HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

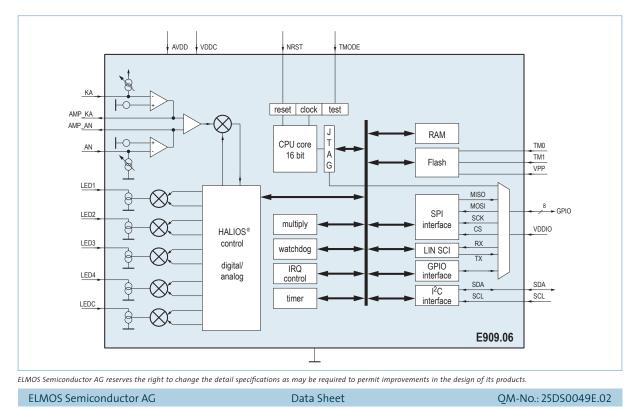
Features

- Sensor IC based on HALIOS[®] technology
- Up to 4 sending channels, 1 compensation channel an 1 differential receiver input for various HALIOS[®] applications
- ▶ 16 bit micro controller 'EL16' with debug interface
- Up to 1.5K x 18 (3KByte) SRAM including 2 bit parity per 16 bit word and byte write support
- Up to 30K x 22 (60KByte) FLASH including
 6 bit CRC checksum per 16 bit word
- ► SPI and I²C communication interface
- SCI interface incl. LIN support
- Watchdog, 32 bit timer, up to 8 GPIOs
- Multiply unit
- AEC-Q100 automotive qualification
- Supply voltage range 2.25V to 2.75V

Ordering Information

Product ID	Temp. Range	Package
E909.06	-40°C to +85°C	QFN32L5

Applications


- Optical or capacitive input devices
- Proximity and gesture detection
- Compact HMI interfaces for one-dimensional up to three-dimensional input

General Description

The IC is based on an optical bridge technology which provides a non-mechanical detection of movements.

The system detects the optical reflections of an object in front of the sensor by using a function principle called HALIOS[®] (High Ambient Light Independent Optical System) which is very effective in the suppression of ambient light and also has self calibration capability to eliminate disturbances caused by housing reflections and scratches.

In the same manner capacitive systems can be addressed by using the integrated charge amplifier.

1 Pinout

1.1 Pin description

No	Name	Type 1)	Pull	ESD	Description
1	GPIO_7	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 7
2	GPIO_6	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 6
3	GPIO_5	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 5
4	GPIO_4	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 4
5	GPIO_3	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 3
6	GPIO_2	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 2
7	GPIO_1	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 1
8	GPIO_0	D_IO	Down	+/- 2KV HBM	D IO PD Sr - General Purpose IO 0
9	LED1	A_O	-	+/- 2KV HBM	A O - LED Driver output
10	VSSLED1,2	S	-	+/- 2KV HBM	A G - Ground LED1,2
11	LED2	A_O	-	+/- 2KV HBM	A O - LED Driver output
12	LED3	A_O	-	+/- 2KV HBM	A O - LED Driver output
13	VSSLED3,4	S	-	+/- 2KV HBM	A G - Ground LED3,4
14	LED4	A_O	-	+/- 2KV HBM	A O - LED Driver output
15	VSSLEDC	S	-	+/- 2KV HBM	A G - Ground LEDC
16	LEDC	A_O	-	+/- 2KV HBM	A O - LED Driver output
17	I2C_SDA	D_IO	-	+/- 2KV HBM	D IO - I2C SDA (Data)
18	I2C_SCL	D_IO	-	+/- 2KV HBM	D IO - I2C SCL (CLK)
19	VDDC	S	-	+/- 2KV HBM	D S - Core Supply 2.5V
20	VSS	S	-	+/- 2KV HBM	D G - Ground
21	VDDIO	S	-	+/- 2KV HBM	D S - IO Supply 3.3V
22	AMP_KA	A_O	-	+/- 2KV HBM	A O - Output 1. stage amplifier at KA
23	AVDD	S	-	+/- 2KV HBM	A S - Analog Supply 2.5V
24	KA	A_I	-	+/- 2KV HBM	A I - Kathode
25	AN	A_I	-	+/- 2KV HBM	A I - Anode
26	AVSS	S	-	+/- 2KV HBM	A G - Analog Ground
27	AMP_AN	A_O	-	+/- 2KV HBM	A O - Output 1. stage amplifier at AN
28	NRST	D_I	Up	+/- 2KV HBM	D I PU St - Reset
29	TMODE	D_I	Down	+/- 2KV HBM	D I PD - Testmode
30	TM1	A_IO	-	+/- 2KV HBM	A IO - Analog Testbus
31	TM0	A_IO	-	+/- 2KV HBM	A IO - Analog Testbus
32	VPP	HV_S	-	+/- 2KV HBM	A HV - FLASH program voltage

1) D = Digital, A = Analog, S = Supply, I = Input, O = Output, HV = High Voltage

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

1.2 Package Pinout

Package: QFN32L5

Package is according JEDEC MO-220-K, version VHHD-4.

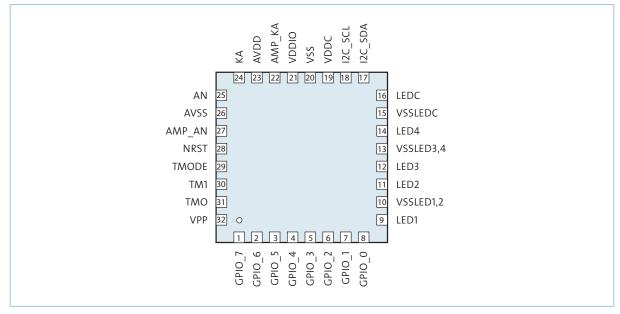


Figure 1: Package Pinout

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

2 Operating Conditions

2.1 Absolute Maximum Ratings

Continuous operation of the device above these ratings is not allowed and may destroy the device. All potentials refer to GROUND (GND) unless otherwise specified. Currents flowing into the circuit pins have positive values.

No.	Description	Condition	Symbol	Min.	Max.	Unit
1	Supply voltage: digital core, analog part	Referenced to V _{ss} / A _{vss}	$V_{_{ m DDC}}$ / $A_{_{ m VDD}}$	-0.3	2.8	V
2	IO supply voltage/digital pins (see "type"/chapter)	Referenced to V _{ss}	V _{ddio}	-0.3	3.7	V
3	Input voltage analog pins (see "type"/chapter)	Referenced to A _{vss}	V _{INA}	-0.3	A _{VDD} + 0.3	V
4	Input voltage digital pins/GPIO (see "type"/chapter)	Referenced to V _{ss}	V _{IND}	-0.3	V _{DDIO} + 0.3	V
5	Ground offset	V_{ss} to A_{vss} to V_{ssled}	Ground offset	-0.3	0.3	V
6	Junction Temperature		T _j	-40	+125	°C
7	Storage Temperature		Т _{stg}	-50	150	°C

2.2 Recommended Operating Conditions

The following conditions apply unless otherwise stated. All potentials refer to GROUND (GND) unless otherwise specified. Currents flowing into the circuit pins have positive values.

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Supply voltage: analog part, digital core	Referenced to V _{ss} / A _{vss}	$V_{_{ m DDC}}$ / $A_{_{ m VDD}}$	2.25	2.5	2.75	V
2	IO supply voltage/digital pins (see "type"/chapter)	Referenced to V _{ss}	V _{DDIO}	3.0	3.3	3.6	V
3	Filter capacitor analog part	Connected to A_{VDD}	C _{AVDD}		10		μF
4	Filter capacitor digital part	Connected to V _{DDC}	C _{VDDC}		100		nF
5	Ambient operating tempera- ture range		T _{opt}	-40	25	85	°C

All voltages are referred to V_{ss}, and currents are positive when flowing into the node unless otherwise specified.

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E909.06

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

3 Detailed Electrical Specification

The following conditions apply unless otherwise stated. All potentials refer to GROUND (GND) unless otherwise specified. Currents flowing into the circuit pins have positive values.

3.1 Supply Voltages

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Digital operating current, run mode	FSYS = 8 MHz, system state: run	I _{vddc}		5.8	12	mA
2	Digital operating current, standby mode	System state: standby	 STANDBY		1.8	5	mA
3	Digital operating current, off mode	System state: off	I _{off}			35	μΑ
4	Analog operating current	MCR[13:12] ="11" PCR[14:13] ="11"	I _{AVDD}		3.5	5	mA
5	Analog operating current	Analog on = 0	AVDD OFF			15	μΑ
6	Over all current consumption in application mode	Active mode ¹⁾	I _{ACTIVE}		2.0	2.25	mA
7	Over all current consumption in application mode	Idle mode (I _{IDLE} = I _{OFF} + I _{AVDD OFF})	I _{IDLE}		16	50	μΑ
8	State change from STANDBY to RUN mode	-	T _{standb} . _{Y2RUN}			3	1/ FSYS
9	State change from OFF to RUN mode		T _{off2run}			5	1/ FSYS

1) In application mode the current consumption is calculated from the duty cycle of the digital operating current and the analog operating current.

MCR - Measurement Configuration Register PCR - Preamplifier Configuration Register

3.2 Reset Generation

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Power on reset level	Reference is V _{DDC}	V _{por}			2.25	V
2	Brown out high-to-low threshold level	Reference is V _{DDC}	V _{bohl}	1.8			V
3	Brown out reset hysteresis		V _{BOHYST}	100	200	300	mV
4	Minimum supply voltage for power on reset and brown out circuit ¹⁾		VDDmin		0.9		V
5	NRST-pin threshold level		NRST		0.5		VD- DIO
6	Pull up current NRST-pin	$V_{NRST} = V_{DDIO}$	I NRSTPU		35		μΑ
7	Min. pulse width for a valid reset at pin NRST (debouncing)	V _{DDC} > V _{DDC min}	T _{debnrst}	1.0		-	μs
8	Delay Watchdog start => reset ¹⁾		T _{wdog}		timer value		1/ FSYS

1) Will not be tested in production test

3.3 Internal Clock Generation

3.3.1 Reference Clocks

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Wakeup clock frequency	Within rec- ommended operating conditions	FWK	115.2	128.0	140.8	kHz
2	Master clock	Within rec- ommended operating conditions	FSYS	7.2	8.0	8.8	MHz

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

3.4 Module Description

3.4.1 I²C Interface

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	SDA/SCL: Input voltage low		V	-0.3		0.3 x V _{DDIO}	V
2	SDA/SCL: Input voltage high		V _{IH}	$0.7 \times V_{\text{ddio}}$		V _{DDIO} + 0.3	V
3	SDA/SCL: Hysteresis of Sch- mitt trigger inputs ¹⁾	V _{DDIO} > 2.0 V	V_{hys}	$0.05 \times V_{DDIO}$		-	V
4	SDA/SCL: Output voltage low (open drain)	I = 3 mA, V > 2.0 V	V _{ol}			0.4	V
5	SDA/SCL: Input current	$0 < V_{IN} < V_{DDIO}$	l _i	-10		10	μΑ
6	SDA/SCL: capacitance ¹⁾		C _i	-		10	рF
7	SCL clock frequency		f_{SCL}	0		400	kHz
8	Hold time (repeated) START condition ¹⁾		t _{hd.:sta}	600		-	ns
9	LOW period of SCL clock		t _{LOW}	1300		-	ns
10	HIGH period of SCL clock		t _{ніgн}	600		-	ns
11	Set-up time for repeated start condition $^{1)}$		t _{su.:sta}	600		-	ns
12	Data hold time 1)		t _{hd.dat}	0		900	ns
13	Data set-up time 1)		t _{su:dat}	100		-	ns
14	Rise time of SDA and SCL sig- nals with a bus capacitance (Cb) from 10 pF to 400 pF ¹⁾		t,	20 + 0.1 x C _b		300	ns
15	Fall time of SDA and SCL sig- nals with a bus capacitance (Cb) from 10 pF to 400 pF ¹⁾		t _f	20 + 0.1 x C _b		300	ns
16	SDA/SCL: Output fall time from VIH to VIL with a bus capacitance (Cb) from 10 pF to 400 pF ¹⁾		t _{of}	20 + 0.1 x C _b		250	ns
17	Set-up time for STOP condi- tion ¹⁾		t _{su:sto}	600		-	ns
18	Bus free time between STOP and START 1)		t _{BUF}	1300		-	ns
19	Pulse with of spikes which must be suppressed by the IC-internal input filter		t _{sp}	0		50	ns

