CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate • Quad 2-Input NAND Buffered B Series Gate

General Description

The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs are protected against static discharge with diodes to $V_{\mbox{DD}}$ and $V_{\mbox{SS}}.$

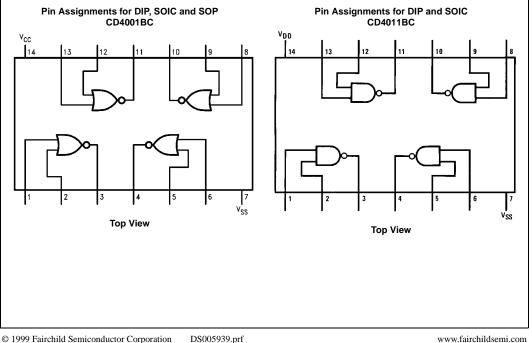
Ordering Code:

Order Number	Package Number	Package Description				
CD4001BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow				
CD4001BCSJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
CD4001BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
CD4011BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow				
CD4011BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Features

Low power TTL:

temperature range

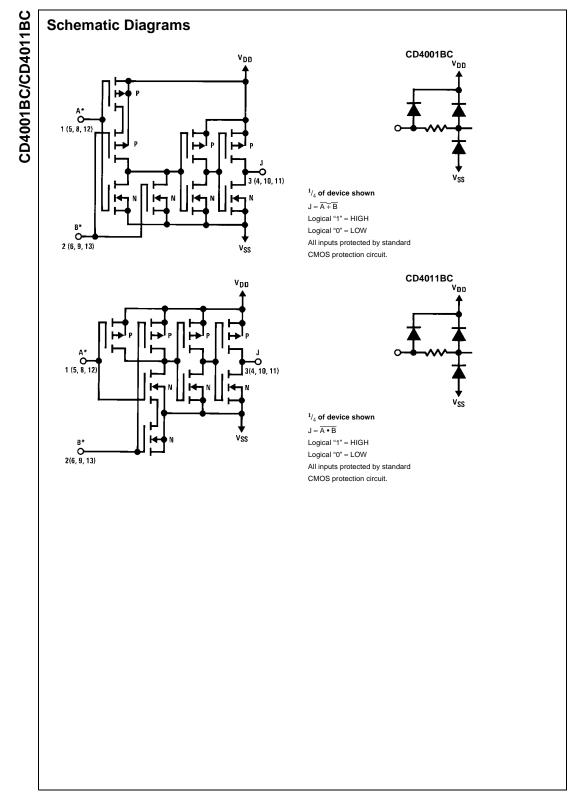

■ 5V-10V-15V parametric ratings

Symmetrical output characteristics

■ Maximum input leakage 1 µA at 15V over full

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams



October 1987 Revised January 1999

Fan out of 2 driving 74L compatibility: or 1 driving 74LS

SEMICONDUCTOR

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operating Conditions

Voltage at any Pin	-0.5V to V _{DD} +0.5V
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
V _{DD} Range	–0.5 V_{DC} to +18 V_{DC}
Storage Temperature (T _S)	-65°C to +150°C
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

 Operating Range (V_{DD})
 3 V_{DC} to 15 V_{DC}

 Operating Temperature Range
 CD4001BC, CD4011BC

 CD4001BC, CD4011BC
 -40°C to +85°C

 Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera

safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation. **Note 2:** All voltages measured with respect to V_{SS} unless otherwise speci-

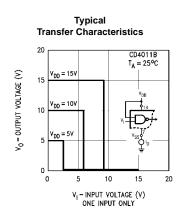
Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

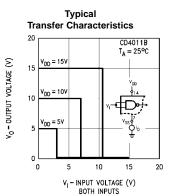
DC Electrical Characteristics (Note 2)

Sumbel	Parameter	Conditions	−40°C			+25°C			+85°C	
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		1		0.004	1		7.5	μA
	Current	V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		2		0.005	2		15	μA
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		4		0.006	4		30	μΑ
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$ $ I_O < 1 \ \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V \qquad I_O < 1 \ \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
VIL	LOW Level	$V_{DD} = 5V, V_{O} = 4.5V$		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{O} = 9.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$		4.0		6	4.0		4.0	V
VIH	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V$	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V$	11.0		11.0	9		11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10 ⁻⁵	-0.30		-1.0	μA
		V _{DD} = 15V, V _{IN} = 15V		0.30		10 ⁻⁵	0.30		1.0	μA

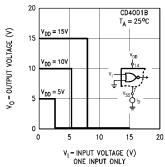
Note 3: I_{OL} and I_{OH} are tested one output at a time.

