$\pm 16.5 k V$ ESD, Large Output Swing, 5V, Full Fail-Safe, 1/ 8 Unit Load, RS-485/ RS-422 Transceivers

I SL3150E, I SL3152E, I SL3153E, I SL3155E, I SL3156E, I SL3158E

The ISL315xE are IEC61000 ESD protected, 5V powered transceivers that meet the RS-485 and RS-422 standards for balanced communication. Driver outputs and receiver inputs are protected against $\pm 16.5 \mathrm{kV}$ ESD strikes without latch-up.
Transmitters in this family deliver exceptional differential output voltages (2.4 V min), into the RS-485 required 54Ω load, for better noise immunity, or to allow up to eight 120Ω terminations in "star" topologies.
These devices have very low bus currents so they present a true " $1 / 8$ unit load" to the RS-485 bus. This allows up to 256 transceivers on the network without using repeaters.
Receiver ($R x$) inputs feature a "Full Fail-Safe" design, which ensures a logic high Rx output if Rx inputs are floating, shorted, or on a terminated but undriven bus. Rx outputs feature high drive levels - typically 28 mA @ $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$ (to ease the design of optocoupled isolated interfaces).
Half duplex ($R x$ inputs and Tx outputs multiplexed together) and full duplex pinouts are available. See Table 1 on page 2 for key features and configurations by device number.

Features

- High Driver V_{OD}. 2.4 V (Min) @ $\mathrm{R}_{\mathrm{D}}=54 \Omega$ Better Noise Immunity, or Drive Up to 8 Terminations
- $\pm 16.5 \mathrm{kV}$ IEC61000 ESD Protection on I/O Bus Pins
- High Transient Overvoltage Tolerance . . . $\pm 100 \mathrm{~V}$
- Full Fail-safe (Open, Short, Terminated) Receivers
- High Rx I Ol for Opto-Couplers in Isolated Designs
- Hot Plug Circuitry - Tx and Rx Outputs Remain Three-State During Power-up/Power-down
- True 1/8 Unit Load for up to 256 Devices on the Bus
- High Data Rates \qquad up to 20Mbps
- Low Quiescent Supply Current

600 \quad A Ultra Low Shutdown Supply Current 70nA

Applications* (see page 17)

- Utility Meters/Automated Meter Reading Systems
- High Node Count Systems
- PROFIBUS ${ }^{\circledR}$ and Field Bus Networks, and Factory Automation
- Security Camera Networks
- Building Lighting and Environmental Control Systems
- Industrial/Process Control Networks

Exceptional Tx Drives Up To 8 Terminations While Still Delivering 1.5V VOD

Large $\mathrm{V}_{\text {OD }}$ Delivers Superior Signal At Cable End For Enhanced Noise I mmunity

TABLE 1. SUMMARY OF FEATURES

PART NUMBER	HALF/ FULL DUPLEX	DATA RATE (Mbps)	SLEW- RATE LIMITED?	HOT PLUG	\# DEVICES ON BUS	Rx/ Tx ENABLE?	QUI ESCENT ICC ($\boldsymbol{\mu A})$	LOW POWER SHUTDOWN?	PIN COUNT
ISL3150E	Full	0.115	Yes	Yes	256	Yes	600	Yes	10,14
ISL3152E	Half	0.115	Yes	Yes	256	Yes	600	Yes	8
ISL3153E	Full	1	Yes	Yes	256	Yes	600	Yes	10,14
ISL3155E	Half	1	Yes	Yes	256	Yes	600	Yes	8
ISL3156E	Full	20	No	Yes	256	Yes	600	Yes	10,14
ISL3158E	Half	20	No	Yes	256	Yes	600	Yes	8

Ordering I nformation

PART NUMBER	PART MARKI NG	$\begin{aligned} & \text { TEMP. RANGE } \\ & \left({ }^{\circ} \mathbf{C}\right) \end{aligned}$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL3150EIBZ (Notes 1, 3)	3150EIBZ	-40 to +85	14 Ld SOIC	M14.15
ISL3150EIUZ (Notes 1, 3)	3150Z	-40 to +85	10 Ld MSOP	M10.118
ISL3152EIBZ (Notes 1, 3)	3152EIBZ	-40 to +85	8 Ld SOIC	M8.15
ISL3152EIPZ (Notes 2, 3)	ISL3152 EIPZ	-40 to +85	8 Ld PDIP	E8.3
ISL3152EIUZ (Notes 1, 3)	$3152 Z$	-40 to +85	8 Ld MSOP	M8.118
ISL3153EIBZ (Notes 1, 3)	3153EIBZ	-40 to +85	14 Ld SOIC	M14.15
ISL3153EIUZ (Notes 1, 3)	$3153 Z$	-40 to +85	10 Ld MSOP	M10.118
ISL3155EIBZ (Notes 1, 3)	3155EIBZ	-40 to +85	8 Ld SOIC	M8.15
ISL3155EIUZ (Notes 1, 3)	$3155 Z$	-40 to +85	8 Ld MSOP	M8.118
ISL3156EIBZ (Notes 1, 3)	3156EIBZ	-40 to +85	14 Ld SOIC	M14.15
ISL3156EIUZ (Notes 1, 3)	$3156 Z$	-40 to +85	10 Ld MSOP	M10.118
ISL3158EIBZ (Notes 1, 3)	3158EIBZ	-40 to +85	8 Ld SOIC	M8.15
ISL3158EIUZ (Notes 1, 3)	31582	-40 to +85	8 Ld MSOP	M8.118

1. Add "-T" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. Pb-free PDIPs can be used for through-hole wave solder processing only. They are not intended for use in Reflow solder processing applications.
3. These Intersil Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
4. For Moisture Sensitivity Level (MSL), please see device information pages for ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E and ISL3158E. For more information on MSL please see techbrief TB363.

