General Description

The MAX4400–MAX4403 low-cost, general-purpose op amps offer rail-to-rail outputs, draw only 320µA of quiescent current, and operate from a single +2.5V to +5.5V supply. For additional power conservation, the MAX4401 offers a low-power shutdown mode that reduces supply current to 1µA (max) and puts the amplifier's output in a high-impedance state. These devices deliver ±1.4mA of output current and are unity-gain stable with a 1MHz gainbandwidth product driving capacitive loads up to 400pF. The MAX4400–MAX4403 are specified to +125°C, making them suitable for use in a variety of harsh environments, such as automotive applications.

The MAX4400 single amplifier is available in ultra-small 5-pin SC70 and space-saving 5-pin SOT23 packages. The single MAX4401 includes the shutdown feature and is available in a 6-pin SC70. The MAX4402 is a dual amplifier available in 8-pin SOT23, μ MAX[®], and SO packages. The MAX4403 quad amplifier is packaged in a 14-pin TSSOP or SO.

Applications

Selector Guide

Single-Supply, Zero-Crossing Detectors

- Instruments and Terminals
- Portable Communications
- Electronic Ignition Modules
- Infrared Receivers
- Sensor Signal Detection

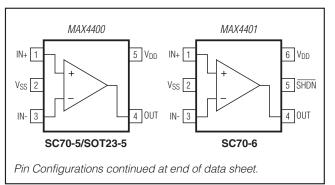
PART	NO. OF AMPLIFIERS PER PACKAGE	SHUTDOWN MODE		
MAX4400	1	No		
MAX4401	1	Yes		
MAX4402	2	No		
MAX4403	4	No		

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Features

- Single +2.5V to +5.5V Supply Voltage Range
- 320µA Quiescent Current per Amplifier
- 1µA (max) Shutdown Mode (MAX4401)
- Available in Space-Saving Packages 5-Pin SC70 (MAX4400)
 6-Pin SC70 (MAX4401)
 8-Pin SOT23/µMAX (MAX4402)
- 110dB Avol with 2kΩ Load
- 0.015% THD with $2k\Omega$ Load
- ♦ Rail-to-Rail Output Voltage Swing
- ♦ 1.4mA of Sink and Source Load Current
- Unity-Gain Stable up to CLOAD = 400pF
- Ground-Sensing Inputs

_Ordering Information


PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4400AXK+T	-40°C to +125°C	5 SC70	AAG
MAX4400AUK+T	-40°C to +125°C	5 SOT23	ADNP
MAX4401AXT+T	-40°C to +125°C	6 SC70	AAB
MAX4402AKA+T	-40°C to +125°C	8 SOT23	AADI
MAX4402AUA+	-40°C to +125°C	8 µMAX	_
MAX4402AUA/V+T	-40°C to +125°C	8 µMAX	_
MAX4402ASA+	-40°C to +125°C	8 SO	_
MAX4403AUD+	-40°C to +125°C	14 TSSOP	_
MAX4403ASD+	-40°C to +125°C	14 SO	_

+Denotes a lead(Pb)-free/RoHS-compliant package.

N denotes an automotive qualified part.

T = Tape and reel.

Pin Configurations

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (V_{DD} to V_{SS})-0.3V to +6V All Other Pins(V_{SS} - 0.3V) to (V_{DD} + 0.3V) Output Short-Circuit Duration

OUT Shorted to V_{SS} or V_{DD} Continuous Continuous Power Dissipation ($T_A = +70^{\circ}C$)

