

PRELIMINARY DATA SHEET - AUG 02, 2011

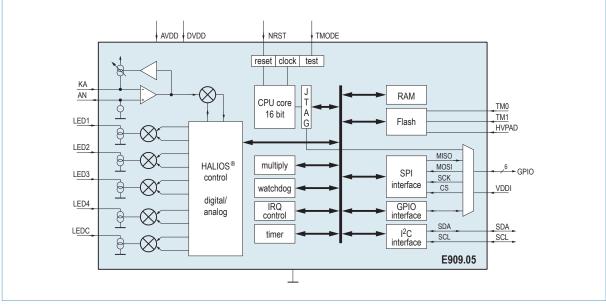
Features

- Up to 4 emitters and 1 compensator
- Automatic calibration of all relevant values
- Optical principle with no mechanics
- SPI and I²C communication interfaces available
- ▶ 16bit microcontroller with 8MHz clock
- 32kByte Flash and 3kByte SRAM memory
- 50µA standby current
- 2.5mA circuit operating current
- Supply voltage range Core 2.25V to 2.75V / IO 1.50V to 2.8V

Applications

- Highly intuitive input devices (e.g. handheld devices, HMI steering wheel, 3D MMIs, etc.)
- In combination with suitable optics and additional software, resolves real x, y, z coordinates (64 x 64 x 16 positions)
- Navigation keys, rotary switches, sliders, proximity sensors and optical switches
- Multi-key applications for rough environmental conditions
- Long range (up to 3m) proximity & motion detection

General Description


The HALIOS® multi purpose optical sensor is based on an optical bridge which provides a contactless detection of gestures (e.g. movement of a finger). The IC E909.05 processes data from optical reflections of an object in front of the sensor using a system called HAL-IOS® (High Ambient Light Independent Optical System). HALIOS[®] is highly efficient suppressing ambient light and also has an inherent self calibration capability to eliminate disturbances caused by housing reflections such as dirt or scratches.

New intuitive user interfaces are possible with this unique input device. All data is analyzed and evaluated internally with a high performance microprocessor and the data output can be easily customized.

HALIOS[®] devices can be applied behind closed surfaces which allows very flexible designs. HALIOS® firmware provides all necessary algorithms and software based filters.

Ordering Information

Product ID	Temp. Range	Package
E909.05	-40°C to +85°C	QFN32L5

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice. Data Sheet

Downloaded from Elcodis.com electronic components distributor

PRELIMINARY INFORMATION AUG 02, 2011

1 Pinout

1.1 Pin Description

Nr.	Name	Туре	Pull	ESD	Description
1	SDA	D_IO		+/- 2KV HBM	I ² C data in/out
2	SCL	D_IO		+/- 2KV HBM	I ² C clock input
3	IO5	D_IO	Down	+/- 2KV HBM	Multifunctional digital output 5
4	IO4	D_IO	Down	+/- 2KV HBM	Multifunctional digital output 4
5	IO3	D_IO	Down	+/- 2KV HBM	Multifunctional digital output 3
6	IO2	D_IO	Down	+/- 2KV HBM	Multifunctional digital output 2
7	IO1	D_IO	Down	+/- 2KV HBM	Multifunctional digital output 1
8	LED4	A_0		+/- 2KV HBM	Output sending LED4
9	LEDVSS	A_G		+/- 2KV HBM	Power ground LED
10	IO0	D_IO	Down	+/- 2KV HBM	Multifunctional digital output 0
11	TMODE	D_I	Down	+/- 2KV HBM	Test mode enable
12	NRST	D_I	Up	+/- 2KV HBM	Reset input, active low
13	VSSI	S		+/- 2KV HBM	Ground IO pins
14	VDDI	S		+/- 2KV HBM	Supply IO pins
15	DVDD	S		+/- 2KV HBM	Digital supply
16	DVSS	S		+/- 2KV HBM	Digital ground
17	LEDVSS	S		+/- 2KV HBM	Power ground LED
18	LED3	A_O		+/- 2KV HBM	Output sending LED3
19	LEDC	A_0		+/- 2KV HBM	Output compensation LED
20	nc			+/- 2KV HBM	
21	nc			+/- 2KV HBM	
22	CA	A_I		+/- 2KV HBM	Photo diode amplifier input
23	AN	A_I		+/- 2KV HBM	Reference voltage for photo diode
24	LED2	A_0		+/- 2KV HBM	Output sending LED2
25	LEDVSS	S		+/- 2KV HBM	Power ground LED
26	AVSS	S		+/- 2KV HBM	Analogue ground
27	AVDD	S		+/- 2KV HBM	Analogue supply voltage
28	TM1	A_IO		+/- 2KV HBM	FLASH test, analogue test bus
29	TM0	A_IO		+/- 2KV HBM	FLASH test, analogue test bus
30	VPP	HV_S		+/- 2KV HBM	FLASH program voltage
31	LED1	A_O		+/- 2KV HBM	Output sending LED1
32	LEDVSS	S		+/- 2KV HBM	Power ground LED