Pin Configurations

I SL3152E, I SL3155E, I SL3158E (8 LD MSOP, 8 LD SOIC, 8 LD PDIP) TOP VIEW

I SL3150E, I SL3153E, I SL3156E
(10 LD MSOP) TOP VIEW

I SL3150E, I SL3153E, I SL3156E (14 LD SOIC) TOP VIEW

Pin Descriptions

PIN	FUNCTI ON
RO	Receiver output: If $A-B \geq-50 \mathrm{mV}$, RO is high; If $A-B \leq-200 \mathrm{mV}$, RO is low; RO $=$ High if A and B are unconnected (floating) or shorted.
$\overline{\mathrm{RE}}$	Receiver output enable. RO is enabled when $\overline{\mathrm{RE}}$ is low; RO is high impedance when $\overline{\mathrm{RE}}$ is high.
DE	Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when $D E$ is low.
DI	Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
GND	Ground connection.
A/Y	$\pm 16.5 \mathrm{kV}$ IEC61000 ESD Protected RS-485/RS-422 level, non-inverting receiver input and non inverting driver output. Pin is an input if $D E=0$; pin is an output if $D E=1$.
B/Z	$\pm 16.5 \mathrm{kV}$ IEC61000 ESD Protected RS-485/RS-422 level, inverting receiver input and inverting driver output. Pin is an input if $D E=0$; pin is an output if $D E=1$.
A	$\pm 16.5 \mathrm{kV}$ IEC61000 ESD Protected RS-485/RS-422 level, non-inverting receiver input.
B	$\pm 16.5 \mathrm{kV}$ IEC61000 ESD Protected RS-485/RS-422 level, inverting receiver input.
Y	$\pm 16.5 \mathrm{kV}$ IEC61000 ESD Protected RS-485/RS-422 level, non-inverting driver output.
Z	$\pm 16.5 \mathrm{kV}$ IEC61000 ESD Protected RS-485/RS-422 level, inverting driver output.
V_{CC}	System power supply input (4.5V to 5.5 V).
NC	No Connection.

Truth Tables

TRANSMI TTI NG				
I NPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	Z	Y
X	1	1	0	1
X	1	0	1	0
0	0	X	High- Z	High- Z
1	0	X	High- Z^{*}	High- Z^{*}

NOTE: *Shutdown Mode (See Note 11).

RECEI VI NG				
I NPUTS				
$\overline{\mathrm{RE}}$	DE Half Duplex	DE Full Duplex	$\mathrm{A}-\mathrm{B}$	RO
0	0	X	$\geq-0.05 \mathrm{~V}$	1
0	0	X	$\leq-0.2 \mathrm{~V}$	0
0	0	X	Inputs Open/Shorted	1
1	0	0	X	High-Z*
1	1	1	X	High-Z

NOTE: *Shutdown Mode (See Note 11).

Typical Operating Circuit

ISL3152E, I SL3155E, I SL3158E

Absolute Maximum Ratings

VCC to Ground . 7V
Input Voltages

Input/Output Voltages
A/Y, B/Z, A, B, Y, Z - 9 V to +13 V
A/Y, B/Z, A, B, Y, Z (Transient Pulse Through 100Ω,
Note 16) . $\pm 100 \mathrm{~V}$
RO. - 0.3 V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
Short Circuit Duration
Y, Z . \qquad Continuous
ESD Rating See Specification Table

Recommended Operating Conditions

Supply Voltage. 5V
Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Bus Pin Common Mode Voltage Range -7V to +12 V

Thermal Information

Thermal Resistance (Typical, Note 5) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ 8 Ld SOIC 105
8 Ld MSOP, PDIP* 140
10 Ld MSOP 130
14 Ld SOIC 130
Maximum Junction Temperature (Plastic Package) . $+150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Pb-Free Reflow Profile. .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp
*Pb-free PDIPs can be used for through-hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTE:
5. $\theta_{J A}$ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 6). Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MI N (Note 14)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 14) } \end{gathered}$	UNITS
DC CHARACTERISTICS								
Driver Differential $\mathrm{V}_{\text {OUT }}$ (No load)	$\mathrm{V}_{\text {OD1 }}$			Full	-	-	$\mathbf{V}_{\text {cc }}$	V
Driver Differential $\mathrm{V}_{\text {OUT }}$ (Loaded)	$\mathrm{V}_{\mathrm{OD} 2}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (RS-422) (Figure 1A)		Full	2.8	3.6	-	V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$ (RS-485) (Figure 1A)		Full	2.4	3.1	$\mathbf{V}_{\text {cc }}$	V
		$R_{L}=15 \Omega$ (Eight 120Ω terminations) (Note 15)		25	-	1.65	-	V
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=60 \Omega,-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V} \\ & \text { (Figure } 1 \mathrm{~B} \text {) } \end{aligned}$		Full	2.4	3	-	V
Change in Magnitude of Driver Differential $\mathrm{V}_{\text {OUT }}$ for Complementary Output States	V_{OD}	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω (Figure 1 A)		Full	-	0.01	0.2	V
Driver Common-Mode $\mathrm{V}_{\text {OUT }}$	V_{OC}	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω (Figure 1 A)		Full	-	-	3.15	V
Change in Magnitude of Driver Common-Mode $\mathrm{V}_{\text {OUT }}$ for Complementary Output States	$\Delta^{\text {OC }}$	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω (Figure 1A)		Full	-	0.01	0.2	V
Logic Input High Voltage	$\mathrm{V}_{\text {IH }}$	DE, DI, $\overline{\mathrm{RE}}$		Full	2	-	-	V
Logic Input Low Voltage	$V_{\text {IL }}$	DE, DI, $\overline{\mathrm{RE}}$		Full	-	-	0.8	V
DI Input Hysteresis Voltage	$\mathrm{V}_{\mathrm{HYS}}$			25	-	100	-	mV
Logic Input Current	IIN1	DE, DI, $\overline{\mathrm{RE}}$		Full	-2	-	2	$\mu \mathrm{A}$
Input Current ($\mathrm{A}, \mathrm{B}, \mathrm{A} / \mathrm{Y}$, B/Z)	$\mathrm{I}_{\text {IN } 2}$	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } \\ & 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}}=12 \mathrm{~V}$	Full	-	70	125	$\mu \mathrm{A}$
			$V_{\text {IN }}=-7 \mathrm{~V}$	Full	-75	55	-	$\mu \mathrm{A}$

ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 6). Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	MI N (Note 14)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 14) } \end{gathered}$	UNITS
Output Leakage Current (Y, Z) (Full Duplex Versions Only)	IIN3	$\begin{aligned} & \overline{\mathrm{RE}}=0 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$	Full	-	1	40	$\mu \mathrm{A}$
			$V_{\text {IN }}=-7 \mathrm{~V}$	Full	-40	-9	-	$\mu \mathrm{A}$
Output Leakage Current (Y, Z) in Shutdown Mode (Full Duplex)	IIN4	$\begin{aligned} & \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DE}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}}=12 \mathrm{~V}$	Full	-	1	20	$\mu \mathrm{A}$
			$V_{\text {IN }}=-7 \mathrm{~V}$	Full	-20	-9	-	$\mu \mathrm{A}$
Driver Short-Circuit Current, $\mathrm{V}_{\mathrm{O}}=$ High or Low	IOSD1	$\mathrm{DE}=\mathrm{V}_{\mathrm{CC}},-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Y}}$ or $\mathrm{V}_{\mathrm{Z}} \leq 12 \mathrm{~V}$ (Note 8)		Full	-	-	± 250	mA
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		Full	-200	-90	-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		25	-	20	-	mV
Receiver Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=-50 \mathrm{mV}$		Full	$\mathrm{V}_{\text {CC }}-1.2$	4.3	-	V
Receiver Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		Full	-	0.25	0.4	V
Receiver Output Low Current	I_{OL}	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		Full	20	28	-	mA
Three-State (High Impedance) Receiver Output Current	I OZR	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V}$		Full	-1	0.03	1	$\mu \mathrm{A}$
Receiver Input Resistance	$\mathrm{R}_{\text {IN }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		Full	96	160	-	$\mathrm{k} \Omega$
Receiver Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		Full	± 7	65	± 85	mA
SUPPLY CURRENT								
No-Load Supply Current (Note 7)	${ }^{\text {ICC }}$	$\begin{aligned} & \text { Half Duplex Versions, } \mathrm{DE}=\mathrm{V}_{\mathrm{CC}} \text {, } \\ & \frac{\mathrm{RE}}{\mathrm{RE}} \mathrm{X}, \mathrm{DI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		Full	-	650	800	$\mu \mathrm{A}$
		All Versions, $D E=0 V, \overline{\mathrm{RE}}=0 \mathrm{~V}$, or Full Duplex Versions, $\mathrm{DE}=\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{RE}}=\mathrm{X}$. $\mathrm{DI}=0 \mathrm{~V}$ or V_{CC}		Full	-	550	700	$\mu \mathrm{A}$
Shutdown Supply Current	ISHDN	$\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DI}=0 \mathrm{~V}$ or V_{CC}		Full	-	0.07	3	$\mu \mathrm{A}$
ESD PERFORMANCE								
$\begin{aligned} & \text { RS-485 Pins (A, Y, B, Z, A/Y, } \\ & B / Z \text {) } \end{aligned}$		IEC61000-4-2, Air-Gap Discharge Method	1/2 Duplex	25	-	± 16.5	-	kV
			Full Duplex	25	-	± 10	-	kV
		IEC61000-4-2, Contact Discharge Method		25	-	± 9	-	kV
		Human Body Model, From Bus Pins to GND		25	-	± 16.5	-	kV
All Pins		Human Body Model, per MIL-STD-883 Method 3015		25	-	± 7	-	kV
		Machine Model		25	-	400	-	V

ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 6). Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	SYMBOL	TEST CONDITI ONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MI N (Note 14)	TYP	MAX (Note 14)	UNITS
DRIVER SWI TCHI NG CHARACTERISTI CS (115kbps Versions; ISL3150E, ISL3152E)							
Driver Differential Output Delay	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$ (Figure 2)	Full	500	970	1300	ns
Driver Differential Output Skew	${ }^{\text {t SKEW }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$ (Figure 2)	Full	-	12	50	ns
Driver Differential Rise or Fall Time	t_{R}, t_{F}	$\mathrm{R}_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$ (Figure 2)	Full	700	1100	1600	ns
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$	$C_{D}=820 \mathrm{pF}$ (Figure 4) (Note 17)	Full	115	2000	-	kbps
Driver Enable to Output High	${ }^{\text {tzH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, C_{L}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3), (Note 9) } \end{aligned}$	Full	-	300	600	ns
Driver Enable to Output Low	t_{ZL}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, C_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3), (Note 9) } \end{aligned}$	Full	-	130	500	ns
Driver Disable from Output Low	$t_{L Z}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3) } \end{aligned}$	Full	-	50	65	ns
Driver Disable from Output High	t_{HZ}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3) } \end{aligned}$	Full	-	35	60	ns
Time to Shutdown	tshDN	(Note 11)	Full	60	160	600	ns
Driver Enable from Shutdown to Output High	$\mathrm{t}_{\text {ZH (SHDN }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3), (Notes 11, 12) } \end{aligned}$	Full	-	-	250	ns
Driver Enable from Shutdown to Output Low	$\mathrm{t}_{\mathrm{ZL}(\mathrm{SHDN})}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & (\text { Figure 3), (Notes 11, 12) } \end{aligned}$	Full	-	-	250	ns
DRI VER SWI TCHI NG CHARACTERISTI CS (1Mbps Versions; ISL3153E, ISL3155E)							
Driver Differential Output Delay	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$ (Figure 2)	Full	150	270	400	ns
Driver Differential Output Skew	${ }^{\text {t SKEW }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	-	3	10	ns
Driver Differential Rise or Fall Time	t_{R}, t_{F}	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	150	325	450	ns
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$	$C_{D}=820 \mathrm{pF}$ (Figure 4) (Note 17)	Full	1	8	-	Mbps
Driver Enable to Output High	${ }^{\text {t }}$ H	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, C_{L}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3), (Note 9) } \end{aligned}$	Full	-	110	200	ns
Driver Enable to Output Low	t_{ZL}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, C_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3), (Note 9) } \end{aligned}$	Full	-	60	200	ns
Driver Disable from Output Low	$t_{L Z}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3) } \end{aligned}$	Full	-	50	65	ns
Driver Disable from Output High	t_{Hz}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3) } \end{aligned}$	Full	-	35	60	ns
Time to Shutdown	tshDN	(Note 11)	Full	60	160	600	ns
Driver Enable from Shutdown to Output High	$\mathrm{t}_{\mathrm{ZH} \text { (SHDN) }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3), (Notes 11, 12) } \end{aligned}$	Full	-	-	250	ns
Driver Enable from Shutdown to Output Low	tzL(SHDN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, C_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3), (Notes 11, 12) } \end{aligned}$	Full	-	-	250	ns

ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 6). Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	$\begin{aligned} & \hline \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MIN (Note 14)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 14) } \end{gathered}$	UNITS
DRIVER SWITCHI NG CHARACTERISTICS (20Mbps Versions; ISL3156E, ISL3158E)							
Driver Differential Output Delay	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$ (Figure 2)	Full	-	21	30	ns
Driver Differential Output Skew	${ }^{\text {tSKEW }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	-	0.2	3	ns
Driver Differential Rise or Fall Time	t_{R}, t_{F}	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 2)	Full	-	12	16	ns
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$	$C_{D}=470 \mathrm{pF}$ (Figure 4) (Note 17)	Full	20	55	-	Mbps
Driver Enable to Output High	t_{ZH}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3), (Note 9) } \end{aligned}$	Full	-	30	45	ns
Driver Enable to Output Low	t_{ZL}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3), (Note 9) } \end{aligned}$	Full	-	28	45	ns
Driver Disable from Output Low	$\mathrm{t}_{\text {LZ }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3) } \end{aligned}$	Full	-	50	65	ns
Driver Disable from Output High	t_{HZ}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 3) } \end{aligned}$	Full	-	38	60	ns
Time to Shutdown	tsHDN	(Note 11)	Full	60	160	600	ns
Driver Enable from Shutdown to Output High	$\mathrm{t}_{\text {ZH }}$ (SHDN)	$\begin{aligned} & R_{L}=500 \Omega, C_{L}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & (\text { Figure 3), (} \text { Notes 11, 12) } \end{aligned}$	Full	-	-	200	ns
Driver Enable from Shutdown to Output Low	$\mathrm{t}_{\text {ZLI (SHDN })}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3), (Notes 11, 12) } \end{aligned}$	Full	-	-	200	ns
RECEI VER SWI TCHI NG CHARACTERISTI CS (115kbps and 1Mbps Versions; ISL3150E through ISL3155E)							
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$	(Figure 5) (Note 17)	Full	1	12	-	Mbps
Receiver Input to Output Delay	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	(Figure 5)	Full	-	100	150	ns
Receiver Skew \| tpLH - tpHL	${ }_{\text {tSKD }}$	(Figure 5)	Full	-	4	10	ns
Receiver Enable to Output Low	t_{ZL}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 6), (Note 10) } \end{aligned}$	Full	-	9	20	ns
Receiver Enable to Output High	${ }^{\text {tzH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 6), }(\text { Note } 10) \end{aligned}$	Full	-	7	20	ns
Receiver Disable from Output Low	${ }^{\text {L }}$ LZ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 6) } \end{aligned}$	Full	-	8	15	ns
Receiver Disable from Output High	t_{Hz}	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 6) } \end{aligned}$	Full	-	8	15	ns
Time to Shutdown	${ }_{\text {t }}^{\text {SHDN }}$	(Note 11)	Full	60	160	600	ns
Receiver Enable from Shutdown to Output High	$\mathrm{t}_{\text {ZH }}$ (SHDN $)$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 6), (Notes } 11,13 \text {) } \end{aligned}$	Full	-	-	200	ns
Receiver Enable from Shutdown to Output Low	${ }^{\text {t }}$ LL(SHDN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 6), (Notes } 11,13 \text {) } \end{aligned}$	Full	-	-	200	ns