AC Electrical Characteristics (Note 4)

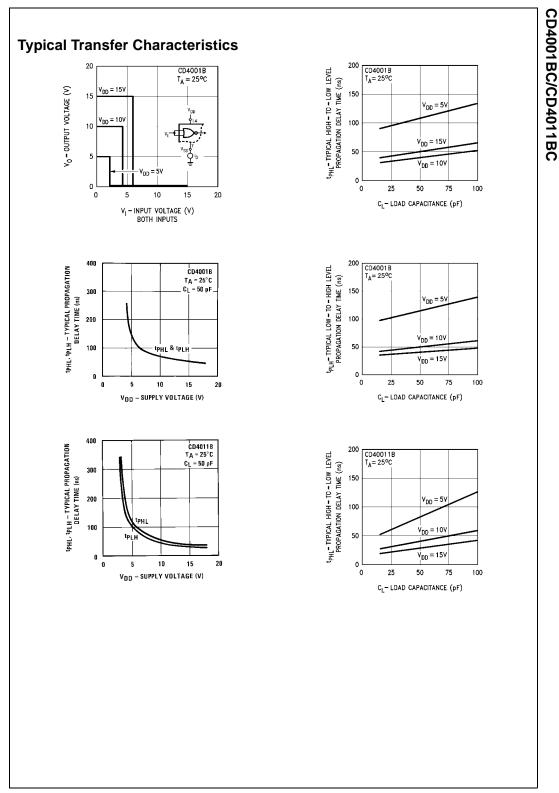

Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	ns
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	ns
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	110	250	ns
	LOW-to-HIGH Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	ns
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
CPD	Power Dissipation Capacity	Any Gate	14		pF


AC Electrical Characteristics (Note 5)

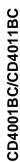
	CD4011BC: $T_A = 25^{\circ}C$, Input t_r ; $t_f = 20$ ns. $C_L = 50$ pF, $R_L = 200k$. Typical Temperature Coefficient is 0.3%/°C.						
Symbol	Parameter	Conditions	Тур	Max	Units		
t _{PHL}	Propagation Delay,	$V_{DD} = 5V$	120	250	ns		
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns		
		$V_{DD} = 15V$	35	70	ns		
t _{PLH}	Propagation Delay,	$V_{DD} = 5V$	85	250	ns		
	LOW-to-HIGH Level	$V_{DD} = 10V$	40	100	ns		
		$V_{DD} = 15V$	30	70	ns		
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns		
		$V_{DD} = 10V$	50	100	ns		
		$V_{DD} = 15V$	40	80	ns		
CIN	Average Input Capacitance	Any Input	5	7.5	pF		
C _{PD}	Power Dissipation Capacity	Any Gate	14		pF		