D = Digital, A = Analogue, S = Supply, I = Input, O = Output, HV = High Voltage (max. 15V), nc = not connected

Table 1.1.1 Pin Description

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

1.2 Package Reference

The device is available in a Pb free, RoHS compliant, 20-lead Quad Flat No Lead QFN32L5 package with 25mm² (0.0388 square inch) according to JEDEC standard MO-220- K ; Variant: VHHD-4.

1.3 Package Pinout

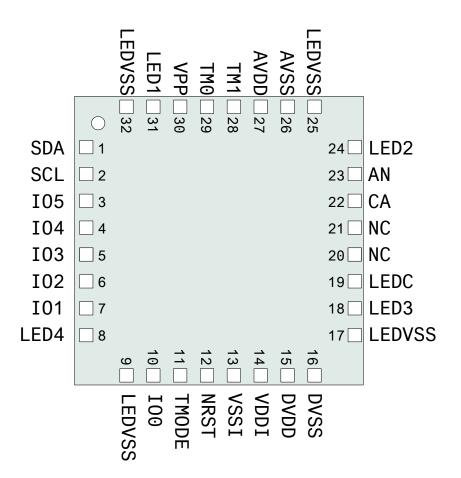


Figure 1.3-1: Package Pinout

2 Block Diagram

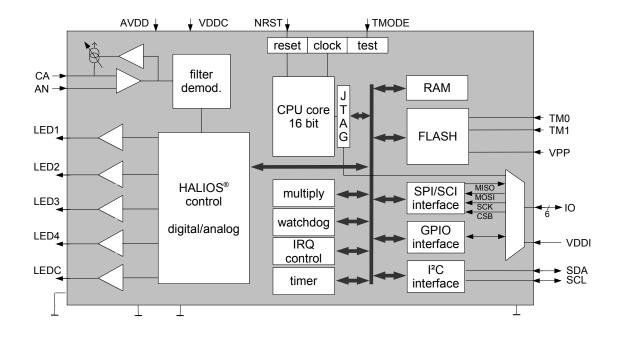


Figure 2-1 Block Diagram

3 Operating Conditions

3.1 Absolute Maximum Ratings

Continuous operation of the device above these ratings is not allowed and may destroy the device. All potentials refer to GROUND (GND) unless otherwise specified. Currents flowing into the circuit pins have positive values.

Parameter	Condition	Symbol	Min.	Max.	Unit
Supply voltage: digital core, analogue part	Referenced to D _{vss} / A _{vss}	D _{VSS /} A _{VSS}	-0.3	2.8	V
IO supply voltage/digital pins (see "type"/chapter 1.1)	Referenced to V_{SSI}	V _{DDI}	-0.3	2.8	V
Input voltage analog pins (see "type"/chapter 1.1)	Referenced to A _{VSS}	V _{INA}	-0.3	A _{VDD} + 0.3	V
Input voltage digital pins/GPIO (see "type"/chapter 1.1)	Referenced to V _{SSI}	V _{IND}	-0.3	V _{DDI} + 0.3	V
Ground offset	D _{vss} to A _{vss} to LED _{vss}		-0.3	0.3	V
Junction Temperature		ΤJ	-40	125	°C
Storage temperature		T _{STG}	-50	150	°C

Table 3.1.1 Absolute Maximum Ratings

3.2 Recommended Operating Conditions

The following conditions apply unless otherwise stated. All potentials refer to GROUND (GND) unless otherwise specified. Currents flowing into the circuit pins have positive values.

Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
Supply voltage: analogue part, digital core	Referenced to D _{VSS} /A _{VSS}	D_{VDD}/A_{VDD}	2.25	2.5	2.75	V
IO supply voltage/digital pins (see "type"/chapter 1.1)	$\begin{array}{c} \text{Referenced} \\ \text{to } V_{\text{SSI}} \end{array}$	V _{DDI}	1.50	1.8	D_{VDD}	V
Filter capacitor analogue part	Connected to A _{VDD}	C_{AVDD}		100		nF
Filter capacitor digital part	Connected to D _{VDD}	C_{DVDD}		100		nF
Ambient operating temperature range		T _{OPT}	-40	25	85	°C

Table 3.2.1 Recommended Operating Conditions

All voltages are referred to $D_{\mbox{\tiny VSS}},$ and currents are positive when flowing into the node unless otherwise specified.

4 Detailed Electrical Data Specification

The following conditions apply unless otherwise stated. All potentials refer to GROUND (GND) unless otherwise specified. Currents flowing into the circuit pins have positive values.

4.1 Supply Voltages

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Digital operating current, run mode	FSYS = 8 MHz, sys- tem state: run	I _{DVDD}		5.8	12	mA
2	Digital operating current, standby mode	System state: standby	ISTANDBY		1.8	5	mA
3	Digital operating current, off mode	System state: off	I _{OFF}			35	μA
4	Analogue operating current	Analogue on = 1	I _{AVDD}		4.5	5.0	mA
5	Analogue operating current	Analogue on = 0	IAVDD_OFF			15	μA
6	Over all current consump- tion in application mode	Active mode ¹)	I _{ACTIVE}		2.0	2.25	mA
7	Over all current consump- tion in application mode	Idle mode (I _{IDLE} = I _{OFF} + I _{AVDD_OFF})	I _{IDLE}		16	50	μA
8	State change from STANDBY to RUN mode		TSTAND- BY2RUN			3	1/FSYS
9	State change from OFF to RUN mode		TOFF2R UN			5	1/FSYS

Table 4.1.1 Supply: Parameters

¹) In application mode the current consumption is calculated from the duty cycle of the digital operating current and the analogue operating current.

PRELIMINARY INFORMATION AUG 02, 2011

4.2 Reset Generation

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Power on reset level	Reference is D _{VDD}	V _{POR}			2.25	V
2	Brown out high-to-low threshold level	Reference is D _{VDD}	V_{BOHL}	1.95			V
3	Brown out reset hysteresis		VBOHYST	100	200	300	mV
4	Minimum supply voltage for power on reset and brown out circuit ①		VDDmin		0.9		V
5	NRST-pin low-to-high threshold level		NRSTLH			0.80	V _{DDI}
6	NRST-pin high-to-low threshold level		NRST _{HL}	0.25			V _{DDI}
7	Pull up current NRST-pin	V _{NRST} = V _{DDI}	I _{NRSTPU}		20		μA
8	Min. pulse width for a valid reset at pin NRST (denoun- cing)	$D_{VDD} > D_{VDD}$ min	T _{debnrst}	200		-	ns
9	Delay Watchdog start ⇔ reset ①		T _{WDOG}		timer value		1/FSYS

Table 4.2.1 Reset Generation

 $\ensuremath{\mathbbm O}$: Will not be tested in production test

4.3 Internal Clock Generation

4.3.1 Reference Clocks

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Wakeup clock frequency	Within recom- mended operating conditions	FWK	115.2	128.0	140.8	kHz
2	Master clock	Within recom- mended operating conditions	FSYS	7.2	8.0	8.8	MHz