RECEI VER SWITCHI NG CHARACTERISTI CS (20Mbps Versions; ISL3156E, ISL3158E)

Maximum Data Rate	$\mathrm{f}_{\mathrm{MAX}}$	(Figure 5) (Note 17)	Full	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{-}$	Mbps
Receiver Input to Output Delay	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	(Figure 5)	Full	-	33	$\mathbf{4 5}$	ns

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified. Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 6). Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	SYMBOL	TEST CONDITI ONS	$\begin{array}{\|l\|} \hline \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array}$	MI N (Note 14)	TYP	MAX (Note 14)	UNITS
Receiver Skew \| tpLH - tpHL	$\mathrm{t}_{\text {SKD }}$	(Figure 5)	Full	-	2.5	5	ns
Receiver Enable to Output Low	t_{ZL}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 6), (Note 10) } \end{aligned}$	Full	-	8	15	ns
Receiver Enable to Output High	${ }^{\text {t }}$ \%	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 6), (Note 10) } \end{aligned}$	Full	-	7	15	ns
Receiver Disable from Output Low	$t_{\text {LZ }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 6) } \end{aligned}$	Full	-	8	15	ns
Receiver Disable from Output High	t_{Hz}	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 6) } \end{aligned}$	Full	-	8	15	ns
Time to Shutdown	tsHDN	(Note 11)	Full	60	160	600	ns
Receiver Enable from Shutdown to Output High	$\mathrm{t}_{\text {ZH }}$ (SHDN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \\ & \text { (Figure 6), (Notes } 11,13 \text {) } \end{aligned}$	Full	-	-	200	ns
Receiver Enable from Shutdown to Output Low	$\mathrm{t}_{\mathrm{ZL} \text { (SHDN) }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 6), (Notes } 11,13 \text {) } \end{aligned}$	Full	-	-	200	ns

NOTES:
6. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
7. Supply current specification is valid for loaded drivers when $D E=0 \mathrm{~V}$.
8. Applies to peak current. See "Typical Performance Curves" beginning on page 14 for more information.
9. Keep $\overline{\mathrm{RE}}=0$ to prevent the device from entering SHDN.
10. The $\overline{R E}$ signal high time must be short enough (typically $<100 \mathrm{~ns}$) to prevent the device from entering SHDN.
11. Transceivers are put into shutdown by bringing $\overline{\mathrm{RE}}$ high and DE low. If the inputs are in this state for less than 60 ns , the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600 ns , the parts are guaranteed to have entered shutdown. See "Low Power Shutdown Mode" on page 13.
12. Keep $\overline{R E}=$ VCC, and set the DE signal low time >600 ns to ensure that the device enters SHDN.
13. Set the $\overline{\mathrm{RE}}$ signal high time $>600 \mathrm{~ns}$ to ensure that the device enters SHDN.
14. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
15. See Figure 8 for more information, and for performance over-temperature.
16. Tested according to TIA/EIA-485-A, Section 4.2 .6 ($\pm 100 \mathrm{~V}$ for $15 \mu \mathrm{~s}$ at a 1% duty cycle).
17. Limits established by characterization and are not production tested.

Test Circuits and Waveforms

FIGURE 1A. $V_{\text {OD }}$ AND $V_{O C}$

FIGURE 1B. Vod WITH COMMON MODE LOAD

FI GURE 1. DC DRIVER TEST CI RCUITS

Test Circuits and Waveforms (Continued)

FIGURE 2A. TEST CIRCUIT
FIGURE 2. DRIVER PROPAGATION DELAY AND DI FFERENTI AL TRANSITION TIMES

FIGURE 3A. TEST CIRCUIT

FIGURE 3. DRIVER ENABLE AND DISABLE TIMES

FI GURE 4. DRIVER DATA RATE

Test Circuits and Waveforms (Continued)

FI GURE 5A. TEST CI RCUI T

FI GURE 5B. MEASUREMENT POI NTS

FI GURE 5. RECEI VER PROPAGATI ON DELAY AND DATA RATE

PARAMETER	DE	A	SW
t_{HZ}	0	+1.5 V	GND
t_{LZ}	0	-1.5 V	$\mathrm{~V}_{\mathrm{CC}}$
t_{ZH} (Note 10)	0	+1.5 V	GND
t_{ZL} (Note 10)	0	-1.5 V	$\mathrm{~V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{ZH} \text { (SHDN) }}$ (Note 13)	0	+1.5 V	GND
$\mathrm{t}_{\mathrm{ZL} \text { (SHDN) }}$ (Note 13)	0	-1.5 V	$\mathrm{~V}_{\mathrm{CC}}$

FIGURE 6A. TEST CIRCUIT

FI GURE 6B. MEASUREMENT POI NTS

FIGURE 6. RECEI VER ENABLE AND DI SABLE TIMES

Application I nformation

RS-485 and RS-422 are differential (balanced) data transmission standards used for long haul or noisy environments. RS-422 is a subset of RS-485, so RS-485 transceivers are also RS-422 compliant. RS-422 is a point-to-multipoint (multidrop) standard, which allows only one driver and up to 10 (assuming one unit load devices) receivers on each bus. RS-485 is a true multipoint standard, which allows up to 32 one unit load devices (any combination of drivers and receivers) on each bus. To allow for multipoint operation, the RS-485 specification requires that drivers must handle bus contention without sustaining any damage.
Another important advantage of RS-485 is the extended common mode range (CMR), which specifies that the driver outputs and receiver inputs withstand signals that range from +12 V to -7 V . RS-422 and RS-485 are intended for runs as long as 4000', so the wide CMR is necessary to handle ground potential differences, as well as voltages induced in the cable by external fields.