1) Will not be tested in production test

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

3.4.2 SPI Module

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	SCK pulse low width / pulse high width	transfer	Tck	4			1/ FSYS
2	First SCK after falling CSB	start of transfer	Tcs1	2			1/ FSYS
3	Last SCK before rising CSB	end of transfer	Tcs2	2			1/ FSYS
4	Setup time		Tsetup	1			1/ FSYS
5	Hold time		Thold	1			1/ FSYS
6	Data out after shift		Tso			3	1/ FSYS
7	CSB high time		Tcsh	2			1/ FSYS
8	Data out change from Z to driven data	start of transfer	Tz1			1	1/ FSYS
9	Data out change from driven data to Z	end of transfer	Tz2			1	1/ FSYS

3.4.3 GPIO Module

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Threshold point		GPIO _{TH}	1.2	1.32	1.46	V
2	Pull down resistor	$V_{IN} > 0.75 \cdot V_{DDIO}$	R _{gpiopd}	54		130	kΩ
3	Output Voltage Low	GPIOIOL=4 mA; V _{DDIO} =3.3 V	GPIOVOL			0.4	V
4	Output Voltage High	GPIOIOH=-4 mA; V _{DDIO} =3.3 V	GPIOVOH	2.4			V
5	Low Level Output Current	GPIOVOL=0.4V	GPIOIOL	6		12	mA
6	High Level Output Current	GPIOVOH=2.4V	GPIOIOH	-25.6		-7.8	mA
7	Tri-State Input/Output Leakage Current	Vout=V _{DDIO} or 0 V	GPIOILC	-1		1	μΑ

3.4.4 HALIOS[®] Interface

3.4.4.1 Current Generation for LED Modulators

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	DAC resolution		Ν		10		bit
2	Integral non linearity (INL)		E _i		2		LSB
3	Differential non linearity (DNL)		E _d		2		LSB
4	DAC output voltage at full scale		V _{MAX}		1.22		V

3.4.4.2 LED Driver 1 - 4

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Regulated proportion of LED current @ DAC = 0	DAC = 0	I _{R_MINS}			5 % if I _{R_MAXS} 1)	mA
2	Max. regulated proportion of LED current (RANGE)	RANGE = 31,	I _{R_MAXS}		10.0		mA
3	Stepsize for regulated cur- rent-range configuration	DAC = 1023	I _{r_steps}		290		μΑ
4	Resolution current-range configuration		N _{RS}		5		bit
5	Max. fixed proportion of LED current (OFFSET)		I _{o_maxs}		10.0		mA
6	Stepsize for fixed offset-cur- rent configuration	OFFSET = 31	ISTEPS		290		μΑ
7	Resolution offset-current configuration		N _{os}		5		bit
8	DC-bias current		I _{bias s}		225		μΑ

1) $I_{R MAXS}$ is the maximum current selected with parameter RANGE

3.4.4.3 LED Driver C

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Regulated proportion of LED current @ DAC = 0	DAC = 0	I _{R_MINC}			5 % of I _{R_MAXS} ¹⁾	mA
2	Max. regulated proportion of LED current (RANGE)	RANGE = 31, DAC = 1023	I _{R_MAXC}		4.0		mA
3	Stepsize for regulated cur- rent-range configuration		I _{R_STEPC}		125.0		μΑ
4	Resolution current-range configuration		N _{RC}		5		bit
5	Max. fixed proportion of LED current (OFFSET)	OFFSET = 127	I _{o_maxc}		5.0		mA
6	Stepsize for fixed offset-cur- rent configuration		I _{O_STEPC}		40.0		μΑ
7	Resolution offset-current configuration		N _{oc}		7		bit
8	Minimal value for DC-bias current		I _{bia_co}		100		μΑ
9	Stepsize for DC-bias current		I DCO_STEPC		2.5		mA
10	Max. DC-bias current (DC_OFFSET)	DC_OFFSET = 15	I _{DCO_MAXC}		37.6		mA

1) I_{R_MAXS} is the maximum current selected with parameter RANGE

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

3.4.4.4 Receiver

No.	Description	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Feedback resistor of 1. stage amplifier at input KA and AN; bit 0, bit 1 = 1		R _f		50		kΩ
2	Feedback capacitor of 1. stage amplifier at input KA and AN; bit 2, bit 3 = 1		C _f		3.6		рF
3	DC photo-current Gyrator mode; bit 9, bit 10 = 1		IDC_photo				μΑ
4	Voltage at amplifier input KA		V _{KA}		1.9		V
5	Voltage at amplifier input AN		V _{AN}		1.3		V
6	Corner frequency highpass filter		f _G		10		kHz
7	Gain amplifier 2. stage		G ₀		6		dB
8	Gain amplifier 3. stage	PCR[8:7]="01"	G3		12		dB
9	Gain amplifier 3. stage	PCR[8:7]="00" or "11"	G3		24		dB
10	Gain amplifier 3. stage	PCR[8:7]="10"	G3		36		dB
11	Total gain sym. input	PCR[8:7]="01"	G _{TOT}		118		dBΩ
12	Total gain sym. input	PCR[8:7]="00" or "11"	G _{TOT}		130		dBΩ
13	Total gain sym. input	PCR[8:7]="10"	G _{TOT}		142		dBΩ
14	Total gain nonsym. input	PCR[8:7]="01"	G _{TOT}		112		dBΩ
15	Total gain nonsym. input	PCR[8:7]="00" or "11"	G _{TOT}		124		dBΩ
16	Total gain nonsym. input	PCR[8:7]="10"	G _{TOT}		136		dBΩ
17	Center frequency		f _c		125		kHz
18	Resolution demodulator output		N _{demod}		1		bit
19	Capacitance of photo diode at input KA		C _{DIODE}			70	pF
20	Internal reference voltage		V _{REF}		1.22		V
21	Internal reference current		I _{BIAS}		10		μΑ

PCR - Preamplifier Configuration Register

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

4 Functional Description

4.1 Introduction

The general architecture of the 3D-optical input device is shown in the system block diagram.

The CPU is connected to the memory (FLASH and SRAM) and the peripheral modules via the internal system bus. The system bus provides a 16 bit address space and allows 8 and 16 bit data transfers.

The memory contains the program code and the data. Memory and registers are mapped to the global memory map and can be accessed through all memory related operation provided by the CPUs instruction set. The memory of the IC consists a FLASH cell up to 30Kx22 (60KByte) including 6 additional bits per word used as CRC for error detection and error correction and a SRAM cell up to 1.5Kx18 (3KByte) including 2 bit parity per word.

The Interrupt Controller collects requests from all interrupt sources and provides an interrupt signal to the CPU. Interrupt sources can be masked within the interrupt controller. Interrupts are generated by the modules and hold until they are cleared within the module. See module description for clearing procedures.

The SPI can be configured either as a master or a slave. Transfer length is eight bit and can be extended by a multiple of eight bit. Data FIFOs are provided for transmit and receive tasks.

The SCI provides the standard NRZ (Non Return to Zero) mark/space data format where each frame contains one start bit, eight data bits and one stop bit. Several features are implemented for special LIN support.

The timer module contains a 32 bit timer module as well as a watchdog timer. Additionally a second timer module operating on wake up clock is implemented that remains active even in off mode, so it can be used for a periodical wake up from off mode for applications that require a low current consumption.

8 IO port pins can either be configured as general purpose IO's or can be configured as ports for the SPI or SCI module. Additionally two ports are reserved for the I²C slave interface.

The clock and reset generator module provides the system clock and the global reset signal. A power-on-reset, brown out detect and a power watch are implemented. As external reset source a reset input will be considered. The system clock is generated by an on-chip oscillators. A more detailed diagram of the clock/reset generation block (CRG) is shown in the following sections.

4.2 Supply Voltages

4.2.1 Block Diagram

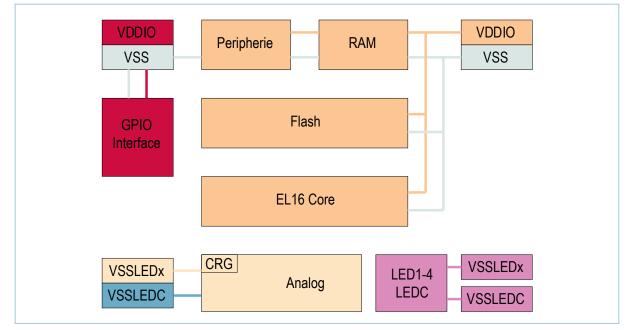


Figure 2: Block Diagram Supply Voltages

4.2.2 Functional Description

The devices has three separated power domains and needs two different levels of power supplies. The core power domain is supplied by VDDC and the analog power domain by AVDD. Both needs the same voltage level. The third supply domain is supplied by VDDIO and powers GPIOs. See also 2.2 Recommended Operating Conditions.

4.2.3 Power Up Sequence Considerations

During power-up the power-on-reset configures all pads as inputs consequently disabling the output drivers. The IO supply is watched after power up if the core supply is in the specified range and causes a reset if it leaves the allowed region. The core supply is watched via a brown out circuit.

The pads will remain input pads as long as the software does not reconfigure them.

According the following diagram it must be guaranteed that ADVV / DVVC is not switched on before VDDIO. NRST can be switched on if the VDDIO and AVDD/DVVC are stabilized on its potential.

A >= 0ms B > 5ms (recommended)

To avoid floating gates, $A < 100 \mu s$ is recommended.

ELMOS Semiconductor AG
LLMOS SEITILOITUULLOI AU

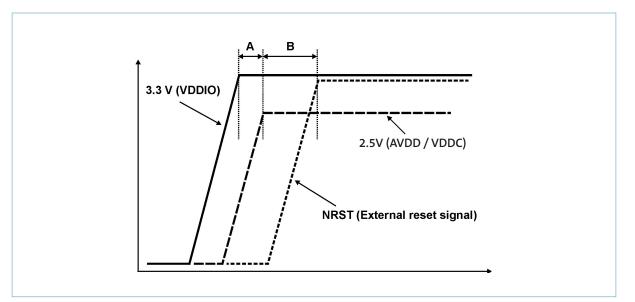


Figure 3: Brown-Out timing diagram

4.2.4 Power Down Sequence Considerations

During power down the chip will enter the reset state as soon as the core or IO supply leaves the specified region bringing all pads into input configuration again.

4.3 Brown Out Detection

4.3.1 Timing Diagram

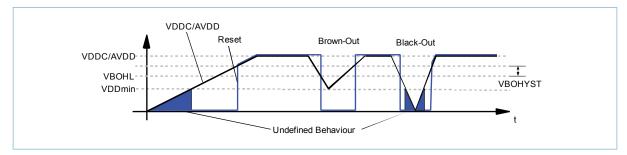


Figure 4: Brown-Out timing diagram

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

4.3.2 Functional Description

The brown out detection of the chip will cause a reset whenever the core or IO power supply falls below the specified region. An over-voltage protection is not implemented. The circuit will not be operational when the core supply is below VDDmin. In these cases the power-on-reset will take care of proper reset generation.

4.4 Reset Generation

4.4.1 Reset Generation (RESGEN)

The IC is equipped with a reset input pin which can be used to reset the chip. Any low pulse longer than TDEBNRST on the external reset line will be sensed and causes an IC reset.

The IC contains different dynamic and static reset sources. The static sources trigger the master reset as long as the cause for the reset persists. The dynamic sources trigger the reset for a defined minimum reset time. After that time has expired the system reset is released. In case the dynamic source is still signaling a reset the reset is re-triggered.

Static reset sources:

- A power up sequence of the core voltage (power on reset)
- Brown out of the core voltage

Dynamic reset sources:

- Uncorrectable FLASH CRC error
- SRAM parity error
- CPU register parity error
- Watchdog timeout
- Uncorrectable trim register ECC error

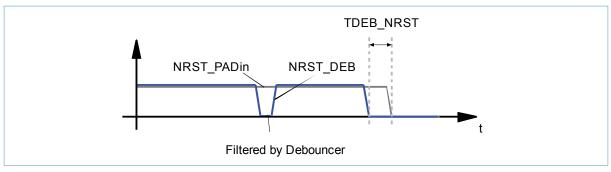


Figure 5: Timing of the external reset signal

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E909.06

4.4.2 Power-On-Reset

4.4.2.1 Timing Diagram

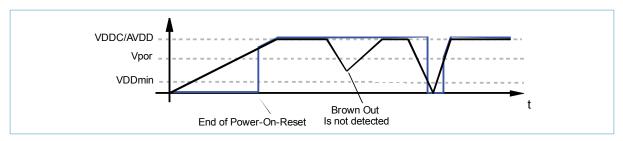


Figure 6: Power-On-Reset timing digram

4.4.2.2 Functional Description

The power on reset is designed to cause a reset during the power on cycle of the chip. The reset will be deactivated when the supply crosses $V_{_{POR}}$.