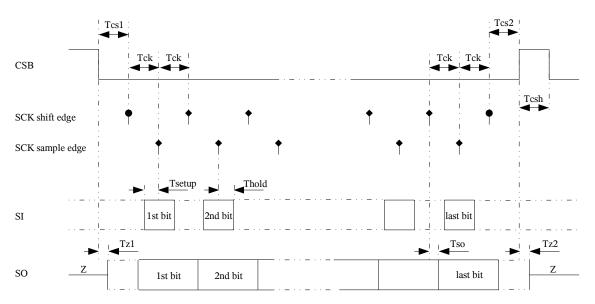
Table 4.3.1.1 Reference Clocks

PRELIMINARY INFORMATION AUG 02, 2011

4.4 Module Description

4.4.1 I²C Interface

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	SDA/SCL: Input voltage low ¹)		VIL	-0.3		0.3·V _{DDI}	V
2	SDA/SCL: Input voltage high ¹)		VIH	0.7·V _{DDI}		V _{DDI} + 0.3	V
3	SDA/SCL: Hysteresis of Schmitt trigger inputs ①	V _{DDI} > 2.0 V	V_{hys}	$0.05 \cdot V_{\text{DDI}}$		-	V
4		V _{DDI} < 2.0 V	V _{hys}	$0.1\cdot V_{\text{DDI}}$		-	V
5	SDA/SCL: Output voltage low, (open drain)	I = 3 mA V _{DDI} > 2.0 V	V _{OL}			0.4	V
6		I = 3 mA V _{DDII} < 2.0 V	V _{OL}			$0.2\cdot V_{\text{DDI}}$	V
7	SDA/SCL: Input current	$0 < V_{IN} < V_{DDI}$	li	-10		10	μA
8	SDA/SCL: capacitance ①		Ci	-		10	pF
9	SCL clock frequency		f _{SCL}	0		400	kHz
10	Hold time (repeated) START condition ${\mathbb O}$		t _{HD.:STA}	600		-	ns
11	LOW period of SCL clock		t _{LOW}	1300		-	ns
12	HIGH period of SCL clock		t _{HIGH}	600		-	ns
13	Set-up time for repeated start condition ${\mathbb O}$		t _{su.:sta}	600		-	ns
14	Data hold time ①		t _{HD.DAT}	0		900	ns
15	Data set-up time ①		t _{SU:DAT}	100		-	ns
16	Rise time of SDA and SCL signals with a bus capacitance (C_b) from 10 pF to 400 pF \bigcirc		tr	20 + 0.1·C _b		300	ns
17	Fall time of SDA and SCL signals with a bus capacitance (C_b) from 10 pF to 400 pF \bigcirc		t _f	20 + 0.1·C _b		300	ns
18	SDA/SCL: Output fall time from V_{IH} to V_{IL} with a bus capacitance (C_b) from 10 pF to 400 pF \oplus		t _{of}	20 + 0.1·C _b		250	ns
19	Set-up time for STOP condition ${\rm I}\!{\rm O}$		t _{su:sto}	600		-	ns
20	Bus free time between STOP and START ①		t _{BUF}	1300		-	ns
21	Pulse width of spikes which must be suppressed by the ASIC-internal input filter		t _{sP}	0		50	ns


Table 4.4.1.1 I²C Interface

 $\ensuremath{\mathbbmm{0}}$: Will not be tested in production test

PRELIMINARY INFORMATION AUG 02, 2011

4.4.2 SPI Module

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	SCK pulse low width / pulse high width	transfer	Tck	4			1/FSYS
2	first SCK after falling CSB	start of transfer	Tcs1	2			1/FSYS
3	last SCK before rising CSB	end of transfer	Tcs2	2			1/FSYS
4	set-up time		Tsetup	1			1/FSYS
5	hold time		Thold	1			1/FSYS
6	data out after shift		Tso			3	1/FSYS
7	CSB high time		Tcsh	2			1/FSYS
8	data out change from Z to driven data	start of transfer	Tz1			1	1/FSYS
9	data out change from driven data to Z	end of transfer	Tz2			1	1/FSYS

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

4.4.3 GPIO Module

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Low-to-high threshold level		GPIOLH			0.80	V _{DDI}
2	High-to-low threshold level		GPIO_{HL}	0.25			V _{DDI}
3	Pull down resistor	V_{IN} > 0.75 · V_{DDI}	R _{GPIOPD}	43	61	119	kΩ
4	Output Voltage Low	GPIOIOL = 2 mA VDDI = 1.8 V	GPIOVOL			0.4	V
5	Output Voltage High	GPIOIOH = 2 mA VDDI = 1.8 V	GPI- OVOH	1.4			V
6	Low Level Output Current	GPIOVOL=0.4V	GPIOIOL	3.5	5.7	7	mA
7	High Level Output Current	GPIOVOH=2.4V	GPIOIOH	-12.8	-8	-3.9	mA
8	Tri-State Input/Output Leak- age Current	Vout=VDDI or 0 V	GPIOILC	-1		1	uA

Table 4.4.3.1 IO Interface

① : Will not be tested in production test

4.4.4 HALIOS Interface

4.4.4.1 Current Generation for LED Modulators

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	DAC resolution		Ν		10		bit
2	Integral non linearity (INL)		Ei		2		LSB
3	Differential non linearity (DNL)		Ed		2		LSB
4	DAC output voltage at full scale		V _{MAX}		1.22		V