Receiver (Rx) Features

These devices utilize a differential input receiver for maximum noise immunity and common mode rejection. Input sensitivity is better than $\pm 200 \mathrm{mV}$, as required by the RS-422 and RS-485 specifications.

Rx outputs feature high drive levels (typically 28mA @ $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$) to ease the design of optically coupled isolated interfaces.

Receiver input resistance of $96 \mathrm{k} \Omega$ surpasses the RS-422 specification of $4 \mathrm{k} \Omega$, and is eight times the RS-485 "Unit Load (UL)" requirement of $12 \mathrm{k} \Omega$ minimum. Thus, these products are known as "one-eighth UL" transceivers, and there can be up to 256 of these devices on a network while still complying with the RS-485 loading specification.
Rx inputs function with common mode voltages as great as $\pm 7 \mathrm{~V}$ outside the power supplies (i.e., +12 V and -7 V), making them ideal for long networks where induced voltages are a realistic concern.
All the receivers include a "full fail-safe" function that guarantees a high level receiver output if the receiver inputs are unconnected (floating), shorted together, or connected to a terminated bus with all the transmitters disabled.
Receivers easily meet the data rates supported by the corresponding driver, and all receiver outputs are three-statable via the active low $\overline{R E}$ input.

Driver (Tx) Features

The RS-485/RS-422 driver is a differential output device that delivers at least 2.4 V across a 54Ω load (RS-485), and at least 2.8 V across a 100Ω load (RS-422). The drivers feature low propagation delay skew to maximize bit width, and to minimize EMI, and all drivers are three-statable via the active high DE input.

The 115 kbps and 1 Mbps driver outputs are slew rate limited to minimize EMI, and to minimize reflections in unterminated or improperly terminated networks. Outputs of the ISL3156E and ISL3158E drivers are not limited, so faster output transition times allow data rates of at least 20Mbps.

HIGH VOD IMPROVES NOI SE IMMUNITY AND FLEXIBILITY

The ISL315xE driver design delivers larger differential output voltages (V_{OD}) than the RS-485 standard requires, or than most RS-485 transmitters can deliver. The minimum $\pm 2.4 \mathrm{~V}$ VOD guarantees at least $\pm 900 \mathrm{mV}$ more noise immunity than networks built using standard $1.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OD}}$ transmitters.
Another advantage of the large $\mathrm{V}_{O D}$ is the ability to drive more than two bus terminations, which allows for utilizing the ISL315xE in "star" and other multi-terminated, "nonstandard" network topologies. Figure 8, details the transmitter's V_{OD} vs I IOUT characteristic, and includes load lines for six (20 Ω) and eight (15Ω) 120Ω terminations. The figure shows that the driver typically delivers $1.65 / 1.5 \mathrm{~V}$ into $6 / 8$ terminations, even at the worst case temperature of $+85^{\circ} \mathrm{C}$. The RS- 485 standard requires a minimum 1.5 V $V_{O D}$ into two terminations, but the ISL315xE delivers RS-485 voltage levels with $3 x$ to $4 x$ the number of terminations.

Hot Plug Function

When a piece of equipment powers up, there is a period of time where the processor or ASIC driving the RS-485 control lines ($\mathrm{DE}, \overline{\mathrm{RE}}$) is unable to ensure that the RS-485 Tx and Rx outputs are kept disabled. If the equipment is connected to the bus, a driver activating prematurely during power-up may crash the bus. To avoid this scenario, the ISL315xE devices incorporate a "Hot Plug" function. Circuitry monitoring V_{CC} ensures that, during power-up and power-down, the Tx and Rx outputs remain disabled, regardless of the state of DE and $\overline{\mathrm{RE}}$, if V_{CC} is less than $\sim 3.4 \mathrm{~V}$. This gives the processor/ASIC a chance to stabilize and drive the RS-485 control lines to the proper states.

FIGURE 7. HOT PLUG PERFORMANCE (ISL315xE) vs ISL83088E WITHOUT HOT PLUG CIRCUITRY

ESD Protection

All pins on these devices include class 3 ($>7 \mathrm{kV}$) Human Body Model (HBM) ESD protection structures, but the RS-485 pins (driver outputs and receiver inputs) incorporate advanced structures allowing them to survive ESD events in excess of $\pm 16.5 \mathrm{kV}$ HBM and $\pm 16.5 \mathrm{kV}$ (1/2 duplex) IEC61000-4-2. The RS-485 pins are particularly vulnerable to ESD strikes because they typically connect to an exposed port on the exterior of the finished product. Simply touching the port pins, or connecting a cable, can cause an ESD event that might destroy unprotected ICs. These new ESD structures protect the device whether or not it is powered up, and without degrading the RS-485 common mode range of -7 V to +12 V . This built-in ESD protection eliminates the need for board level protection structures (e.g., transient suppression diodes), and the associated, undesirable capacitive load they present.

I EC61000-4-2 Testing

The IEC61000 test method applies to finished equipment, rather than to an individual IC. Therefore, the pins most likely to suffer an ESD event are those that are exposed to the outside world (the RS-485 pins in this case), and the IC is tested in its typical application configuration (power applied) rather than testing each pin-to- pin combination. The IEC61000 standard's lower current limiting resistor coupled with the larger charge storage capacitor yields a test that is much more severe than the HBM test. The extra ESD protection built into this device's RS-485 pins allows the design of equipment meeting level 4 criteria without the need for additional board level protection on the RS-485 port.