After the power up sequence the power on reset block will only cause a new reset if the power supply voltage drops below VDDmin and the rise and fall times of the supply are below the specified values.

failsafe feature	asserts interrupt	asserts reset
FLASH CRC (bit error corrected)	Х	
FLASH CRC (uncorrectable bit error)		Х
Empty (erased) FLASH word read detection		Х
FLASH write detection	Х	
RAM byte parity		Х
Uninitialized RAM word / byte read detection		Х
CPU register parity		Х
CPU undefined opcode detection	Х	
CPU misaligned word access detection	X	
Opcode execution memory protection	Х	
Stack overflow detection	Х	
Invalid module register access detection	Х	
Watchdog time-out		Х
Watchdog window protection	Х	
Brownout detection (supply voltage monitoring)		Х
System clock monitoring		Х

4.5 System Failsafe Features

4.6 HALIOS[®] Interface

4.6.1 HALIOS[®] Block Diagram

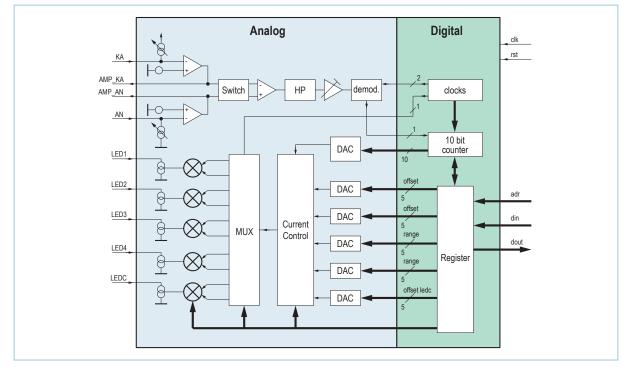


Figure 7: HALIOS® Block Diagram

4.6.2 HALIOS[®] Features

In order to be able to realize optical as well as capacitive sensors the input amplifier can be changed in its characteristic between transimpedance amplifier and charge amplifier. This is achieved by changing the feedback impedance. To have a good immunity to noise the receiving path consists of a symmetrical differential input.

The HALIOS[®] IC contains a configurable current driver interface. In the case of an optical sensor it is possible to drive up to four sending LEDs and one compensation LED. If a capacitive sensor should be realized, the current is converted into a voltage by connecting pullup resistances at the outputs LEDx. The HALIOS[®] measurement loop is closed by a 10 bit DAC which regulates the output current for the sending/compensation LED. The DAC is controlled by a counter that sets the DAC dependent on the received signal amplitudes up or down.

To follow fast signal changes the counter can be increased or decreased by 1, 2, 4 or 8 steps, this is called the step size that is set due to the number of up/down-counts in the same direction. To start a new measurement the interface is configured with the counter-value and the step size (generally the values from the last measurement), the LED configuration and the current configuration for the LED driver. The measurement regulates the DAC and performs 25 counter steps to follow the actual reflection conditions of the sensor. After one measurement the interface returns the counter-value, the mean-value (it is calculated from the last 16 counter-steps during one measurement) and the stepsize from the last integrator cycle.

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

ELMOS Semiconductor AG	Data Sheet	QM-No.: 25DS0049E.02
------------------------	------------	----------------------

16/71

Ε

E909.06

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE PRODUCTION DATA - NOV 16, 2011

After the automated measurement cycle is finished an interrupt appears if the interrupt is enabled. The interrupt is used to wake the system from standby mode.

The HALIOS[®] clock is adjustable in 5 frequencies (FSYS=8 MHz):

- 167 kHz
- 125 kHz (default)
- 100 kHz
- 83 kHz
- 71 kHz

4.6.3 HALIOS® Module Registers

Register Name	Address	Description
Start Value Counter	0x00	
Measurement Configuration	0x02	
Measurement Configuration HALIOS® Clock	0x04	
Current Configuration Phase A	0x06	
Current Configuration Phase B	0x08	
Current Configuration Compensator Offset	0x0A	
Measurement Result: Counter Value	0x0C	
Measurement Result: Mean Value	0x0E	
Interrupt	0x10	
Preamplifier Configuration	0x12	
Send Frequency Select	0x14	

Register Start Value Counter (0x00)

	MSB															LSB
Content	15: 12	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access		R/W														
External access		R/W														
Bit Description	15:12 : STZ: Startup step size for one step of the integrator (range: "0001", "0100", "0100" or "1000") 10 : 0 - normal settling time of optical gyrator														or	

Table 1: Start Value Counter

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	meas 14 : A ('0' = 13 : [input ('0' = 12 : A 11 : F 10 : F 10 : F 10 : E Note 8 : LE 7 : LE Note 8 : LE 7 : LE Note 4 : LE Note 3 : LE 2 : LE 0 : LE	Surem ACCON disabl Deacti t is use active AON: C IXB: S IXA: S D C A : Bits 9 D C A : not a D 2 A : not a D 3 A : not a D 3 B : not a D 2 A D 2 A D 1 A	ent. A led, '1' vation ed yation ed	fter m disable = ena of AN deacti l of ar e LEDs e LEDs e LEDs e LEDs e LEDs e LEDs e LEDs e LEDs fas if L des if L ble in v des if L	easure s the bled) l inpur vated nalogu s activ s activ s activ d) ED is ersior ED is ersior ED is ersior ED is cersior ED is a cersior ED is a cersior	ement accele t to re e part ated in ated in ated in active f 1 and active f 1 and active	the b ration duce c ('0' = n phas n phas for th for th for th d versi for th d versi for th for th for th for th for th for th for th for th	it rese of the current off, '1' se B to se A to e mea e mea e mea on 2 e mea on 2 e mea on 2 e mea on 2 e mea	ts itse integ t const t const fixed fixed fixed surem surem surem surem surem surem	elf. grator umpti sendi sendi nent (' nent (' nent (' nent (' nent (' nent (' nent (' nent (')	on in 1 ng cur ng cur 0' = of 0' = of 0' = of 0' = of 0' = of 0' = of 0' = of	the car rent (' rent f, '1' = f, '1' =	on) on) on) on) on) on) on) on)	t only		

Table 2: Measurement Configuration

Register Measurement Configuration HALIOS® Clock (0x04)

	MSB															LSB
Content												4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	3 : Po Note 2 : Po Note 1 : Po	plarity : not a plarity : not a plarity	of LED availab of LED availab of LED	04 Mo ole in v 03 Mo ole in v 02 Mo	dulato ersior dulato ersior dulato	or cloc 1 and or cloc 1 and or cloc	k ('0' = l versi k ('0' = l versi k ('0' =	norm on 2 norm on 2 norm	ial, '1' : al, '1' : al, '1' : al, '1' : al, '1' :	= invei = invei = invei	rted) rted) rted)					

Table 3: Measurement Configuration HALIOS[®] Clock

E909.06

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE PRODUCTION DATA - NOV 16, 2011

Register Current Configuration Phase A (0x06)

	MSB															LSB
Content							9:5					4:0	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R/W									
External access	R	R	R	R	R	R	R/W									
Bit Description	9:5 : OFF: Offset phase A 4:0 : RNG: Range phase A															

Table 4: Current Configuration Phase A

Register Current Configuration Phase B (0x08)

	MSB															LSB
Content							9:5					4:0	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R/W									
External access	R	R	R	R	R	R	R/W									
Bit Description	9:5 : OFF: OFFSET phase B 4:0 : RNG: RANGE phase B															

Table 5: Current Configuration Phase B

Register Current Configuration Compensator Offset (0x0A))

	MSB															LSB
Content					11:8					6:0						
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R/W	R/W	R/W	R/W	R	R/W						
External access	R	R R R R/W R/W R/W R/W R R/W R/W R/W R/W														
Bit Description		11:8 : DC_OFFSET current LEDC (4 Bit) 6:0 : OFFSET compensation LEDC														

Table 6: Current Configuration Compensator Offset

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E909.06

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE PRODUCTION DATA - NOV 16, 2011

	MSB															LSB
Content	15: 12						9:0									
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R R R R R R R R R R R R R R R R														
External access	R	R R R R R R R R R R R R R R R R														
Bit Description	15:12 : STZ: Stepsize integrator 9:0 : COUNT: Integrator value from the measurement															

Register Measurement Result: Counter Value (0x0C)

Table 7: Measurement Result: Counter Value

Register Measurement Result: Mean Value (0x0E)

	MSB															LSB
Content	15: 12				11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:12 11:0	15:12 : STZ: Stepsize integrator 11:0 : MEAN: Mean value from the measurement														

Table 8: Measurement Result: Mean Value

Register Interrupt (0x10)

	MSB							LSB
Content							1	0
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R/W	R/W
External access	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : CLHALI: 0 - no influ 1 - clear HA 0 : HALIE: H 0 - interrup 1 - interrup	ence	9S® interrupt rupt errupt enable					

Table 9: Interrupt

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

Register Preamplifier Configuration (0x12)

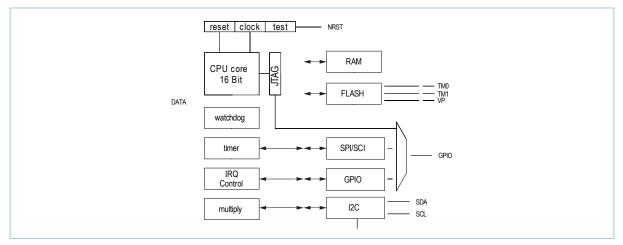
	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W														
External access	R/W	/ R/W R/W R/W R/W R/W R/W R/W R/W R/W R/														
Bit Description	('0' = 14 : E 13 : E 12 : E 11 : L 10 : S Note 9 : Se Note 8:7 : S "00" "01" "11" 6 : Sv 5 : Sv 4 : Pc inver 3 : 1. 2 : 1. 1 : 1. 0 : 1.	PM lo Bias cu Bias cu Deacti D	w and irrent irrent vate C betwee availab etwee availab ampli AN Inp (A Inp of the o' = no	l fast, ' of pre- of pre- jyrato jyrato i ficatic fier AI fier AI fier AI fier AI fier AI	1' = P/ amplif amplif r at A/ tical a versior ical an versior on of 3	M high fier mo fier lov N input Ind cap Ind ca	w IB = t: ('0' = pacitiv d versi acitive d versi e AMF = off) 1. stag d)	slow) IB = (' ('0' = 1 = on, '1 = on, '1 re gyrat on 3 e gyrat	0' = 30 .0uA, ' ' = off ' = off tor at tor at or at I	0uA, '1 1' = 2ı) AN in: AN inp	' = 10 µA) if E put: (' ut: ('0	uA) if I 3it14= '0' = op ' = opt	Bit13=	'1' = ca L' = cap Polari	pacitiv	ive) e)

Table 10: Preamplifier Configuration

Register Send Frequency Select (0x14)

	MSB															LSB
Content														2:0		
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W
Bit Description		2:0 : HALIOS® send frequency select SendFreq (sfreq) frequency = FSYS/(sfreq*16) sfreq range 37 reset value: 0x0004														

Table 11: Send Frequency Select


5 Microcontroller EL16H6

The EL16H6 is based on a 16-bit RISC CPU core. It includes a 30Kx22 (60 Kbyte) FLASH Memory with 6 bit CRC checksum per 16 bit word and a 1.5Kx18 (3 Kbyte) SRAM with byte write support. It provides up to 16 general purpose I/O's, one synchronous Serial Peripheral Interface (SPI) and one asynchronous Serial Interface (SCI). SPI and SCI can be mapped to the IO port or to the D2D port. Furthermore a 32 bit timer and a watchdog are included. As the system clock source either an on-chip oscillator or a crystal oscillator can be selected. ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Data Sheet	QM-No.: 25DS0049E.02
------------	----------------------

E909.06

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE PRODUCTION DATA - NOV 16, 2011

5.1 Feature List

- RISC architecture with 27 instructions and 7 addressing modes
- 16 registers including PC, SP and status register
- 16 bit address range
- Word and byte addressing
- Interrupt support
- Standby and stop mode support
- Automatic bus ready handling
- Debugging support (JTAG interface)
- 3 hardware breakpoint triggers
- Failsafe architecture

5.2 Debugging

To access the debug structures of the EL16 CPU a 4-wire standard JTAG interface is used. The JTAG interface can be accessed via GPIO pins when the TEST_MODE pin is set to one. TEST_MODE pin set to zero resets all test and debug structures and the IC operates in normal mode.