8-Pin SOT23 (derate 7.52mW/°C above +70°C).........602mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty$ connected to $V_{DD}/2, \overline{SHDN} = V_{DD}$ (MAX4401 only), $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Inferred from PSRR test		2.5		5.5	V
Supply Current per Amplifier		$V_{DD} = 2.5 V$			320		μA
Supply Current per Ampliner	IDD	$V_{DD} = 5.0V$	$V_{DD} = 5.0V$		410	700	
Supply Current in Shutdown	ISHDN	$\overline{\text{SHDN}} = V_{\text{SS}} \text{ (Note 1)}$			0.00002	1	μA
Input Offset Voltage	Vee	MAX4400/MAX4401			±0.8	±4.5	mV
input Onset voltage	Vos	MAX4402/MAX4403			±1.0	±5.5	IIIV
Input Bias Current	IB	(Note 2)			±0.1	±100	рА
Input Offset Current	los	(Note 2)			±0.1	±100	рА
Input Resistance	RIN	Differential or commor	n mode		1000		GΩ
Input Common-Mode Voltage Range	VCM	Inferred from CMRR te	est	V _{SS}		V _{DD} - 1.4	V
Common-Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD} - 1.4$	łV	68	84		dB
Power-Supply Rejection Ratio	PSRR	$2.5 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{V}$		78	100		dB
	A	V _{SS} + 0.3V ≤	$R_L = 100 k\Omega$		120		- dB
Large-Signal Voltage Gain	Avol	$V_{OUT} \le V_{DD} - 0.3V$	$R_L = 2k\Omega$	90	110		
Output Voltage High	Voh	Specified as IV _{DD} - V _{OH} I	$R_L = 100k\Omega$		3		- mV
Output voltage High	VOH		$R_L = 2k\Omega$		55	200	
Output Voltage Low	VOL	Specified as	$R_L = 100 k\Omega$		2		mV
Output voltage Low	VOL	IV _{SS} - V _{OL} I	$R_L = 2k\Omega$		30	75	IIIV
Output Short-Circuit Current		Sourcing			12		mA
Output Short-Oneur Current		Sinking			30		ШA
Shutdown Mode Output Leakage	IOUTSHDN	Device in shutdown m V _{SS} < V _{OUT} < V _{CC} (No				±1.0	μA
SHDN Logic Low	VIL	(Note 1)			С	$.3 \times V_{DD}$	V
SHDN Logic High	VIH	(Note 1)		$0.7 \times V_{C}$	D		V
SHDN Input Current	I _{IL} , I _{IH}	$\overline{\text{SHDN}} = V_{\text{DD}} \text{ or } V_{\text{SS}}$ (1)	Note 1)		±0.001	±500	nA
Gain-Bandwidth Product	GBW				800		kHz
Phase Margin	φM				70		degrees
Gain Margin					20		dB
Slew Rate	SR				1		V/µs

2

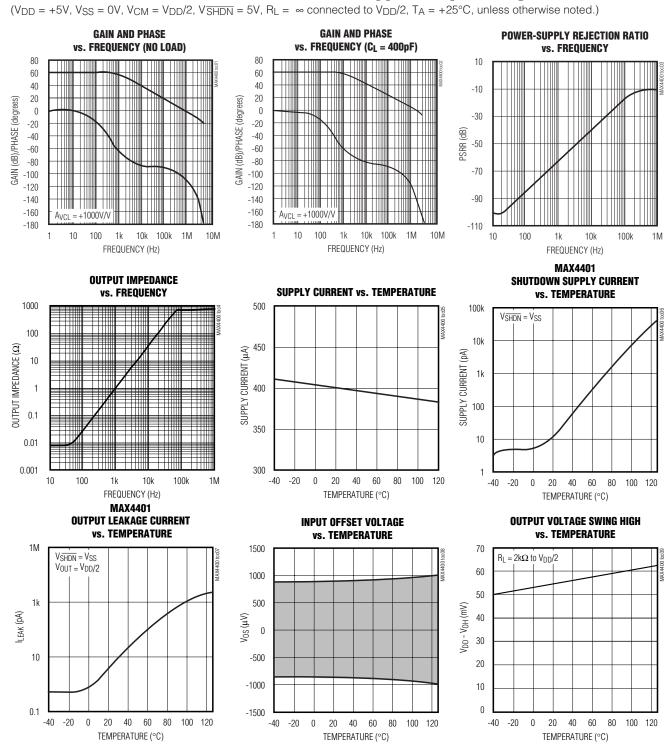
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty$ connected to $V_{DD}/2$, $\overline{SHDN} = V_{DD}$ (MAX4401 only), $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS
Input Voltage Noise Density	en	f = 10kHz			36		nV/√Hz
Input Current Noise Density	i _n	f = 10kHz			1		fA/√Hz
Capacitive-Load Stability	CLOAD	$A_V = +1V/V$			400		pF
Shutdown Delay Time	t SHDN	(Note 1) C		0.4		μs	
Enable Delay Time	t _{EN}	(Note 1)	(Note 1)				μs
Power-On Time	ton				5		μs
Input Capacitance	CIN				2.5		pF
Total Harmonia Distortion		f = 10kHz, V _{OUT} =	$R_L = 100 k\Omega$		0.009		0/
Total Harmonic Distortion	THD	$2Vp-p, A_V = +1V/V$	$R_L = 2k\Omega$		0.015		%
Settling Time to 0.1%	ts	V _{OUT} = 2V step			7		μs