AIR-GAP DI SCHARGE TEST METHOD

For this test method, a charged probe tip moves toward the IC pin until the voltage arcs to it. The current waveform delivered to the IC pin depends on approach speed, humidity, temperature, etc., so it is difficult to obtain repeatable results. The ISL315xE 1/2 duplex RS-485 pins withstand $\pm 16.5 \mathrm{kV}$ air-gap discharges.

CONTACT DISCHARGE TEST METHOD

During the contact discharge test, the probe contacts the tested pin before the probe tip is energized, thereby eliminating the variables associated with the air-gap discharge. The result is a more repeatable and predictable test, but equipment limits prevent testing devices at voltages higher than $\pm 9 \mathrm{kV}$. The RS-485 pins of all the ISL315xE versions survive $\pm 9 \mathrm{kV}$ contact discharges.

Data Rate, Cables, and Terminations

RS-485/RS-422 are intended for network lengths up to 4000', but the maximum system data rate decreases as the transmission length increases. Devices operating at 20 Mbps are limited to lengths less than 100', while the 115 kbps versions can operate at full data rates with lengths of several 1000'.

Twisted pair is the cable of choice for RS-485/RS-422 networks. Twisted pair cables tend to pick up noise and other electromagnetically induced voltages as common mode signals, which are effectively rejected by the differential receivers in these ICs.

Proper termination is imperative, when using the 20Mbps devices, to minimize reflections. Short networks using the 115 kbps versions need not be terminated, but, terminations are recommended unless power dissipation is an overriding concern.

In point-to-point, or point-to-multipoint (single driver on bus) networks, the main cable should be terminated in its characteristic impedance (typically 120 $)$ at the end farthest from the driver. In multi-receiver applications, stubs connecting receivers to the main cable should be kept as short as possible. Multipoint (multi-driver) systems require that the main cable be terminated in its characteristic impedance at both ends. Stubs connecting a transceiver to the main cable should be kept as short as possible.

Built-In Driver Overload Protection

As stated previously, the RS-485 specification requires that drivers survive worst case bus contentions undamaged. These devices meet this requirement via driver output short circuit current limits, and on-chip thermal shutdown circuitry.

The driver output stages incorporate short circuit current limiting circuitry which ensures that the output current never exceeds the RS-485 specification, even at the common mode voltage range extremes.

In the event of a major short circuit condition, devices also include a thermal shutdown feature that disables the drivers whenever the die temperature becomes excessive. This eliminates the power dissipation, allowing the die to cool. The drivers automatically re-enable after the die temperature drops about $15^{\circ} \mathrm{C}$. If the contention persists, the thermal shutdown/re-enable cycle repeats until the fault is cleared. Receivers stay operational during thermal shutdown.

Low Power Shutdown Mode

These CMOS transceivers all use a fraction of the power required by their bipolar counterparts, but they also include a shutdown feature that reduces the already low quiescent $I_{\text {CC }}$ to a 70 nA trickle. These devices enter shutdown whenever the receiver and driver are
simultaneously disabled ($\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{DE}=\mathrm{GND}$) for a period of at least 600ns. Disabling both the driver and the receiver for less than 60ns guarantees that the transceiver will not enter shutdown.

Note that receiver and driver enable times increase when the transceiver enables from shutdown. Refer to Notes 9, 10, 11, 12 and 13, at the end of the "Electrical Specification" table on page 9, for more information.

Typical Performance Curves
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Unless Otherwise Specified.

DI FFERENTI AL OUTPUT VOLTAGE (V)
FI GURE 8. DRIVER OUTPUT CURRENT vs DI FFERENTI AL OUTPUT VOLTAGE

FI GURE 10. DRI VER OUTPUT CURRENT vs SHORT CI RCUIT VOLTAGE

FI GURE 12. DRI VER DI FFERENTI AL PROPAGATI ON DELAY vs TEMPERATURE (ISL3150E, ISL3152E)

FI GURE 9. DRI VER DI FFERENTI AL OUTPUT VOLTAGE vs TEMPERATURE

FI GURE 11. SUPPLY CURRENT vs TEMPERATURE

FI GURE 13. DRIVER DI FFERENTI AL SKEW vs TEMPERATURE (ISL3150E, ISL3152E)

Typical Performance Curves
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Unless Otherwise Specified. (Continued)

FI GURE 14. DRI VER DI FFERENTI AL PROPAGATI ON DELAY vs TEMPERATURE (ISL3153E, ISL3155E)

FI GURE 16. DRI VER DI FFERENTI AL PROPAGATI ON DELAY vs TEMPERATURE (ISL3156E, ISL3158E)

TI ME (1 $\mu \mathrm{s} / \mathrm{DI}$ V)
FI GURE 18. DRI VER AND RECEI VER WAVEFORMS, (ISL3150E, I SL3152E)

FI GURE 15. DRI VER DI FFERENTI AL SKEW vs TEMPERATURE (ISL3153E, ISL3155E)

FI GURE 17. DRIVER DI FFERENTI AL SKEW vs TEMPERATURE (ISL3156E, ISL3158E)

FI GURE 19. DRI VER AND RECEI VER WAVEFORMS, (ISL3153E, ISL3155E)

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Unless Otherwise Specified. (Continued)