The EL16 embedded breakpoint logic provides the following features:

- 3 breakpoint triggers
- Each trigger can match a separate address or data bus value
- A trigger value compare mask can be defined
- Trigger can match a greater, smaller, equal or non equal value
- Trigger can be configured for read / write or instruction fetch / non instruction fetch bus cycles
- Triggers can be combined (trigger dependency)
- All breakpoints can be used for stepping and run-stop a program

5.3 CPU Registers

The EL16 contains 16 registers (R0 to R15) including Program Counter, Stack Pointer and Status Register. *ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.*

ELMOS Semiconductor AG	Data Sheet	QM-No.: 25DS0049E.02
------------------------	------------	----------------------

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

5.3.1 Program Counter (PC)

The 16-bit Program Counter (PC/R0) points to the next instruction to be executed. Each instruction uses an even number of bytes (two, four, or six), and the PC is incremented accordingly. Instruction accesses in the 64-KB address space are performed on word boundaries, and the PC is aligned to even addresses. The PC can be addressed with all instructions and addressing modes.

5.3.2 Stack Pointer (SP)

The Stack Pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and interrupts. It uses a pre-decrement, post-increment scheme. In addition, the SP can be used by software with all instructions and addressing modes. The SP is initialized into RAM by the user, and is aligned to even addresses.

5.3.3 Status Register (SR)

The Status Register (SR/R2), used as a source or destination register, can be used in the register mode only addressed with word instructions. The remaining combinations of addressing modes are used to support the constant generator.

Register Name	Address	Description
Status Register	SR/R2	

Register Status Register (SR/R2)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description		: CLK (: CPU : GIE : N Z														

Table 12: Send Frequency Select

V: Overflow bit

This bit is set when the result of an arithmetic operation overflows the signed-variable range.

CLKOFF: Stop flag CPU clock gated

CPUOFF: Standby flag CPU halted

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Data Sheet

GIE: Global Interrupt Enable

N: Negative bit

This bit is set when the result of a byte or word operation is negative and cleared when the result is not negative. Word operation: N is set to the value of bit 15 of the result Byte operation: N is set to the value of bit 7 of the result

Z: Zero bit

This bit is set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C: Carry bit This bit is set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

5.3.4 Constant Generation Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator registers R2 and R3, without requiring an additional 16-bit word of program code. The constants are selected with the source-register addressing modes (As), as described in the table below:

Register Name	As	Value	Remarks
R2	00	-	register mode (access R2)
R2	01	(0)	used for absolute
κ ₂	01	(0)	address mode
R2	10	0x0004	constant +4
R2	11	0x0008	constant +8
R3	00	0x0000	constant 0
R3	01	0x0001	constant +1
R3	10	0x0002	constant +2
R3	11	0xFFFF	constant -1

The constant generator advantages are:

No special instructions required No additional code word for the six constants No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed explicitly; they act as source-only registers.

5.3.5 General-Purpose Register R4 - R15

The twelve registers, R4-R15, are general-purpose registers. All of these registers can be used as data registers or address pointers and can be used with byte or word instructions.

ELMOS Semiconductor AG	Data Sheet	QM-No.: 25DS0049E.02

5.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand can address the complete address space with no exceptions. The bit numbers in the table below describe the contents of the As (source) and Ad (destination) mode bits.

As/Ad	Addressing Mode	Syntax	Description
00/0	Register mode	Rn	Register contents are operand
01/1	Indexed mode	X(Rn)	(Rn + X) point to the operand. X is stored in the next word.
01/1	Symbolic mode	ADDR	(Rn + X) point to the operand. X is stored in the next word. Indexed mode X(PC) is used.
01/1	Absolute mode	&ADDR	(Rn + X) point to the operand. X is stored in the next word. Indexed mode X(0) is used.
10/-	Indirect Register mode	@Rn	Rn is used as a pointer to the
11/-	Indirect auto increment	@Rn+	Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B instructions and by 2 for .W instructions
11/-	Immediate mode	#N	The word following the instruction contains the immediate constant N. Indirect auto-increment mode @PC+ is used.

5.5 EL16 Instruction Set

The complete EL16 instruction set consists of 27 instructions. There are three instruction formats:

- Dual-operand
- Single-operand
- Jump

All dual-operand and single-operand instructions can be byte or word instructions by using .B or .W extensions. Byte instructions are used to access byte data. Word instructions are used to access word data. If no explicit extension is used, the instruction is a word instruction.

The source and destination of an instruction are defined by the following fields:

Abbr.	Description
src	The source operand defined by As and S-reg
dst	The destination operand defined by Ad and D-reg
As	The addressing bits responsible for the addressing mode used for the source (src)
S-reg	The working register used for the source (src)
Ad	The addressing bits responsible for the addressing mode used for the destination (dst)
D-reg	The working register used for the destination (dst)
B/W	Byte or word operation: 0: word operation, 1: byte operation

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Mnemonic
0	0	0	0	0	0											
						0	0	0	0							RRC
						0	0	0	1							RRC.B
						0	0	1	0							SWP.B
						0	0	1	1							
						0	1	0	0							RRA
						0	1	0	1							RRA.B
						0	1	1	0							SXT
0			1	0	0	0	1	1	1	۸. d	/A c	,	D Pog	/C Dov	-	
0	0	0	1	0		1	0	0	0	Au	/As	'	р-кед	/S-Re	5	PUSH
						1	0	0	1							PUSH.B
						1	0	1	0						CALL	
						1	0	1	1							
						1	1	0	0						RETI	
						1	1	0	1							
						1	1	1	0							
						1	1	1	1							
				0	1			0								
0	0	0	1	1	0											
				1	1											
			0	0	0											JNZ / JNE
			0	0	1]										JZ / JEQ
			0	1	0]			JNC / JLO							
_		1	0	1	1]			10	D:1 D		4				JC / JHS
0	0	1	1	0	0]			IC	-BIT P	C Offs	set				JN
			1	0	1]										JGE
			1	1	0]										JL
			1	1	1]										JMP
0	1	0	0													MOV
0	1	0	1													ADD
0	1	1	0													ADDC
0	1	1	1													SUBC
1	0	0	0													SUB
1	0	0	1		с г	200			B/		1.6			Dog		CMP
1	0	1	0		2-ŀ	Reg		Ad	B/ W		\s		D-I	Reg		DADD
1	0	1	1													BIT
1	1	0	0													BIC
1	1	0	1													BIS
1	1	1	0													XOR
1	1	1	1													AND

The following tables shows coding of the 16 bit op-code:

Figure 9: Coding of the 16 bit op-code

Mnemonic	Parameters	Description		V	N	Z	c
ADC(.B)**	dst	Add C to destination	dst + C -> dst	*	*	*	*
ADD(.B)	src, dst	Add source to destination	src + dst -> dst	*	*	*	*
ADDC(.B)	src, dst	Add source to C and destination	src + dst + C -> dst	*	*	*	*
AND(.B)	src, dst	AND source and destination	src AND dst -> dst	0	*	*	*
BIC(.B)	src, dst	Clear bits in destination	NOT(src) AND dst -> dst	-	-	-	1.
BIS(.B)	src, dst	Set bits in destination	src OR dst -> dst	-	-	-	١.
BIT(.B)	src, dst	Test bits in destination	src AND dst	0	*	*	*
BR	dst	Branch to destination	dst -> PC	-	-	-	Ι.
CALL	dst	Call destination	SP-2 -> SP, PC+2 -> @SP, dst -> PC	-	-	-	Ι.
CLR (.B)**	dst	Clear destination 0	0 -> dst		-	-	Ι.
CLRC**		Clear C 0	0 -> C	+_	-	_	(
CLRN**		Clear N 0	0 -> N	-	0		Ľ
CLRZ**		Clear Z 0	0 -> Z		-	0	
CMP (.B)	src, dst		dst - src	*	-	*	,
. ,	- ·	Compare source and destination			*	*	
DADC (.B)**	dst	Add C decimally to destination	dst + C -> dst	0	*		
DADD (.B)	src, dst	Add source and C decimally to destination	src + dst + C -> dst	0	*	*	
DEC (.B)**	dst	Decrement destination	dst -1 -> dst	*	*	*	
DECD (.B)**	dst	Double decrement destination	dst -2 -> dst			*	-
DINT**		Disable interrupts 0	0 -> GIE	-	-	-	
EINT**		Enable interrupts 1	1 -> GIE	-	-	-	
INC (.B)	dst	Increment destination	dst +1 -> dst	*	*	*	
INCD (.B)**	dst	Double increment destination	dst +2 -> dst	*	*	*	
INV (.B)**	dst	Invert destination	NOT(dst) -> dst	*	*	*	
JC / JHS	label	Jump if C set / Jump if higher or same	if (condition) PC + 2 * offset -> PC	-	-	-	
JZ / JEQ	label	Jump if Z set / Jump if equal	if (condition) PC + 2 * offset -> PC	-	-	-	
JGE	label	Jump if greater or equal	if (condition) PC + 2 * offset -> PC	-	-	-	
JL	label	Jump if less	if (condition) PC + 2 * offset -> PC	-	-	-	
JMP	label	Jump	PC + 2 * offset -> PC	-	-	-	
JN	label	Jump if N set / Jump if negative	if (condition) PC + 2 * offset -> PC	-	-	-	
JNC /JLO	label	Jump if C not set / Jump if lower	if (condition) PC + 2 * offset -> PC	-	-	-	
JNZ / JNE	label	Jump if Z not set / Jump if equal	if (condition) PC + 2 * offset -> PC	-	-	-	
, MOV (.B)	src, dst	Move source to destination	src -> dst	-	-	-	
NOP		No operation		-	-	-	
POP (.B)**	dst	Pop item from stack to destination	@SP+ -> dst	-	-	-	
PUSH (.B)	src	Push source onto stack	SP -2 -> SP, src -> SP	-	-	-	
RET**		Return from subroutine	@SP -> PC	-	-	-	Ι.
RETI		Return from interrupt	@SP -> SR, @SP+ -> PC	*	*	*	
	dst	Rotate left arithmetically	dst * 2 -> dst	*	*	*	
RLA (.B)**				*	*	*	,
RLC (.B)**	dst	Rotate left through C	dst * 2 -> dst, C -> LSB(dst)		*	*	
RRA (.B)	dst	Rotate right arithmetically	$dst/2 \rightarrow dst$	0	*	*	
RRC (.B)	dst	Rotate right through C	dst / 2 -> dst, C -> MSB(dst)	0	*	*	
SBC (.B)**	dst	Subtract not(C) from destination	dst + NOT(0) + C -> dst	_	, "		
SETC**		Set C	1 -> C	-	-	-	:
SETN**		Set N	1 -> N	-	1	-	
SETZ**		Set Z	1 -> Z	-	-	1	
SUB (.B)	src, dst	subtract source from destination	dst + NOT(src) + 1 -> dst	*	*	*	1
SUBC (.B)**	src, dst	subtract source and not(C) from destination	dst + NOT(src) + C -> dst	*	*	*	3
SWPB	dst	Swap bytes		-	-	-	
SXT	dst	Extend sign		0	*	*	
TST (.B)**	dst	Test destination	dst + NOT (0) + 1	0	*	*	
XOR(.B)	src, dst	Exclusive OR source and destination	src XOR dst -> dst	*	*	*	

The table below shows a list of all instructions::

Figure 10: Instruction Set of EL16

ELMOS Semiconductor AG

5.5.1 EL16 Instruction Cycle Counts

command type	operation	cycles	cycles(dreg==PC)
MOV	sreg -> dreg	1	2
DOUBLE	sreg x dreg -> dreg	1	2
MOV	sreg -> Y(dreg) -> dreg	3	
DOUBLE	sreg x Y(dreg) -> Ydreg	4	
MOV	@sreg -> dreg	2	3
DOUBLE	@sreg x dreg -> dreg	2	
MOV	@sreg -> Y(dreg) -> dreg	4	
DOUBLE	@sreg x Y(dreg) -> Ydreg	5	
MOV	@sreg+ -> dreg	2	3
DOUBLE	@sreg+ x dreg -> dreg	2	
MOV	@sreg+ -> Y(dreg) -> dreg	4	
DOUBLE	@sreg+ x Y(dreg) -> Ydreg	5	
MOV DOUBLE	Xsreg+ -> dreg Xsreg+ x dreg -> dreg	3	4 4
MOV	Xsreg+ -> Y(dreg) -> dreg	5	
DOUBLE	Xsreg+ x Y(dreg) -> Ydreg	6	
SINGLE SINGLE SINGLE SINGLE	dreg @dreg @dreg+ Y(dreg)		2
JUMP RETI IRCQ		2 3 4	
PUSH	reg	3	
PUSH	@reg	4	
PUSH	@reg+	4	
PUSH	X(reg)	5	
CALL	reg	3	
CALL	@reg	4	
CALL	@reg+	4	
CALL	X(reg)	5	

Figure 11: EL16 Instruction Cycle Counts

SINGLE includes RRC, RRA, SWPB and SXT DOUBLE includes all double operand instructions except MOV

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E909.06

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE PRODUCTION DATA - NOV 16, 2011