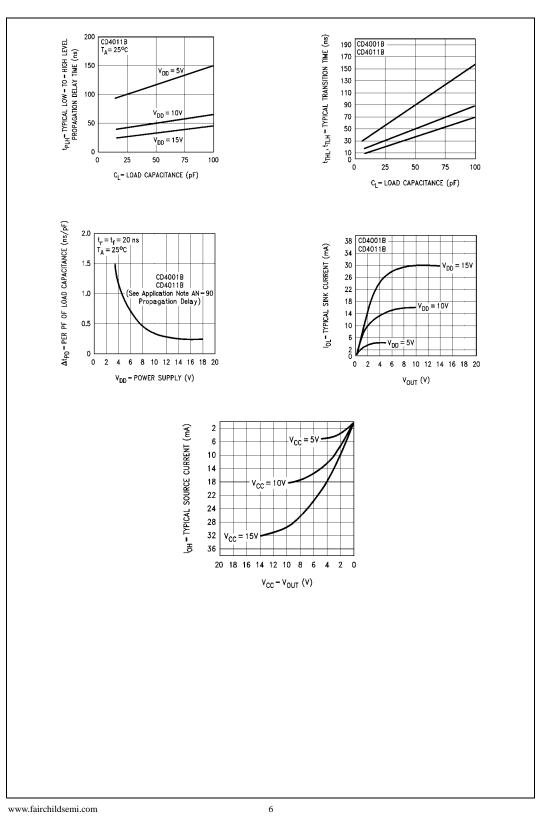

Note 5: AC Parameters are guaranteed by DC correlated testing.

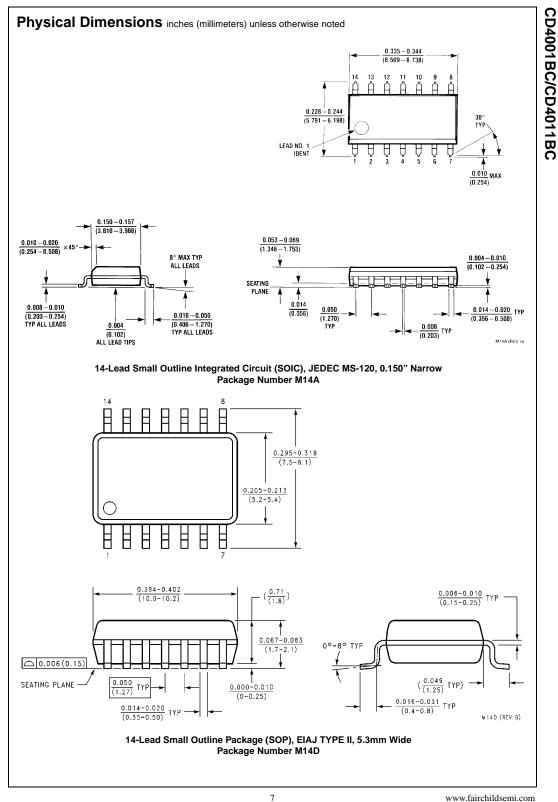
Typical Performance Characteristics



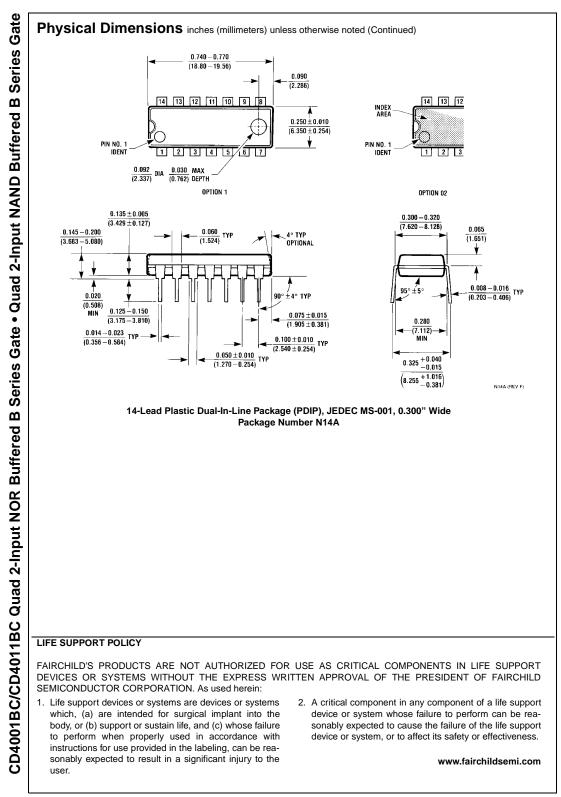
Typical Transfer Characteristics


www.fairchildsemi.com


4



www.fairchildsemi.com


5

www.raircniidsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.