FI GURE 21. RECEI VER OUTPUT CURRENT vs RECEI VER OUTPUT VOLTAGE

FI GURE 20. DRI VER AND RECEI VER WAVEFORMS, (ISL3156E, ISL3158E)

Die Characteristics

SUBSTRATE POTENTI AL (POWERED UP):
GND
TRANSI STOR COUNT:
530

PROCESS:

Si Gate BiCMOS

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVI SI ON	CHANGE
$6 / 30 / 09$	FN6363.2	Converted to New Intersil Template. Rev 2 Changes are as follows: Page 1 - Introduction was reworded in order to fit graphs. Features Section by listing only key features. Added performance graphs. Page 2 - Updated Ordering information by numbering all notes and referencing them on each part. Added MSL Note as new standard with linked parts to device info page. Updated Pinout name to Pin Configurations with Pin Descriptions following on page 3. Page 5 - Added Boldface limit verbiage in Elect. spec table and bolded Min and Max over-temp limits. Page 17 - Added Revision History and Products information with all links included.
$1 / 17 / 08$	FN6363.1	Added 8 Ld PDIP to ordering information, POD and Thermal resistance. Applied Intersil Standards as follows: Updated ordering information with Notes for tape and reel reference, pb-free PDIP and lead finish. Added pb-free reflow link and pb-free note to Thermal Information. Added E8.3 POD.
$2 / 20 / 07$	FN6363.0	Cosmetic edit to the ISL315xE data sheet, no rev, no date change, no formal per Denise Scarborough. Removed both commas in this sentence in the first paragraph: "Each driver output, and receiver input, is protected against $\pm 16.5 \mathrm{kV}$ ESD strikes without latch-up."
$12 / 14 / 06$	FN6363.0	Initial Release to web

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL3150E, ISL3152E, ISL3153E, ISL3155E, ISL3156E, ISL3158E

To report errors or suggestions for this datasheet, please go to www. intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php

Mini Small Outline Plastic Packages (MSOP)

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-187BA.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. Dimension "D" does not include mold flash, protrusions or gate burrs and are measured at Datum Plane. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions and are measured at Datum Plane. $-\mathrm{H}-$ Interlead flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. Formed leads shall be planar with respect to one another within $0.10 \mathrm{~mm}(0.004)$ at seating Plane.
6. "L" is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Datums $-\mathrm{A}-$ and $-\mathrm{B}-$ to be determined at Datum plane $-\mathrm{H}-$.
11. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only.

M8.118 (JEDEC MO-187AA)
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.037	0.043	0.94	1.10	-
A1	0.002	0.006	0.05	0.15	-
A2	0.030	0.037	0.75	0.95	-
b	0.010	0.014	0.25	0.36	9
c	0.004	0.008	0.09	0.20	-
D	0.116	0.120	2.95	3.05	3
E1	0.116	0.120	2.95	3.05	4
e	0.026 BSC		0.65 BSC		-
E	0.187	0.199	4.75	5.05	-
L	0.016	0.028	0.40	0.70	6
L1	0.037 REF		0.95 REF		-
N	8		8		7
R	0.003	-	0.07	-	-
R1	0.003	-	0.07	-	-
0	5^{0}	15^{0}	5^{0}	15°	-
α	0^{0}	6^{0}	0^{0}	6^{0}	-

Rev. 2 01/03

Mini Small Outline Plastic Packages (MSOP)

END VIEW

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-187BA.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. Dimension " D " does not include mold flash, protrusions or gate burrs and are measured at Datum Plane. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions and are measured at Datum Plane. -H- Interlead flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. Formed leads shall be planar with respect to one another within $0.10 \mathrm{~mm}(.004)$ at seating Plane.
6. "L" is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Datums $-\mathrm{A}-$ and $-\mathrm{B}-$ to be determined at Datum plane $-\mathrm{H}-$.
11. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only

M10.118 (JEDEC MO-187BA) 10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.037	0.043	0.94	1.10	-
A1	0.002	0.006	0.05	0.15	-
A2	0.030	0.037	0.75	0.95	-
b	0.007	0.011	0.18	0.27	9
c	0.004	0.008	0.09	0.20	-
D	0.116	0.120	2.95	3.05	3
E1	0.116	0.120	2.95	3.05	4
e	0.020 BSC		0.50 BSC		-
E	0.187	0.199	4.75	5.05	-
L	0.016	0.028	0.40	0.70	6
L1	0.037 REF		0.95 REF		-
N	10		10		7
R	0.003	-	0.07	-	-
R1	0.003	-	0.07	-	-
θ	5^{0}	15°	5^{0}	15°	-
α	0^{0}	6^{0}	0^{0}	6^{0}	-

Rev. 0 12/02

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed $0.15 \mathrm{~mm}(0.006$ inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width "B", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M14.15 (JEDEC MS-012-AB ISSUE C)
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.3367	0.3444	8.55	8.75	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050		BSC	1.27	BSC
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	14		14		7
α	0^{0}	8^{0}	0^{0}	8^{0}	-

Rev. 0 12/93

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum -C .
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$.
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
C	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	BSC	2.5	BSC	-
e_{A}	0.30	BSC	7.62	BSC	6
e_{B}	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	8		8		9

Rev. 0 12/93

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width "B", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M8.15 (JEDEC MS-012-AA ISSUE C) 8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.1890	0.1968	4.80	5.00	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050	SC			-
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	8		8		7
α	0°	8°	0°	8°	-

Rev. 1 6/05

For additional products, see www.intersil.com/product_tree
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality

Abstract

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