5.6 Memory Description

5.6.1 Memory Map

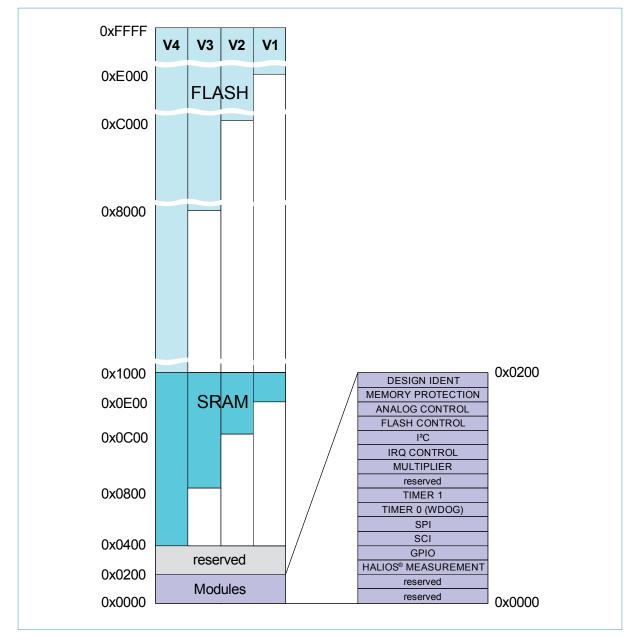


Figure 12: Memory Map

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

5.6.2 Base Address Table

Base address	Size	Module name
0x1000	0xF000	FLASH address
0x0400	0x0C00	SRAM address
0x0200	0x0200	reserved
0x01E0	0x0020	Design Ident Module
0x01C0	0x0020	Memory Protection Module
0x01A0	0x0020	Analog Control Module
0x0180	0x0020	FLASH Control Module
0x0160	0x0020	I ² C Interface
0x0140	0x0020	Interrupt Control Module
0x0120	0x0020	Multiplier Module
0x0100	0x0020	reserved
0x00E0	0x0020	Timer 1
0x00C0	0x0020	Timer 0 (Window-Watchdog)
0x00A0	0x0020	SPI Module
0x0080	0x0020	LIN-SCI Module
0x0060	0x0020	GPIO Module
0x0040	0x0020	HALIOS [®] Interface
0x0020	0x0020	reserved
0x0000	0x0020	reserved

The differences in base addresses for the 3 additional devices of the EL16H6 versions are described in the tables below.

Base address	Size	Module name
0x8000	0x8000	FLASH
0x1000	0x7000	reserved
0x0800	0x0800	SRAM
0x0400	0x0400	reserved

Base address	Size	Module name
0xC000	0x4000	FLASH
0x1000	0x3000	reserved
0x0C00	0x0400	SRAM
0x0400	0x0800	reserved

Base address	Size	Module name
0xE000	0x2000	FLASH
0x1000	0xD000	reserved
0x0E00	0x0200	SRAM
0x0400	0x0A00	reserved

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

ELMOS Semiconductor AG

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE PRODUCTION DATA - NOV 16, 2011

5.6.3 FLASH EL16H6

- Main block size: up to 30K x 22 bit (60Kbyte) CRC protected
 - ► V4: 120 pages (60KByte)
 - ► V3: 64 pages (32KByte)
 - V2: 32 pages (16KByte)
 - ► V1: 16 pages (8KByte)
 - 256 words per page
 - ▶ 8 rows per page -> 32 words per row
 - Page erase support
- See TSMC FLASH documentation for timing details
 - 20 ms page erase
 - 200 ms mass erase
 - About 30 μs programming time per word

FLASH CRC calculation

- CRC polynomial: x⁶ + x⁴ + x³ + x² + x¹ + 1
- Hamming distance: 4 (1 bit error correctable, 2 bit errors detectable)
- Frased FLASH words will cause an uncorrectable bit error when read, which asserts a reset

5.6.4 SRAM EL16H6

- Size: up to 1.5K x 18Bit (3KByte)
 - ► V4: 3KByte
 - ► V3: 2KByte
 - ► V2: 1KByte
 - ▶ V1: 512Byte
- Byte write enable support
- Each byte is extended by a parity bit

5.7 Design Ident Module

The Design Ident Module of the EL16H6 contains following information:

- Design Ident (split into 4x16 bit words), a unique number which identifies every single device
- Design Version Code

All information are read only.

5.7.1 Design Ident Module Registers

Register Name	Address	Description
Design Ident 0	0x00	
Design Ident 1	0x02	
Design Ident 2	0x04	
Design Ident 3	0x06	
Version	0x08	

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Data Sheet

E909.06

Register Design Ident 0 (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	L5:0 : Design Ident 0														

Table 13: Send Frequency Select

Register Design Ident 1 (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	.5:0 : Design Ident 1														

Table 14: Design Ident 1

Register Design Ident 2 (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	15:0 : Design Ident 2														

Table 15: Design Ident 2

Register Design Ident 3 (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	: Desi	gn Ide	nt 3												

Table 16: Design Ident 3

Register Version (0x08)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	V1 - (V2 - (V3 - (: Desig 0x000 0x002 0x001 0x003	0 5 A	sion C	ode											

Table 17: Version

5.8 Memory Protection Module

- Op-code execute area configuration (granularity: 1KByte, 64 areas)
- Stack area configuration (granularity: 256Byte, 12 areas)
- Invalid module register address handling

NOTE: In versions smaller then EL16H6V4 activation of non existent memory areas in Op-code Execute Enable Registers and Stack Enable Register have no effect.

5.8.1 Memory Protection Module Registers

Register Name	Address	Description
Op-code execute enable 0	0x00	
Op-code execute enable 1	0x02	
Op-code execute enable 2	0x04	
Op-code execute enable 3	0x06	
Failure address value	0x08	
Stack enable	0x0A	
Invalid address value	0x0C	
Interrupt clear	0x0E	

Register op-code execute enable 0 (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	: 1 : ar 0 : ar enab 0 - e> 1 - e> area	ea 0x(ea 0x(le (ecutio (ecutio size: 1	x3000 0400 t 0000 t on of c on of c KByte : 0xFF	o 0x0 o 0x0 op-coc op-coc	7FE 3FE	ied wed										

Table 18: Op-code execute enable 0

Register op-code execute enable 1 (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	: 1 : ar 0 : ar enab 0 - e> 1 - e> area	ea 0x4 ea 0x4 le kecutio size: 1	x7000 4400 t 4000 t 500 of c 500 of c KByte :: 0xFF	o 0x4 o 0x4 op-coc op-coc	7FE 3FE	ied wed										

Table 19: Op-code execute enable 1

Register op-code execute enable 2 (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	: 1 : ar 0 : ar enab 0 - e> 1 - e> area	ea 0x8 ea 0x8 le kecutio size: 1	3400 t 3000 t		7FE 3FE	ied wed										

Table 20: Op-code execute enable 2

Register op-code execute enable 3 (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	: 1 : ar 0 : ar enab 0 - ex 1 - ex area	ea 0x0 ea 0x0 le kecutio size: 1	2400 t 2000 t		7FE 3FE	ied wed										

Table 21: Op-code execute enable 3

Register failure address value (0x08)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	acces	: addr ss, unc value	lefine	d op-c		d failu	ire (ex	ecute	prote	ction,	stack	protec	tion, r	nisalię	gned 1	.6 bit

Table 22: Failure address value

Register stack enable (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R	R	R	R	R/W											
External access	R	R	R	R	R/W											
Bit Description	to 1 : ar 0 : ar	ea 0x(ea 0x(x0F00 0500 t 0400 t : 0x0F	o 0x0 o 0x0	5FE				·					·		

Table 23: Stack enable

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register invalid address value (0x0C))

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description			ess of : 0x00		ivalid i	modul	e regi	ster ac	cess	×			·		·	

Table 24: Invalid address value

Register interrupt clear (0x0E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access												W	W	W	W	W
External access												W	W	W	W	W
Bit Description	4 : undefined op-code IRQ clear (address of undefined op-code can be obtained by looking to the return address stored in stack minus - 2) 0 - no influence 1 - clear interrupt 3 : misaligned 16 bit access IRQ clear 0 - no influence 1 - clear interrupt 2 : invalid address IRQ clear 0 - no influence 1 - clear interrupt 1 : stack protection IRQ clear 0 - no influence 1 - clear interrupt 0 : execute protection IRQ clear 0 - no influence 1 - clear interrupt 0 : execute protection IRQ clear 0 - no influence 1 - clear interrupt 0 : execute protection IRQ clear 0 - no influence 1 - clear interrupt															

Table 25: Interrupt clear

5.9 Analog Control Module

Controls clock and reset generator (CRG)

5.9.1 Analog Control Module Registers

Register Name	Address	Description				
Wake-up timer config	0x00					
Reset source status	0x0C					
Reset source status clear	0x0E					
Wake-up timer interrupt status	0x14					
Wake-up timer interrupt clear	0x16					

ELMOS Semiconductor AG	Data Sheet
------------------------	------------

Register wake-up timer config (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	must 4 : er 0 - tir 1 - tir 3:0 :	nable t mer of mer or	ritten imer f n value:							5 · 1], wi	th tim	ier val	ue 0	15		

Table 26: Wake-up timer config

Register reset source status (0x0C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	7 : R/ 6 : FL 5 : CF 4 : W 1 : ex 0 : pc	AM pa ASH u PU reg atchda atcrna	rity er incorr ister p og res I reset	ror ectabl parity e et et et / su	e bit e error	rror			·	t num C erro		and 1)				

Table 27: Reset source status

Register reset source status clear (0x0E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access																W
External access																W
Bit Description	0 - no	o influ	ence		is bits is bits	*		×		*		×		*		

Table 28: Reset source status clear

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	1 - in	o inter terrup	maske p time rupt ot was :: 0x00	asser		event o tatus	occurr	ed (int	terrup	t num	ber 0 a	and 1)				

Register wake-up timer interrupt status (0x14)

Table 29: Wake-up timer interrupt status

Register wake-up timer interrupt clear (0x16)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access																W
External access																W
Bit Description	0 - no	ว influ	Q clea ence terrup													<u>.</u>

Table 30: Wake-up timer interrupt clear

5.10 FLASH Control Module

5.10.1 FLASH Control Module Registers

NOTE: In versions smaller then V4 activation of non existent memory areas in Area Protection Registers have no effect.

Register Name	Address	Description
Area protection (areas 0 - 7)	0x00	
Area protection (areas 8 - 14)	0x02	
Mode	0x04	
Status	0x06	
IRQ clear	0x08	
Bit error corrected address	0x0C	
Word config	0x0E	
Frequency config	0x10	

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	must will a 7:0 : 0 - ar 1 - ar areas area area	Ilways writal ea pro ea wr 5 0 - 7 0: 0x1 7: 0x8	ritten be re ble otecte itable	ad as (d ASH m 0x1FF 0x8FF)x96 nain bl F	ock ar	eas (e	ach 4	Kbyte))						

Register area protection (areas 0 - 7) (0x00)

Table 31: Area protection (areas 0 - 7)

Register area protection (areas 8 - 14) (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	must will a 6:0 : 0 - ar 1 - ar areas area area	Ilways writal ea pro ea wr 5 8 - 14 8: 0x9 14: 0x	ritten be re ble tecte itable are F 000 -	LASH 0x9FF - 0xFF)x96 main l F	olock a	areas (each 4	l Kbyt	e)						

Table 32: Area protection (areas 8 - 14)

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register mode (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	must will a 7:0 : 1 0x01 0x04 0x10 0x40 . : eve . : pro cle (s flag i -> Pro	Ilways mode - mai - mai - eras - mas - mas ery ove ogram ee bus n progogram	ritten be res n bloc n bloc e main s eras er writ /erase	ad as (k read k prog n bloc e main tten m e mode of sta node) e Mode	ox96 k page n bloch node v es: wri itus re	k alue re te acc	ess to	appro	priate	ock rea : flash nfig ar	addre	ss stai	rts pro ramm	ogram ing ind	/ eras	e cy- ete

Table 33: Mode

Register status (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	bit en this b 2 : w unex this b 1 : ro curre 0 : bu 0 - re 1 - bu	ror de pit is c rite er pecte pit is c w pro nt nu isy ady usy (pi	d FLAS leared gramr	d and by bit 5H wri by wr ning in of prog n or er	te acc te acc ite err ncomp gramn	correc ess or IRQ olete ned ro	o clear w wo	rds !=		config	(see b	elow)				