Table 4.4.4.1.1 Transmitting path: 10 bit DAC

4.4.4.2 LED Driver 1 -4

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Regulated proportion of LED current @ DAC = 0	DAC = 0	I _{R_MINS}			5 % of I _{R_MAXS} ¹)	mA
2	Max. regulated proportion of LED current (RANGE)	RANGE = 31 DAC = 1023	I _{R_MAXS}		10.0		mA
3	Step size for regulated current-range configuration		I _{R_STEPS}		312.5		μA
4	Resolution current-range configuration		N _{RS}		5		bit
5	Max. fixed proportion of LED current (OFFSET)	OFFSET = 31	I _{O_MAXS}		10.0		mA
6	Step size for fixed offset- current configuration		I _{O_STEPS}		312.5		μA
7	Resolution offset-current configuration		N _{os}		5		bit
8	DC-bias current		I _{BIAS S}		200		μA

Table 4.4.4.2.1 Transmitting path: current sources LED1-4

¹) I_{R_MAXS} is the maximum current selected with parameter RANGE (Parameter "RANGE" described in chapter Fehler: Referenz nicht gefunden on page Fehler: Referenz nicht gefunden).

4.4.4.3 LED Driver C

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Regulated proportion of LED current @ DAC = 0	DAC = 0				5 % of I_{R_MAXS} ¹)	mA
2	Max. regulated proportion of LED current (RANGE)	RANGE = 31 DAC = 1023	I _{R_MAXC}		4.0		mA
3	Step size for regulated current-range configuration		I _{R_STEPC}		125.0		μA
4	Resolution current-range configuration		N _{RC}		5		bit
5	Max. fixed proportion of LED current (OFFSET)	OFFSET = 127	I _{O_MAXC}		5.0		mA
6	Step size for fixed offset- current configuration		I _{O_STEPC}		40.0		μA
7	Resolution offset-current configuration		Noc		7		bit
8	DC-bias current		I _{BIAS C}		100		μA

Table 4.4.4.3.1 Transmitting path: current source LEDC

¹) I_{RANGEMAXSX} is the maximum current selected with parameter RANGE (Parameter "RANGE" described in chapter Fehler: Referenz nicht gefunden on page Fehler: Referenz nicht gefunden).

PRELIMINARY INFORMATION AUG 02, 2011

4.4.4.4 Receiver

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
1	Transimpedance at ampli- fier input (CA)		Rf	70	100	130	kΩ
2	DC photo-current compens- ation		I _{DC}			1000	μA
3	Voltage at transimpedance amplifier input		Vka		1.25		V
4	Corner frequency high pass filter		f _G		22		kHz
5	Gain amplifier		G ₀		30		dB
6	Total gain		G _{TOT}		130		dBΩ
7	Center frequency		f _c		125		kHz
8	Resolution demodulator output		N _{DEMOD}	-	1	-	bit
9	Capacitance of photo diode at input CA		CDIODE			70	pF
10	Internal reference voltage		V _{REF}		1.22		V
11	Internal reference current		BIAS		10		μA

Table 4.4.4.4.1 Receiver

5 Functional Description

5.1 Introduction

The general architecture of the 3D-optical input device is shown in the system block diagram.

The CPU is connected to the memory (FLASH and SRAM) and the peripheral modules via the internal system bus. The system bus provides a 16 bit address space and allows 8 and 16 bit data transfers. The memory contains the program code and the data. Memory and registers are mapped to the global memory map and can be accessed through all memory related operation provided by the CPUs instruction set.

The memory of the ASIC consists of a 16Kx16 (32KByte) flash cell and a 1.5Kx16 (3KByte) SRAM cell. The Interrupt Controller collects requests from all interrupt sources and provides an interrupt signal to the CPU. Interrupt sources can be masked within the interrupt controller. Interrupts are generated by the modules and hold until they are cleared within the module. See module description for clearing procedures. The SPI can be configured either as a master or a slave. Transfer length is eight bit and can be extended by a multiple of eight bit. Data FIFOs are provided for transmit and receive tasks.

The timer module contains a 32 bit timer module as well as a watchdog timer. Additionally a second timer module operating on wakeup clock is implemented that remains active even in off mode, so it can be used for a periodical wake up from off mode for applications that require a low current consumption.

6 IO port pins can either be configured as general purpose IO's or can be configured as ports for the SPI or JTAG module. Additionally two ports are reserved for the I²C slave interface.