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty$ connected to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.) (Note 3)

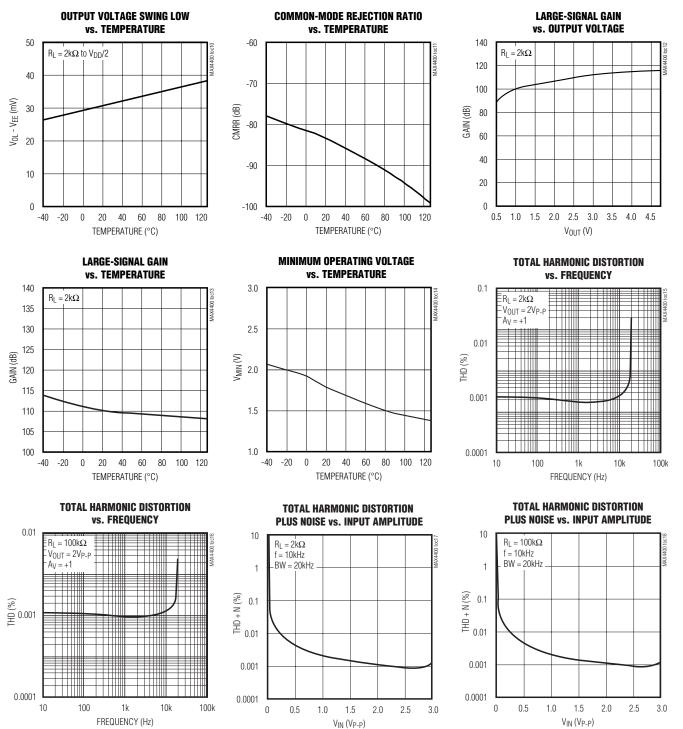

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Supply Voltage Range	V _{DD}	Inferred from PSRR test		2.5		5.5	V
Supply Current per Amplifier	IDD					800	μA
Input Offset Voltage	Vaa	MAX4400/MAX4401				±6.5	mV
Input Onset Voltage	Vos	MAX4402/MAX4403	MAX4402/MAX4403			±8.0	IIIV
Input Offset Voltage Drift	TCvos				±1		µV/°C
Input Bias Current	IB	(Note 2)				±100	рА
Input Offset Current	los	(Note 2)				±100	рА
Input Common-Mode Voltage Range	VCM	Inferred from CMRR te	Inferred from CMRR test		V	DD - 1.5	V
Common-Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD} - 1.5V$		65			dB
Common-mode Rejection hallo	CIVILIT	$V_{SS} \le V_{CM} \le V_{DD} - 1.0$	$V T_A = -20^{\circ}C \text{ to } + 125^{\circ}C$	50			uD
Power-Supply Rejection Ratio	PSRR	$2.5V \le V_{CC} \le 5.5V$		74			dB
Shutdown Mode Output	Device in shutdown mode, $\overline{SHDN} = V_{SS}$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$			±1.0	μA		
Leakage	IOUTSHDN	V _{SS} < V _{OUT} < V _{DD} (Note 1)	$T_A = +85^{\circ}C \text{ to } +125^{\circ}C$			±5.0	μΛ
SHDN Logic Low	VIL	(Note 1)			0.	$3 \times V_{DD}$	V
SHDN Logic High	VIH	(Note 1)		$0.7 \times V_{DD}$			V
SHDN Input Current	I _{IL,} I _{IH}	$\overline{\text{SHDN}} = V_{\text{DD}} \text{ or } V_{\text{SS}} \text{ (Notes 1, 2)}$				±1000	nA
Large-Signal Voltage Gain	Avol	$V_{SS} + 0.3V \le V_{OUT} \le V_{DD} - 0.3V$, $R_L = 2k\Omega$		85			dB
Output Voltage High	VOH	Specified as IV _{DD} - V _{OH} I, R _L = 2k Ω				250	mV
Output Voltage Low	Vol	Specified as IV _{SS} - V _O	$LI, RL = 2k\Omega$			100	mV