Table 34: Status

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register IRQ clear (0x08)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access															W	W
External access															W	W
Bit Description	0 - nc 1 - cle 0 : w 0 - nc 1 - cle Note erase	o influ ear int rite er o influ ear int : A wr e or pr	ror IRC ence errup	t 2 clear t or inte 1 shou			er whi d in RA	ich is a AM be	asserte cause	ed on a FLASH	a bad s I cont	write a	access ay not	durin be rea	g FLAS adable	SH e dur-

Table 35: IRQ clear

Register bit error corrected address (0x0C)

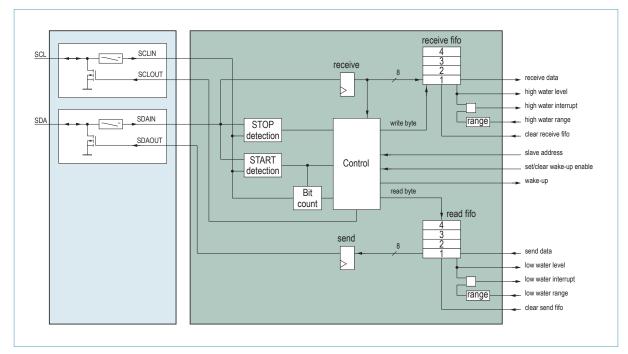
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description			ess of : 0x00		orrecta	able fla	ash bit	error								

Table 36: Bit error corrected address

Register word config (0x0E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	must will a 4:0 : 0: 1 v 1: 2 v 31: 3	ilways numb vord vords 2 wor	ritten be rea er of v	as 0x/ ad as (vords fault, a	0x96 to pro			ı row								

Table 37: Word config


Register frequency config (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R/W	R/W
Bit Description	must will a 1:0 : 0: sys 1: sys 2: sys 3: sys	Ilways syster stem f stem f stem f	ritten be re n freq reque reque reque	ncy is ncy is ncy is ncy is	0x96 config 8 MH 16 MH 24 MH	z (defa Hz Hz	et a co ault)	rrect e	erase a	and pro	ogram	ı timin	g			

Table 38: Frequency config

5.11 I²C Interface

5.11.1 I²C Block Diagram

Figure 13: I²C Block Diagram

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E909.06

5.11.2 I²C Function

The I²C slave interface operates in 7 bit addressing mode with a maximum frequency of 400 kHz (fast mode). To synchronize the IC to different operation voltages of the I²C bus the interface has a separate supply voltage input at pin VDDIO which is responsible for all interface pins. For more details of the addressing modes please refer to the "I²C - BUS SPECIFICATION VERSION 2.1" from Philips.

5.11.3 I²C Bus Timing Diagram

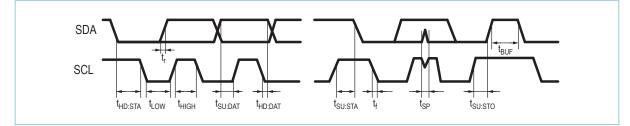


Figure 14: I²C Bus Timing Diagram

5.11.4 I²C Module Registers

Register Name	Address	Description
Receive Data FIFO Register	0x00	
Send Data FIFO Register	0x02	
Control Register	0x04	
Status Register	0x06	

Register Receive Data FIFO Register (0x00)

	MSB							LSB
Content	7:0							
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R
Bit Description	7:0 : receiv (see Data F	e data IFO Register	s for details)				

Table 39: Receive Data FIFO Register

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register Send Data FIFO Register (0x02)

	MSB							LSB
Content	7:0							
Reset value	0	0	0	0	0	0	0	0
Internal access	W	W	W	W	W	W	W	W
External access	W	W	W	W	W	W	W	W
Bit Description	7:0 : send c (see Data F	lata IFO Register	s for details)				

Table 40: Send Data FIFO Register

Register Control Register (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Internal access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R					R/W	R/W	
External access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Bit Description	0 - re 1 - w 12 : 0 0 - re 1 - w 11 : 0 0 - re 1 - w 9:8 : "01" "11"	ad rite clear c ad clear v ad rite slave slave \$58 - \$58 - \$58	onten onten vake-u ike-up addres (reset vater vater	ts of r ip mode mode value)	eceive de ena e enab	FIFO ble bi	registe t (see	ers descri escript	ion be	below elow))					

Table 41: Control Register

Register Status Register (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	1 - w 6:4 :	ake-uj Fill lev	p mod p mod p mod vel of r vel of s	e enal eceive	bled FIFO											

Table 42: Status Register

5.11.5 Data FIFO Registers

Receive Data FIFO Registers:

The data received from the master is stored in the receive FIFO registers and has a depth of 4. The current fill level can be read in the status register. If the FIFO is completely filled up and another byte should be received the interface will force the master into a wait state until the application software reads one byte from the FIFO.

Send Data FIFO Registers:

The master reads data that is stored in the send FIFO registers. This FIFO buffer has a depth of 4 registers. The current fill level can be read in the status register. If the FIFO is empty and a byte is requested by the master the interface will force the master into a wait state until the application software writes one byte to the FIFO.

5.11.6 Interrupt Handling

I²C receive command (see List Of All Interrupts)

Command word pending in receive FIFO, this means the next byte read from the receive FIFO is the first received byte after the slave has been addressed. Depending on the application software this byte could be interpreted as a command. The interrupt flag is set back by reading a byte from the receive FIFO. The master will force the interface into a wait state until the application software reads one byte from the FIFO.

I²C send request (see List Of All Interrupts)

This flag signalizes that the master is requesting a byte but the send FIFO is empty. The interrupt flag is set back by writing a byte to the send FIFO. The master will force the interface into a wait state until the application software writes one byte to the FIFO.

I²C send FIFO low water (see List Of All Interrupts)

In case the low water mark (defined in control register) is reached or is exceeded the send FIFO low water flag becomes active. The flag is set back by filling to the send FIFO.

I²C receive FIFO high water (see List Of All Interrupts)

If the high water mark (defined in control register) is reached or is exceeded the receive FIFO high water flag becomes active. The flag is set back by reading from the receive FIFO.

PRODUCTION DATA - NOV 16, 2011

5.11.7 I²C Wake-up Detection

The I²C interface can be used to wake up the IC from any system state. In system state "off" the interface has to be configured to wake the CPU Therefore the 'wake-up mode enable bit' has to be set (defined in control register) before setting the IC to "off-mode".

It is only possible to set the 'wake-up mode enable bit' if the I²C Master has closed the communication on the bus, so the application software has to poll the bit 'wake-up mode enable' (defined in status register) after it was set to make sure the bus is in idle state and the IC can be set to "off-mode".

After a new addressing of the slave on the bus the system will wake up from "off-mode" and the "I²C wake-up event" interrupt is active as long as the 'wake-up mode enable bit' is set back to zero (defined in control register). While the wake-up process the interface will force the Master into a wait state by holding the SCL line low. The application software has to clear the 'wake-up mode enable bit' (defined in control register) to release the SCL line in order to continue the communication.

5.12 Interrupt Control Module

5.12.1 Interrupt Control Module Structure

- Interrupt pending bit flip-flops (request hold elements) are located inside asserting modules
- Interrupt vector support for more simple and faster interrupt entry
- Fast vector based interrupt enable / disable
- Nested interrupt support
- FLASH based main interrupt vector
- ► Main interrupt enable MIE for easy cli() and sei() implementation
- N is the number of interrupt vectors

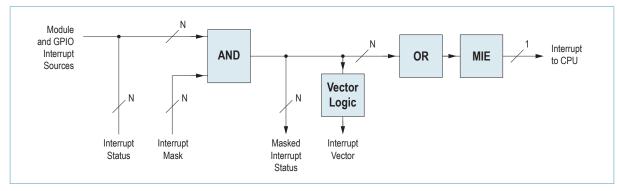


Figure 15: Interrupt control circuit

E909.06

HALIOS[®] MULTI PURPOSE SENSOR FOR AUTOMOTIVE PRODUCTION DATA - NOV 16, 2011

5.12.2 List Of All Interrupts

Vector Number	Interrupt Source	Priority
0	undefined op-code	highest
1	misaligned word access	
2	op-code execute protection error	
3	stack protection error	
4	invalid module register address access	
5	FLASH bit error corrected	
6	FLASH write error	
7	HALIOS [®] measurement ready	
8	timer0 window error (watchdog)	
9	timer1 event	
10	I2C receive command	
11	I2C send request	
12	I2C send FIFO low water	
13	I2C receive FIFO high water	
14	SPI timeout	
15	SPI FIFO error	
16	SPI receive high water	
17	SPI send low water	
18	SCI break received	
19	SCI measurement completed	
20	SCI receive full	
21	SCI transmit empty	
22	GPIO rising	
23	GPIO falling	
24	I2C wake-up event	
25	wake-up timer wake-up event	lowest

5.12.3 Interrupt Control Module Registers

Register Name	Address	Description
Interrupt mask	0x00	
Interrupt status	0x04	
Masked interrupt status	0x08	
Interrupt vector number	0x10	
Maximum interrupt level	0x14	
Main interrupt enable	0x16	
Interrupt enable	0x18	
Interrupt disable	0x1A	

Register interrupt mask (0x00)

Bit	3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	/	R / W	/	R / W																				
External access	R / W	R / W	R / W	R / W	R / W	R / W	/	R / W	/	R / W	R / W	R / W	R / W	/	R / W	R / W	R / W	R / W	R / W	/	R / W	R / W	R / W	R / W	R / W	R / W	/	R / W	R / W	R / W	R / W	R / W
Bit Description	0	- di - er	sat 1ab	ole led					All	Int	teri	rup	ts f	or	det	ails	5)															

Table 43: Interrupt mask

Register interrupt status (0x04)

Bit	3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0	- no - ao	ot a ctiv	e e	ve		Lis				nte	rru	pts	foi	r de	etai	ls)															

Table 44: Interrupt status

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register masked interrupt status (0x08)

Bit	3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0	- no - ac	: m ot a ctiv	icti e	ve			,			Of	F Al	l In	ter	rup	its 1	for	de [.]	tail	s)												

Table 45: Masked interrupt status

Register interrupt vector number (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	vecto wher	or num 1 no ir	iber o	f penc ot is po	ling in	Interr terrup g, vect	t with	i highe	est pri	ority (smalle	est vec	tor nu	mber)		

Table 46: Interrupt vector number

Register maximum interrupt level (0x14)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	softv highe	ed for vare v	vrites (rity (lo	curren ower v	rrupt : t vect ector	ornur	nber t	o this 1 nest.	regist	er, so (only in	terrup	ots wit	:h		

Table 47: Maximum interrupt level

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register main interrupt enable (0x16)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	sei() reset Note flag a shou	intern routin value cli() u atomic ld only	es. :: 0x00 usually - (non	001 7 must interr sed fo	check uptab r inter	k (save le). EL1 rupt n	e curre L6 has esting	nt ena no su g. Whe	ble st ch ope n MIE	atus) a eratior is only	and th 1, so G y used	en cle IE flag I inside	ar inte g canno e cli() a ntry.	errupt	ised.	GIF

Table 48: Main interrupt enable

Register interrupt enable (0x18)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access												W	W	W	W	W
External access												W	W	W	W	W
Bit Description	vecto	or num	dresse nber o n a disa	f inter	rupt to	o enat	ole .		Ũ			ill be g	genera	ited		

Table 49: Interrupt enable

Register interrupt disable (0x1A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access												W	W	W	W	W
External access												W	W	W	W	W
Bit Description	4:0 : vecto	set ad or num	dresse iber of	ed ena f inter	ble bit rupt to	t in Int o disal	errup [†]	t Mask	regis	ter to	0					

Table 50: Interrupt disable

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

PRODUCTION DATA - NOV 16, 2011

5.13 Multiplier Module

The hardware multiplier is a peripheral and is not part of the EL16 CPU. This means, its activities do not interfere with the CPU activities. The multiplier registers are peripheral registers that are loaded and read with CPU instructions.

- The hardware multiplier supports:
- Unsigned multiply
- Signed multiply
- Unsigned multiply accumulate
- Signed multiply accumulate
- 16 x 16 bits, 16 x 8 bits, 8 x 16 bits, 8 x 8 bits
- CPU is halted until result is valid (1 clock cycle)

The hardware multiplier supports unsigned multiply, signed multiply, unsigned multiply accumulate, and signed multiply accumulate operations. The type of operation is selected by the address the first operand is written to. The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and three result registers, SumLo, SumHi, and SumExt. SumLo stores the low word of the result, SumHi stores the high word of the result, and SumExt stores information about the result.