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

ELMOS Semiconductor AG

Data Sheet 12 / 67

PRELIMINARY INFORMATION AUG 02, 2011

A more detailed diagram of the clock / reset generation block (CRG) is shown in the following sections. The clock and reset generator module provides the system clock and the global reset signal. A power-on-reset, brown out detect and a power watch are implemented. As external reset source a reset input will be considered. The system clock is generated by two on-chip oscillators.

PRELIMINARY INFORMATION AUG 02, 2011

5.2 Supply voltages

5.2.1 Block Diagram

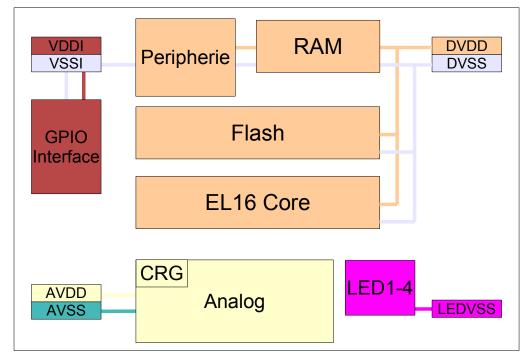


Figure 5.2.1-1 Block Diagram of Power Supply

5.2.2 Functional Description

Three separate power supplies are needed to operate the ASIC. The core voltage supplying all digital blocks, the analog parts needed for the oscillator and supply observation as well as the preamplifiers of the output pads and the IO supply which powers the post drivers of the GPIO pads. The third supply is used for the HALIOS measurement analog part. In the figure above the different power supply regions are depicted.

5.2.3 Power Up Sequence Considerations

During power-up the power-on-reset configures all pads as inputs consequently disabling the output drivers. The IO supply is watched after power up if the core supply is in the specified range and causes a reset if it leaves the allowed region. The core supply is watched via a brown out circuit. The pads will remain input pads as long as the software does not reconfigure them.

According the following diagram it must be guaranteed that ADVV / DVVC is not switched on before VDDIO.

NRST can be switched on if the VDDIO and AVDD/DVVC are stabilized on its potential.

A >= 0ms B > 5ms (recommended)

To avoid floating gates, $A < 100\mu s$ is recommended.

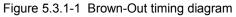

Fig. 5.2.3-1: Power Up Sequence: A >= 0 ms; B > 5 ms

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

ELMOS Semiconductor AG

QM-No.: 25DS0014E.00

PRELIMINARY INFORMATION AUG 02, 2011


5.2.4 Power Down Sequence Considerations

During power down the chip will enter the reset state as soon as the core or IO supply leaves the specified region bringing all pads into input configuration again.

Note! It has to be assured that VDDIO – VDDC > -0.3V at any time during power up and power down.

5.3 Brown Out Detection

5.3.1 Timing Diagram

5.3.2 Functional Description

The brown out detection of the chip will cause a reset whenever the core or IO power supply falls below the specified region. An over-voltage protection is not implemented. The circuit will not be operational when the core supply is below VDDmin. In these cases the power-on-reset will take care of proper reset generation.

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

5.4 Reset Generation

5.4.1 Reset Generation (RESGEN)

The ASIC is equipped with a reset input pin which can be used to reset the chip. Any low pulse longer than TDEBNRST on the external reset line will be sensed and causes an ASIC reset.

The ASIC contains different dynamic and static reset sources. The static sources trigger the master reset as long as the cause for the reset persists. The dynamic sources trigger the reset for a defined minimum reset time. After that time has expired the system reset is released. In case the dynamic source is still signaling a reset the reset is re-triggered.

- Static reset sources:
 - A power up sequence of the core voltage (power on reset)
 - Brown out of the core voltage
- Dynamic reset sources:
 - SRAM parity error
 - CPU register parity error
 - watchdog time out

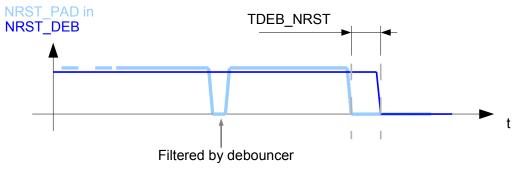
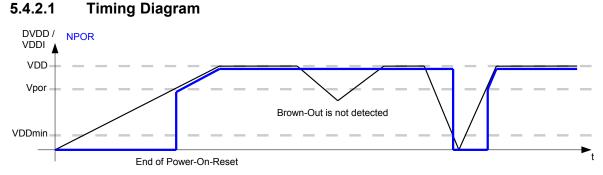



Figure 5.4.1-1 Timing of the external reset signal

PRELIMINARY INFORMATION AUG 02, 2011

5.4.2 Power-On-Reset

Figure 5.4.2.1-1 Power-On-Reset timing diagram

5.4.2.2 Functional Description

The power on reset is designed to cause a reset during the power on cycle of the chip. The reset will be deactivated when the supply crosses Vpor.