Note 1: Shutdown mode is only available in the 6-pin SC70 single op amp (MAX4401).

Note 2: Guaranteed by design.

Note 3: Specifications are 100% tested at $T_A = +25^{\circ}C$ (exceptions noted). All temperature limits are guaranteed by design.

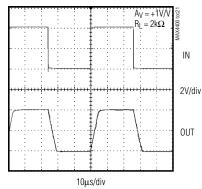
Typical Operating Characteristics



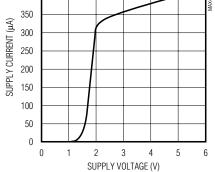
MAX4400-MAX4403

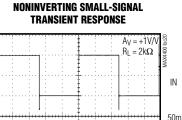
4

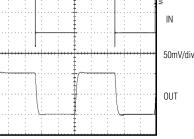
 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{SHDN} = 5V, R_L = \infty$ connected to $V_{DD}/2, T_A = +25^{\circ}C$, unless otherwise noted.)



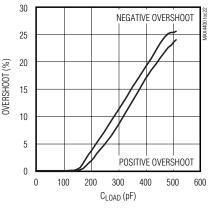
Typical Operating Characteristics (continued)

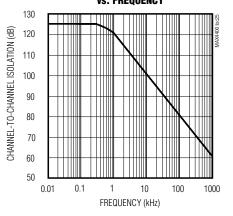

 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{\overline{SHDN}} = 5V, R_L = \infty$ connected to $V_{DD}/2, T_A = +25^{\circ}C$, unless otherwise noted.)


CAPACITIVE-LOAD STABILITY 2000 $A_V = +1$ $T_A = +25^{\circ}C$ 1500 CAPACITIVE LOAD (pF) UNSTABLE REGION 1000 STABLE REGION 500 0 100k 1k 10k RESISTIVE LOAD (Ω)



SUPPLY CURRENT vs. SUPPLY VOLTAGE 450 400





2µs/div

PERCENT OVERSHOOT vs. CAPACITIVE LOAD

MAX4402/MAX4403 Channel-to-channel isolation vs. Frequency

_Pin Description

	Р	IN			FUNCTION
MAX4400	MAX4401	MAX4402	MAX4403	NAME	FUNCTION
1	1	—	_	IN+	Noninverting Amplifier Input
_	_	3	3	INA+	Noninverting Amplifier Input A
_		5	5	INB+	Noninverting Amplifier Input B
_	_	_	10	INC+	Noninverting Amplifier Input C
_	_	_	12	IND+	Noninverting Amplifier Input D
2	2	4	11	V _{SS}	Negative Supply. Connect to ground for single- supply operation
3	3	_	_	IN-	Inverting Amplifier Input
_	_	2	2	INA-	Inverting Amplifier Input A
_	_	6	6	INB-	Inverting Amplifier Input B
_	_	_	9	INC-	Inverting Amplifier Input C
_		—	13	IND-	Inverting Amplifier Input D
4	4	—		OUT	Amplifier Output
_		1	1	OUTA	Amplifier Output A
_	_	7	7	OUTB	Amplifier Output B
_	_	—	8	OUTC	Amplifier Output C
_		—	14	OUTD	Amplifier Output D
5	6	8	4	V _{DD}	Positive Supply
_	5	_		SHDN	Active-Low Shutdown Input. Connect to V_{DD} for normal operation. Do not leave unconnected.