Register Name	Address	Description
MPY	0x10	
MPYS	0x12	
MAC	0x14	
MACS	0x16	
Operand 2	0x18	
SumLo	0x1A	
SumHi	0x1C	
SumExt	0x1E	

5.13.1 Multiplier Module Registers

Register MPY (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	unsig	gned n	and 1 nultipl : 0x00	у												

Table 51: MPY

Register MPYS (0x12)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	signe	d mul	and 1 tiply : 0x00													

Table 52: MPYS

Register MAC (0x14)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	unsig	gned n	rand 1 nultipl :: 0x00	у асси	imulat	te										

Table 53: MAC

Register MACS (0x16)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	signe	d mul	and 1 tiply a : 0x00	iccum	ulate											

Table 54: MACS

Register Operand 2 (0x18)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	(writ	: Oper e acce : value	ss stai	rts mu	ıltiplic	ation)										

Table 55: Operand 2

Register SumLo (0x1A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description			r 16 bi : 0x00		esult	×			·							<u>.</u>

Table 56: SumLo

Register SumHi (0x1C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W														
Bit Description	MPY: MPYS sult. MAC MAC	uppe 5: The Two's : uppe S: Upp	r 16 bi MSB i compl r 16 b	t of re s the s emen it of re ·bits o	sult ign of t nota sult	tion is	sused	for th	e resu	lť.			per 15-			e-

Table 57: SumHi

Register SumExt (0x1E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	MPY: MPY: 0x00 0xFF MAC 0x00 0x00 0x00 0x00 0x00 0xFF	alway 5: conf 60 if r FF if re : cont 00 no 01 res 5: conf 60 if r FF if re	se of c ys 0x0 tains t result w esult w tains th carry sult w tains t result w esult w esult w	000 he ext was po vas ne te carr result th car he ext was po vas ne	tendeo ositive gative y of th ry tendeo ositive	ne resu d sign	ult									

Table 58: SumExt

ELMOS Semiconductor AG

PRODUCTION DATA - NOV 16, 2011

5.14 Timer 0 (Window-Watchdog) and Timer 1

- Two 32 bit wide decrementing timers
- ► Timer 0 is used as a window-watchdog, so it triggers a system reset instead of an interrupt when timer value = 0
- Window-watchdog timer is disabled after reset and has to be armed by software
- Window-watchdog cannot be disabled or changed when armed
- ▶ 16 times SCI Baud rate can be configured as timer1 clk base
- NOTE: watchdog will be halted during FLASH erase / program
- NOTE: watchdog and timer will be halted during debug CPU halt
- Window-watchdog generates an interrupt when watchdog is reset outside specified window (see diagram below)

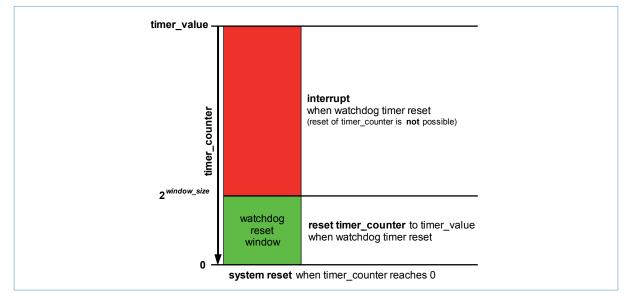


Figure 16: Window-Watchdog Timing

5.14.1 Timer 0 and Timer 1 Module Registers

Register Name	Address	Description
Timer value	0x00	
Timer counter	0x04	
Timer control	0x08	
Timer window config	0x0A	
Timer interrupt clear	0x0C	
SumLo	0x1A	
SumHi	0x1C	
SumExt	0x1E	

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E909.06

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

Register timer value (0x00))

	M S B																															L S B
Content	31 : 0																															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W	R / W
External access	R / W	R / W	R / W	R / W	R / W	R / W	R / W	/	R / W																							
Bit Description				me lue																												

Table 59: Timer value

Register timer counter (0x04)

	M S B																															L S B
Content	31 : 0																															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description						art xFF																										

Table 60: Timer counter

Register timer control (0x08)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R	(R) W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R	(R) W	R/W
Bit Description	must will a 3 : clo 0 - M 1 - N synch 2 : tir 0 - no 1 : lo 0 - ru 1 - lo 0 : ru 0 - tin 1 - tin	Ilways ock ba CLK ACLK/(nroniz mer re o influ set to op n ena mer st mer er	ritten be re- se sele (16*ba e time set ence start e and	hold a l	0x96 timer e) १ cloc	k		"run e	nable"	')						

Table 61: Timer control

Register timer window config (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	passy must will a 5 : w 0 - no 1 - w 4:0 : reset	word be w lways indow o wind indow windo	ritten be rea enab low (d activ ow size ow is o	efault e define	45 0x96)	_						og)				

Table 62: Timer window config

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register timer interrupt clear (0x0C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access															W	W
External access															W	W
Bit Description	1 - cl 0 : w 0 - no	ear int indow 5 influ	Q clea ence errup IRQ c ence errup	t lear												

Table 63: Timer interrupt clear

5.15 SPI Module

- Can be used as master or slave
- ► The SPI Interface consists of the following 4 signals:
- SCK: SPI clock (driven by master)
- CSB: low active chip select (driven by master)
- MISO: master in, slave out (data from slave to master)
- MOSI: master out, slave in (data from master to slave)
- Configurable phase, polarity and bit order
- Byte and multi-byte transfer support
- Slave mode SPI clock monitoring (timeout)
- 4 data word transmit and receive FIFOs

NOTE: Data will not be send as long as SPI interface is not routed to IO ports

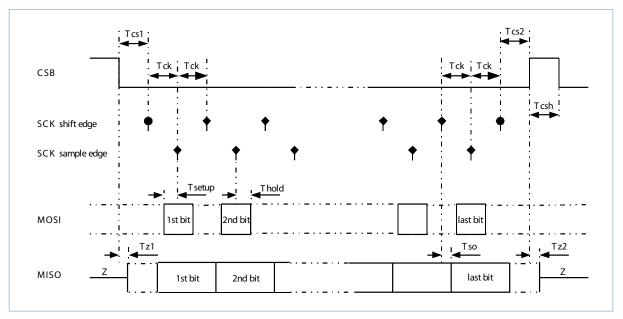


Figure 17: SPI Bus Timing Diagram

PRODUCTION DATA - NOV 16, 2011

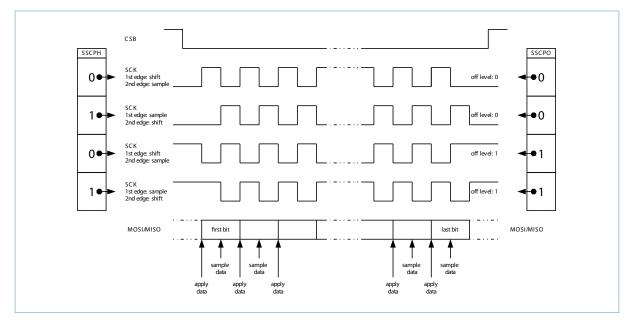


Figure 18: SPI Mode Diagram

5.15.1 SPI Module Registers

Register Name	Address	Description
Transmit data / receive data	0x00	
Control	0x02	
Baud config	0x04	
Timeout config	0x06	
Module reset	0x08	
Status	0x0A	
Error	0x0C	
Interrupt clear	0x0E	

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	(R) W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	(R) W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	0 - by 1 - ke 7:0 : † reset The 's (FIFO The 'i ister	vte mo eep csl transn value send lo send lo (FIFO).	ode o activ nit dat : 0x00 ow wa ow wa	e afte a / re 000 iter' in wate	' inter	ed by† lata ot will	te was be cle	s trans ared b	mitte oy writ	d ing a l	byte to		ransm n the r		U	

Register transmit data / receive data (0x00)

Table 64: Transmit data / receive data

Register control (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1
Internal access	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	inter defau 10:8 inter defau 3 : sla 0 - m 1 - sla 2 : pc 0 - cla 1 - cla 1 - pl 0 - 1s 1 - 1s 0 : or 0 - LS	rupt w ult val : low v rupt w ult val ave olarity ock of nase: S ock of nase: S t edge	<pre>/ill be ue: 2 water /ill be ue: 0 : SSCP f level f level SCPH e shift e samp</pre>	transn assert O, see 0	ed wh nit FIF ed wh SPI mo edge s	ode d ode dia ample	ceive F I Insmit iagran gram	FIFO fil						2		

Table 65: Control

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register baud config (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	= (sys	stem o E: Min	l divid clock f imal v :: 0x00	requei alue fo	ncy) / or bau	(2 * ba d divid	ud rat der is 4	te) 1	<u> </u>							

Table 66: Baud config

Register timeout config (0x06))

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	maxi	mum	out va allowe : 0xFF	ed cou	int of s	systen	n clock	cycle	s betv	veen 2	SPI cl	ock ec	lges	·		

Table 67: Timeout config

Register status (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	= (sys	: baud stem c E: Min value	lock f imal v	reque alue fo	ncy) / or bau	(2 * ba d divid	ud rat der is 4	te) 1								

Table 68: Status

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register error (0x0C))

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	will b 0 : re	oe clea ceive l	red or	n read /as ful	mpty I (rece											

Table 69: Error

Register interrupt clear (0x0E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access															W	W
External access															W	W
Bit Description	1 : cle 0 : cle	ear err ear tin	or IRQ neout	IRQ												

Table 70: Interrupt clear

5.16 LIN-SCI Module

- Full duplex operation
- 8N1 data format, standard mark/space NRZ format
- Extended baud rate selection options
- Interrupt-driven operation with four flags: receiver full, transmitter empty, measurement finished, break character received

Special LIN Support:

- 13 Bit break generation
- 11 Bit break detection threshold
- A fractional-divide baud rate prescaler that allows fine adjustment of the baud rate
- Measurement counter which has 16 bits and can be used as a mini-timer to measure break and bit times (baud rate recovery).
- Baud Measurement Results can directly be fed into the baud register to adjust the baud rate (Baud self-synchronization with SYNC byte)

E909.06

HALIOS® MULTI PURPOSE SENSOR FOR AUTOMOTIVE

PRODUCTION DATA - NOV 16, 2011

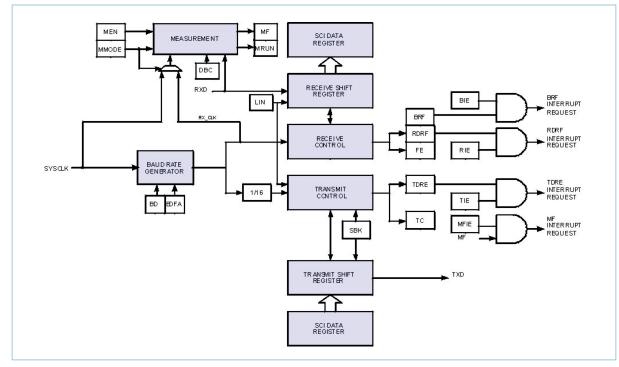


Figure 19: SCI block diagram

5.16.1 LIN-SCI Module Registers

Register Name	Address	Description
Sci baud rate	0x00	
Sci control	0x02	
Sci status	0x04	
Sci data (in/out)	0x06	
Sci measurement control	0x08	
Sci measurement counter	0x0A	

Register sci baud rate (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	Divis: 0x00 0x00 0x00 0x00 0x00 4:0 : These more BDFA BDFA BDFA BDFA BDFA BDFA BDFA BDFA	or: 0> 1 1> 2 2> 3 7> 8 BDFA e bits timin [0000 [0001 [00001 [1000 [11111 value livider ne adj he fol Rate : The 2 hs. Th	- SCI b select g resc 00] = 0 01] = 1 .0] = 2 00] = 1 1] = 3 : 0x00 can b ust ca lowing = clksy 16 bit	0 ution /32 = 0 /32 = 0 6/32 = 1/32 = 000 re used n be u g form vs/(16* baud o	ider) ivisor umber on th 0 0.0312 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.05 0.0625 0.05 0.0968 d to ac used to ula to c(BD+E divisor	fine ac of clc e aver 25 75 hieve fine t calcu 8DFA)) value meas	diviso tune t late th	r valu he bau he SCI	equen es bet id rate baud i the nu	ween e in 1/ rate: umber	1 and 32 ste	2047.9 ps of t	96875 block cy below	. The Ł visor.	le. baud d	ivi-

Table 71: Sci baud rate

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register sci control (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	6 : LII LIN b 5 : RI 4 : BI 3 : TE If sof shift sage, 2 : RE RE se cause settin gene 1 : M 0 : SE Togg Togg long spect	N - LIN reak r E - RxI E - bre tware regist alway - rece t to '0 e error ng RE ration FIE - n SK - se ling SE ling in as SBk	I Mode eceive D inter- ak de- smitt clears er con ys wai eiver e ' supp neous to '0' c (RDRI neasur nd bre 3K sen nplies	e: LIN detec rrupt e tection er ena s TE w tinues t for T nable resses data r luring claring claring claring claring t, the t	break tion e enable n inter ble hile a s to sh DRE to s start ecepti an on eived c t finis	transr nable (gene rupt e transr ift out o go hi bit red ion an going lata sl h inte k char SBK b	(detect enable mission t. To ave gh aft cognit d inte transf nould rrupt e acter (it befo	able (1 ets a 1 interro (gene n is in void ac er the ion, se rrupt { er can be ign enable (10 log pore the	3 bit l 1 bit k upt wh rates ciden last f tting genera cause ored (gene	break s preak s nen RE interru ess (TC tally c rame l RE to ' etion (e error erates respec k char	symbo symbo DRF is upt wh = 0), ' utting before 1' duri RDRF) neous interre	ol inste l inste set) the fra coff the cleari ng an data r upt wl 13 log	ead of ad of RF is se ame in ne last ing TE ongoi ecepti hen M gic 0s ished haract	10 bit) the tr frame ng tra on an F is se if LINT transr) e in a r nsfer d d inter t) is set nitting	nes- can rrupt).

