_{\text {HZBE }}$	Byte Disable to High Z	-	5	ns
Write Cycle ${ }^{\text {[9] }}$				
${ }^{\text {tw }}$ w	Write Cycle Time	10	-	ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	7	-	ns
$\mathrm{t}_{\text {AW }}$	Address Setup to Write End	7	-	ns
t_{HA}	Address Hold from Write End	0	-	ns
$\mathrm{t}_{\text {SA }}$	Address Setup to Write Start	0	-	ns
$t_{\text {PWE }}$	$\overline{\text { WE }}$ Pulse Width	7	-	ns
$\mathrm{t}_{\text {SD }}$	Data Setup to Write End	6	-	ns
t_{HD}	Data Hold from Write End	0	-	ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low $Z^{[7]}$	3	-	ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$	-	5	ns
t_{BW}	Byte Enable to End of Write	7	-	ns

Notes

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. $t_{\text {POWER }}$ gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
7. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {IZCE }}$, $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. $t_{\text {HZOE }}, t_{H Z B E}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in (c) of Figure 2 on page 5 . Transition is measured when the outputs enter a high impedance state.
9. The internal write time of the memory is defined by the overlap of $\overline{C E} L O W, \overline{W E} L O W$ and $\overline{B H E} / \overline{B L E} L O W$. $\overline{C E}, \overline{W E}$ and $\overline{B H E} / \overline{B L E}$ must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data setup and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V_{CC} for Data Retention		2.0	-	V
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}$	-	3	mA
$\mathrm{t}_{\mathrm{CDR}}{ }^{[10]}$	Chip Deselect to Data Retention Time		0	-	ns
$\mathrm{t}_{\mathrm{R}}{ }^{[11]}$	Operation Recovery Time		t_{RC}	-	ns

Data Retention Waveform

Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) ${ }^{[12,13]}$

[^1]Switching Waveforms (continued)
Figure 4. Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[14,15]}$

[^2]CY7C1021D

Switching Waveforms (continued)
Figure 5. Write Cycle No. 1 ($\overline{C E}$ Controlled) ${ }^{[16,17]}$

Figure 6. Write Cycle No. 2 ($\overline{\mathrm{BLE}}$ or $\overline{\mathrm{BHE}}$ Controlled)

Notes

16. Data I / O is high impedance if $\overline{\mathrm{OE}}$ or $\overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BLE}}=\mathrm{V}_{\mathrm{IH}}$.
17. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high impedance state.

Switching Waveforms (continued)
Figure 7. Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW)

Truth Table

$\overline{C E}$	$\overline{\mathrm{OE}}$	WE	BLE	BHE	$1 \mathrm{O}_{0}-\mathrm{IO}_{7}$	$1 \mathrm{O}_{8}-1 \mathrm{O}_{15}$	Mode	Power
H	X	X	X	X	High Z	High Z	Power Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	L	L	Data Out	Data Out	Read - All bits	Active (I_{CC})
			L	H	Data Out	High Z	Read - Lower bits only	Active (I_{CC})
			H	L	High Z	Data Out	Read - Upper bits only	Active (I_{Cc})
L	X	L	L	L	Data In	Data In	Write - All bits	Active ($\mathrm{ICC}^{\text {) }}$
			L	H	Data In	High Z	Write - Lower bits only	Active (I_{CC})
			H	L	High Z	Data In	Write - Upper bits only	Active (I_{CC})
L	H	H	X	X	High Z	High Z	Selected, Outputs Disabled	Active (I_{CC})
L	X	X	H	H	High Z	High Z	Selected, Outputs Disabled	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1021D-10VXI	$51-85082$	44-pin (400-Mil) Molded SOJ (Pb-free)	Industrial
	CY7C1021D-10ZSXI	$51-85087$	$44-$-pin TSOP Type II (Pb-free)	
	CY7C1021D-10ZSXA		Automotive-A	

Shaded areas contain advance information. Contact your local Cypress sales representative for availability of these parts.