After the power up sequence the power on reset block will only cause a new reset if the power supply voltage drops below VDDmin and the rise and fall times of the supply are below the specified values.

failsafe feature	asserts interrupt	asserts reset
FLASH write detection	x	
RAM byte parity		x
uninitialized RAM word / byte read detection		x
CPU register parity		х
CPU undefined opcode detection	x	
CPU misaligned word access detection	x	
opcode execution memory protection	x	
stack overflow detection	x	
invalid module register access detection	x	
watchdog time out		x
watchdog window protection	x	
brownout detection (supply voltage monitoring)		Х

5.5 System Failsafe Features

Table 5.5.1: Fail-safe Features

5.6 HALIOS Interface

5.6.1 Block Diagram

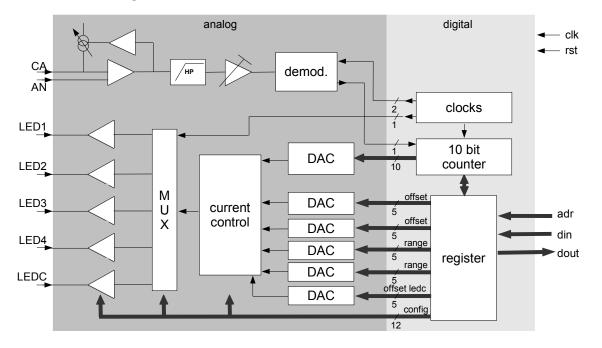


Figure 5.6.1-1 Block Diagram

5.6.2 Features

The ASIC contains a configurable HALIOS interface. It is possible to drive up to four sending LEDs and one compensation LED. The HALIOS measurement loop is closed by a 10 bit DAC which regulates the output current for the sending/compensation LED. The DAC is controlled by a counter that sets the DAC dependent on the received signal amplitudes up or down. To follow fast signal changes the counter can be increased or decreased by 1, 2, 4 or 8 steps, this is called the step size that is set due to the number of up/down-counts in the same direction. To start a new measurement the interface is configured with the counter-value and the step size (generally the values from the last measurement), the LED configuration and the current configuration for the LED driver. The measurement regulates the DAC and performs 25 counter steps to follow the actual reflection conditions of the sensor. After one measurement the interface returns the counter-value, the mean-value (it is calculated from the last 16 counter-steps during one measurement) and the step size from the last integrator cycle. After the automated measurement cycle is finished an interrupt appears if the interrupt is used to wake the system from standby mode..

address offset	reset value	register name	size
0x00	0x0000	Start Value Counter	16
0x02	0x0000	Measurement Configuration	16
0x04	0x0000	Current Configuration phase A	16
0x06	0x0000	Current Configuration phase B	16

5.6.3 HALIOS Module Registers

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

address offset	reset value	register name	size
0x08	0x00	Current Configuration compensator offset	8
0x0A	0x0000	Measurement result: Counter Value	16
0x0C	0x0000	Measurement result: Mean Value	16
0x0E	0x00	Interrupt	8

Table 5.6.3.1: Module Registers

Register Start Value Counter (0x00)

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:12 or "10 10 : 0 1 - de 9:0 : \$)00") - nor creas	mal s se sett	ettling tling til	time me of	of opt optica	ical gy al gyra	/rator ator		C	,	J			10", "C	100"