Detailed Description

Rail-to-Rail Output Stage

The MAX4400–MAX4403 can drive a $2k\Omega$ load and still typically swing within 55mV of the supply rails. Figure 1 shows the output voltage swing of the MAX4400 configured with $A_V = +10V/V$.

Driving Capacitive Loads

Driving a capacitive load can cause instability in many op amps, especially those with low quiescent current. The MAX4400–MAX4403 are unity-gain stable for a range of capacitive loads to above 400pF. Figure 2 shows the response of the MAX4400 with an excessive capacitive load. Adding a series resistor between the output and the load capacitor (Figure 3) improves the circuit's response by isolating the load capacitance from the op amp's output.



Figure 1. Rail-to-Rail Output Operation

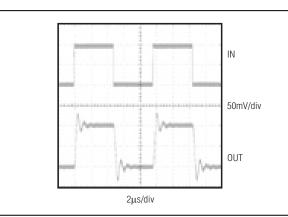


Figure 2. Small-Signal Transient Response with Excessive Capacitive Load

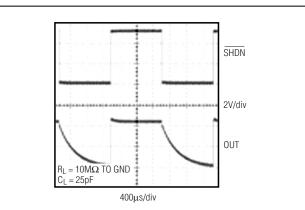


Figure 4. Shutdown Waveform

Applications Information

Shutdown Mode

The MAX4401 features a low-power shutdown mode. When SHDN goes low, the supply current drops to 20pA (typ) and the output enters a high-impedance state. Pull SHDN high to enable the amplifier. Do not leave SHDN unconnected. Figure 4 shows the shutdown waveform.

Power-Up

The MAX4400–MAX4403 outputs typically settle within 5µs after power-up. Figure 5 shows the output voltage on power-up and power-down.

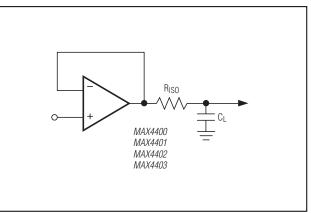
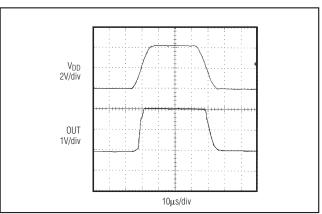
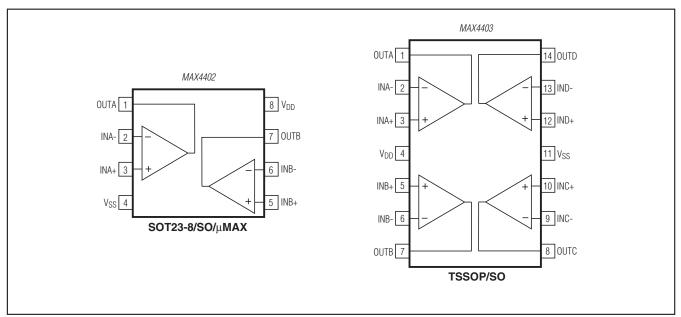


Figure 3. Capacitive-Load-Driving Circuit




Figure 5. Power-Up/Power-Down Waveform

Power Supplies and Layout

The MAX4400–MAX4403 operate from a single +2.5V to +5.5V power supply. Bypass the power supply with a 0.1μ F capacitor to ground.

Good layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	X5+1	<u>21-0076</u>	<u>90-0188</u>
5 SOT23	U5+1	<u>21-0057</u>	<u>90-0174</u>
6 SC70	X6SN+1	<u>21-0077</u>	<u>90-0189</u>
8 SOT23	K8+5	<u>21-0078</u>	<u>90-0176</u>
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>
8 SO	S8+2	<u>21-0041</u>	<u>90-0096</u>
14 TSSOP	U14+1	<u>21-0066</u>	<u>90-0113</u>
14 SO	S14+1	<u>21-0041</u>	<u>90-0112</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/00	Initial Release	—
1	11/00	Release of MAX4402.	1, 2, 9
2	7/00	Release of MAX4403.	1, 6, 7
3	9/01	Added µMAX package to data sheet.	1, 2, 9
4	7/12	Added automotive package for MAX4402 to data sheet.	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

_____Maxim Integrated Products, Inc. 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2012 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

10