Ordering Code Definitions

T

Package Diagrams

Figure 8. 44-pin SOJ (400 Mils) V44.4 Package Outline, 51-85082

Package Diagrams (continued)
Figure 9. 44-pin TSOP Z44-II Package Outline, 51-85087

51-85087 *D

Acronyms

Acronym	Description
$\overline{\mathrm{CE}}$	chip enable
CMOS	complementary metal oxide semiconductor
I/O	input/output
$\overline{\mathrm{OE}}$	output enable
SOJ	small outline J-lead
SRAM	static random access memory
TSOP	thin small outline package
TTL	transistor-transistor logic
$\overline{\text { WE }}$	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
MHz	megahertz
$\mu \mathrm{A}$	microampere
$\mu \mathrm{s}$	microsecond
mA	milliampere
mm	millimeter
ms	millisecond
ns	nanosecond
Ω	ohm
$\%$	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C1021D, 1-Mbit (64 K $\times 16$) Static RAM Document Number: 38-05462

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	201560	SWI	See ECN	Advance Information data sheet for C9 IPP
*A	233695	RKF	See ECN	DC parameters modified as per EROS (Spec \# 01-02165) Pb-free Offering in the Ordering Information
*B	263769	RKF	See ECN	Added Data Retention Characteristics Table Added Tpower Spec in Switching Characteristics Table Shaded Ordering Information
*C	307601	RKF	See ECN	Reduced Speed bins to -10 and -12 ns
*D	520647	VKN	See ECN	Changed status from Preliminary to Final. Removed Commercial Operating range Added I_{CC} values for the frequencies $83 \mathrm{MHz}, 66 \mathrm{MHz}$ and 40 MHz Updated Thermal Resistance table Added Automotive Product Information Updated Ordering Information Table Changed Overshoot spec from $\mathrm{V}_{\mathrm{CC}}+2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ in footnote \#4
*E	802877	VKN	See ECN	Changed Commercial operating range I_{CC} spec from 60 mA to 80 mA for $100 \mathrm{MHz}, 55 \mathrm{~mA}$ to 72 mA for $83 \mathrm{MHz}, 45 \mathrm{~mA}$ to 58 mA for $66 \mathrm{MHz}, 30 \mathrm{~mA}$ to 37 mA for 40 MHz Changed Automotive operating range I_{CC} spec from 100 mA to 120 mA for $83 \mathrm{MHz}, 90 \mathrm{~mA}$ to 100 mA for $66 \mathrm{MHz}, 60 \mathrm{~mA}$ to 63 mA for 40 MHz
*F	2751755	$\begin{aligned} & \hline \text { VKN / } \\ & \text { PYRS } \end{aligned}$	08/14/09	For 12 ns speed, changed I_{CC} spec from 120 mA to 90 mA For 12 ns speed, changed $\mathrm{I}_{\mathrm{SB} 1}$ spec from 50 mA to 10 mA and $\mathrm{I}_{\mathrm{SB} 2}$ spec from 15 mA to 10 mA
*G	2898399	AJU	03/24/2010	Updated Package Diagrams.
*H	3109897	AJU	12/14/2010	Added Ordering Code Definitions.
*	3245199	PRAS	04/30/2011	Dislodged Automotive information to new datasheet (001-68372). Removed the Note "Automotive Product Information is Preliminary." in page 3. Added Acronyms and Units of Measure. Updated in new template.
*J	3086499	AJU	06/07/2011	Updated Functional Description (Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.").
*K	3540685	TAVA / AJU	03/06/2012	Updated Features (Included Automotive-A Range information). Updated Selection Guide (Included Automotive-A Range information). Updated Operating Range (Included Automotive-A Range information). Updated Electrical Characteristics (Included Automotive-A Range information). Updated Switching Characteristics (Included Automotive-A Range information). Updated Ordering Information (included the part number CY7C1021D-10ZSXA). Updated Package Diagrams.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting \& Power Control	cypress.com/go/powerpsoc
cypress.com/go/plc	
Memory	cypress.com/go/memory
Optical \& Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

© Cypress Semiconductor Corporation, 2004-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Note

 1. NC pins are not connected on the die.
[^1]: Notes
 10. $\mathrm{V}_{\mathrm{IL}}(\min)=-2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ for pulse durations of less than 5 ns .
 11. Full device operation requires linear $V_{C C}$ ramp from $V_{D R}$ to $V_{C C(\min)} \geq 50 \mu \mathrm{~s}$ or stable at $\mathrm{V}_{C C(\min)} \geq 50 \mu \mathrm{~s}$.
 12. Device is continuously selected. $\mathrm{OE}, \mathrm{CE}, \mathrm{BHE}$ and/or $\mathrm{BLE}=\mathrm{V}_{\mathrm{IL}}$.
 13. WE is HIGH for read cycle.

[^2]: Notes
 14. $\overline{\text { WE }}$ is HIGH for read cycle.
 15. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