Table 72: Sci control

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register sci status (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	set w valid AUTC clear 8 : Al set w (see a clear 7 : TE Clear NOTI a) in 0 e.g. s irq w b) in 4 : BF Clear NOTI a) in 0 e.g. s irq w b) in 4 : BF Clear NOTI a) in 0 e.g. s irq w b) in 4 : BF Clear Note 3 : O' Clear Note 3 : O' Clear Note S S FE K S Clear Note S S S S S S S S S S S S S S S S S S S	when n SNYC D_BAL ed wh JTO_ when n also m ed wh DRE - t TDRE t emp - trar reset TDRF - r RDRF - r R R flag Sogic 0 N F - me - fram set wh II be s	ew Ba byte i JD) en rea MEAS neasur en rea ransm by wi to '0' v eceive by rea f data f data f data f data f brea eak rea y read set aft data l is set genera eiver o y read set will charace y read set will data l	aud va measu ading t TRIOC remen ading t it dat it dat triting t heck i compl when a data ading be set compl when a data ading to set to compl when to compl to compl when to compl to compl when to compl when to compl to comp	the ms GERED of Was took took took took took took took too	at (see b of t starte ol reg b of t ter en lata re ater full tus wit L/8 no d in the ated e LIN-M us with the st gic 0 v CDRF v	e also r he star ed auto ister -: he star nety g. Wri efore on is in flag th RD minal he mid end of RF des on de de on BRF s art bit vhere vill be su OV se a byte cond of asurer etect a	neasu tus wo > AUTo tus wo ite wil writing n prog RF set bit len dle of the ac criptic epend set an is foll the st set, th ippres et and is not data b nent c a logic	remer ord cally a D_ME. ord I be ig g to tr. ress and the ress and the ress and the op bit the SCI sed w then i cread yte wi	nt con fter re AS) nored ansmi nen re fter th ninal b top bi ow readin by 8 (i shoul data r hen A readin before II be d	trol re eceptic when t regis ading he reco bit leng t. ng sci d be. registe UTO_I g sci d e the c isallov	gister on of a trans ter sci da ognize gth the data r tively wEAS lata re lata by wed	-> a valid mit re ta reg d stop e flags reg. 9 whe be clea is set :g.	gister bit, and v en Lin ared the ne	vith it Mode	is

Table 73: Sci status

Register sci data (in/out) (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Internal access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description			a regi : 0x00		vrite fo	or tran	smitti	ing by	te, rea	d rece	ived b	oyte				

Table 74: Sci data (in/out)

PRODUCTION DATA - NOV 16, 2011

Register sci measurement control (0x08)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0
Internal access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
External access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	DBC[DBC[DBC] DEC[DENC 81x6 3 : Al autoi meas > Al NOTE ceive meas 2 : Al autoi > Al NOTE 1 : M 0 -> b fallin Note LIN p 1 -> b line is NOTE 0 : M Set to When	0] is a 6:0] fc bunce 2,5ns= JTO_E matica surem JTO_K 	Iways prm th filter i =5,1us 3AUD ally co ent (e: 3AUD 3AUD ing ba y the r ent fir MEAS O_MĒ E meas ally sta MEAS O_MĒ E meas ol cime n r applie neasur start surem	set to le upp s reset @16M py bau xpecti TRIGO ud me measu nish fla art a b TRIGO AS me surem easure it leng surem neasure cable to rement is TO_M	logic : er three to 81 MHz ud mean ng SYI GERED easure remer ag (cor aud ra GERED ode su ent m ment gth are ent ex remen togeth t enab isuren finish EAS bi	1. eshold which which WILD will b ment the ment will b infigura will b infigura the meas ode se count e meas pects t, count e meas pects	value n resul e set the set c is act able as easure e set ses th elect ter run sured) a 0x5! nter ru sured) ter ru sured ter ru sure ter ru sure ter ru sure ter ru suru sure	d for b for th lts in r esult t ceiver tive w intern ment a e flag uns with 5 data uns with N cont will bu must easure	e den ninim to bau is disa hich w rupt) after r specif byte byte th 16 s rol bit e clean not b	ouncir um fil: d cont abled a vill ger recept ic flag em clo enable to mea x bauc x bauc	ng filte ter del fig reg an the nerate ion of gener ck and asure, l rate, l rate,	er. ay of ister a refore a valic ration d meas this is measu	fter a no da d breal (see so sures t the S ¹ ures ti	valid ł ta will k ci_stat :ime b YNC by me wł	baud be re- tus -> l etwee yte in f	BRF) en 4 the

Table 75: Sci measurement control

Register sci measurement counter (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	Coun Whe repea Note video can b	iter is n the is surem ated w : In Ba l by 4 be fed	ent wi vith ar iud me and ro	d by e ireme Il be s adap easure ounded ne bau	very st nt cou toppe ted ba ment d (resu	tart of nter o d (MF ud rat mode lting 2	verflo flag se te sett the re 2 bit le	ws the et). The ing. esult o ength	e coun e mea f the b value)	ter va surem baud n	ient sł neasu sultin	satura nould l remen g 16 b	be It (8 bi	0xFFF t leng	F and	the di-

Table 76: Sci measurement counter

PRODUCTION DATA - NOV 16, 2011

5.17 GPIO Module

- Up to 8 GPIOs (see IO Port Multiplexer table)
- Interrupt capable (configurable for positive and / or negative signal edge interrupt)

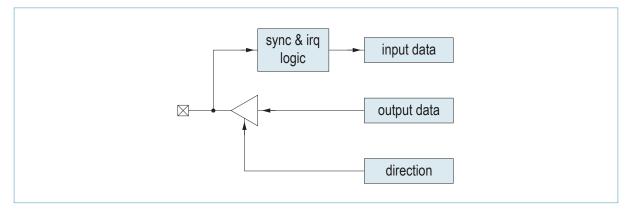


Figure 20: Principle io cell structure

5.17.1 GPIO Module Registers

Register Name	Address	Description
Output data	0x00	
Direction	0x02	
Input data	0x04	
Posedge interrupt enable	0x06	
Posedge interrupt status	0x08	
Posedge interrupt clear	0x0A	
Negedge interrupt enable	0x0C	
Negedge interrupt status	0x0E	
Negedge interrupt clear	0x10	
Port config	0x12	

Register output data (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R/W							
External access	R	R	R	R	R	R	R	R	R/W							
Bit Description		outpu value														

Table 77: Output data

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Register direction (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Internal access	R	R	R	R	R	R	R	R	R/W							
External access	R	R	R	R	R	R	R	R	R/W							
Bit Description	0 - οι 1 - in				isable abled	d										

Table 78: Direction

Register input data (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	R R															

Table 79: Input data

Register posedge interrupt enable (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R/W							
External access	R	R	R	R	R	R	R	R	R/W							
Bit Description	0 - di 1 - a	R R R R R R/W R/W														

Table 80: Posedge interrupt enable

Register posedge interrupt clear (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access									W	W	W	W	W	W	W	W
External access									W	W	W	W	W	W	W	W
Bit Description	7:0 : 0 - no 1 - clo	o influ	ence elated	interr	upt bi	t						~	-	~		

Table 81: Posedge interrupt clear

Register negedge interrupt enable (0x0C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R/W							
External access	R	R	R	R	R	R	R	R	R/W							
Bit Description	0 - di 1 - a	R R R R R R/W R/W														

Table 82: Negedge interrupt enable

Register negedge interrupt status (0x0E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0 - no 1 - in	status o inter terrup value	rupt ot was		ted											

Table 83: Negedge interrupt status

Register negedge interrupt clear (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value																
Internal access									W	W	W	W	W	W	W	W
External access									W	W	W	W	W	W	W	W
Bit Description		o influ	ence elated	interr	upt bi	t										

Table 84: Negedge interrupt clear

Register port config (0x12)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description																

Table 85: Port config

	ELMOS Semicono	luctor AG
--	----------------	-----------

5.17.2 IO Port Multiplexer

IO Port	JTAG Debug TMODE=1	Normal Mode cfg[1:0]=00	Normal Mode cfg[1:0]=01	Normal Mode cfg[1:0]=10	Normal Mode cfg[1:0]=11
TMODE	1	0	0	0	0
100	GPIO00	GPIO00	GPIO00	GPIO00	GPIO00
101	GPIO01	GPIO01	GPIO01	GPIO01	GPIO01
102	GPIO02	GPIO02	TXD	GPIO02	TXD
103	GPIO03	GPIO03	RXD	GPIO03	RXD
104	TDO	GPIO04	GPIO04	SCK	SCK
105	TDI	GPIO05	GPIO05	MISO	MISO
106	TMS	GPIO06	GPIO06	MOSI	MOSI
107	ТСК	GPIO07	GPIO07	CSB	CSB

6 Robustness

6.1 EMC

The contents of this chapter were not specified yet!

6.2 ESD

The ESD protection circuitry is measured according to AEC-Q100-002 with the following conditions:

Test Method (HBM):

VIN = 2000 V (according to device class H1C) REXT = 1500 Ohm CEXT = 100 pF

Test Method (CDM):

VIN = 500 V for all pins VIN = 750 V for corner pins

6.3 Latch up Test

Test Method: 100 mA positive and negative pulses at 85 °C according to AEC-Q100-004.

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

PRODUCTION DATA - NOV 16, 2011

WARNING - Life Support Applications Policy

ELMOS Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing ELMOS Semiconductor AG products, to observe standards of safety, and to avoid situations in which malfunction or failure of an ELMOS Semiconductor AG Product could cause loss of human life, body injury or damage to property. In development your designs, please ensure that ELMOS Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications.

General Disclaimer

Information furnished by ELMOS Semiconductor AG is believed to be accurate and reliable. However, no responsibility is assumed by ELMOS Semiconductor AG for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of ELMOS Semiconductor AG. ELMOS Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.

Application Disclaimer

Circuit diagrams may contain components not manufactured by ELMOS Semiconductor AG, which are included as means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. The information in the application examples has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of ELMOS Semiconductor AG or others.

Contact Information

Headquarters ELMOS Semiconductor AG Heinrich-Hertz-Str. 1 • D-44227 Dortmund (Germany)	Phone: +492317549100	E-Mail: sales@elmos.de	Internet: www.elmos.com
Regional Sales and Application Support Office Munich ELMOS Semiconductor AG Am Geflügelhof 12 • 85716 Unterschleißheim/Eching	Phone: +49893183700		
Sales Office France ELMOS FRANCE SAS 9/11 allée de l'Arche • La Défense • 92671 Courbevoie cedex (France)	Phone: +33149971591		
Sales and Application Support Office North America ELMOS NA. Inc. 32255 Northwestern Highway, Suite 45 • Farmington Hills, MI 48334	Phone: +12488653200		
Sales and Application Support Office Korea and Japan ELMOS Korea Dongbu Root building, 16-2, Suite 509, • Sunae-dong, Bundang-gu, Seongnam-shi, Kyonggi-do (Korea)	Phone: +82317141131		
Sales and Application Support Office China ELMOS Semiconductor Technology (Shanghai) Co., Ltd. 57-01E, Lampl Business Centre, 57F, The Exchange • 1486 Nanjing W Rd. (299 Tongren Rd) • JingAn Shanghai • P.R.China 200040	Phone: +862161717358		
Sales and Application Support Office Singapore ELMOS Semiconductor Singapore Pte Ltd. 60 Alexandra Terrace • #09-31 The Comtech • Singapore 118502	Phone: +6566351141		

© ELMOS Semiconductor AG, 2011. Reproduction, in part or whole, without the prior written consent of ELMOS Semiconductor AG, is prohibited.

ELMOS Semiconductor AG	Data Sheet	QM-No.: 25DS0049E.02

71/71