Table 5.6.3.2: Start Value Counter

PRELIMINARY INFORMATION AUG 02, 2011

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/ W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/ W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : H ment. 14 : A ('0' = (0) 13 : D input i ('0' = (0) 12 : A ('0' = (0) 11 : F ('0' = (0) 10 : F ('0' = (0) 9 : LE ('0' = (0) 9 : LE ('0' = (0) 8 : LE ('0' = (0) 7 : LE ('0' = (0) 8 : LE ('0' = (0) 7 : LE ('0' = (0) 8 : LE ('0' = (0) 1 : LE ('0' = (0) 1 : LE ('0' = (0) 2 : LE ('0' = (0) 3 : LE ('0' = (0) 3 : LE ('0' = (0) 1 : LE	After CCO disable disa	meas N: En. led, '1' vation contro Sets to ble, '1' Sets to ble, '1' A: Dec ' = on vailab A: Dec ' = on ' = on	surem /disab /di	ent th les th abled linpu tivated nalog Ds ac ed) f LED f LED version f LED version f LED version f LED version f LED	e bit i e acc) t to re d) ue pa tivate tivate is ac is act is act n 1 ar is act n 1 ar is act n 1 ar is act is act is act is act is act is act is act	resets eleration duce rt d in pl tive for itve for itte for	itself. ion of currer hase I hase / r the r r the r r the r sion 2 r the r sion 2 r the r sion 2 r the r sion 2 r the r r the r r the r	the in the in at con B to fix measu measu measu measu measu measu measu measu	tegrat sump xed se xed se ureme ureme ureme ureme ureme ureme	or tion in ending ending ent nt nt nt nt nt nt nt	the c	ase th ent			

Register **Measurement Configuration** (0x02)

Table 5.6.3.3: Measurement Configuration

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R/W									
External access	R	R	R	R	R	R	R/W									
Bit Description	9:5 : 0 4:0 : R															

Register Current Configuration Phase A (0x04)

Table 5.6.3.4: Current Configuration Phase A

Register Current Configuration Phase B (0x06)

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R/W									
External access	R	R	R	R	R	R	R/W									
Bit Description	9:5 : O 4:0 : R															

Transmitting current LED1-4:

In the regulated mode (FIXA/B = '0') the total current is

$$I_{\textit{total}} = I_{\textit{OFFSET}} + \frac{I_{\textit{REGULATE}}}{1023} \cdot I_{\textit{RANGE}} + I_{\textit{BIASS}}$$

, with $I_{REGULATE} = 0 \dots 1023$ (10 bit DAC)

 $I_{OFFSET} = OFFSET \cdot I_{O_STEPS}$ $I_{RANGE} = RANGE \cdot I_{R_STEPS}$

In constant mode (FIXA = '1' or FIXB = '1'):

$$I_{total} = I_{OFFSET} + \frac{I_{RANGE}}{2} + I_{BIASS}$$

where $I_{BIAS S}$ is a small current which always keeps the LEDs turned on to maximise speed and minimise parasitic effects.

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R/W	R/W	R/W	R/W	R	R/W						
External access	R	R	R	R	R/W	R/W	R/W	R/W	R	R/W						
Bit Description	11:8 :	1:8 : DC OFFSET current LEDC (4 Bit)														
	6:0 : C	S:0 : OFFSET compensation LEDC														

Table 5.6.3.6: Current Configuration Compensator Offset

The offset current for the terminal LEDC is configureable with the seven bit value OFFSET.

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Transmitting current LEDC:

The total current in regulated mode (FIXA/B = '0') for LEDC is

$$I_{total} = I_{OFFSET} + \frac{I_{REGULATE}}{1023} \cdot I_{RANGE} + I_{BIASC}$$

, with $I_{REGULATE}$ = 0 ... 1023 (10 bit DAC)

 $I_{OFFSET} = OFFSET \cdot I_{O_STEPC}$ $I_{RANGE} = RANGE \cdot I_{R_STEPC}$

Register Measurement Result: Counter Value (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0		
Internal access	R	R R R R R R R R R R R R R R R R														
External access	R	R R R R R R R R R R R R R R R												R		
Bit Description	15:12	15:12 : STZ: Stepsize integrator														
	9:0 : COUNT: Integrator value from the measurement															

Table 5.6.3.7: Measurement Result: Counter Value

Register Measurement Result: Mean Value (0x0C)

Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													0
ы	10													U	
Reset value	0													0	
Internal access	R	R R R R R R R R R R R R R R R												R	
External access	R	R R R R R R R R R R R R R R R												R	
	15:12 : STZ: Stepsize integrator 11:0 : MEAN: Mean value from the measurement														

Table 5.6.3.8: Measurement Result: Mean Value

Register Interrupt (0x0E)

Bit	7	6	5	4	3	2	1	0	
Content	-	-	-	-	-	-	1	0	
Reset value	0	0	0	0	0	0	0	0	
Internal access	R	R R R R R R/W R/W							
External access	R R R R R R R/W R/W								
Bit Description		ence ALIOS [®] inte HALIOS [®] in t disabled	rrupt						

Table 5.6.3.9: Interrupt

PRELIMINARY INFORMATION AUG 02, 2011

6 Microcontroller EL16

6.1 Feature List

The CPU incorporates features specifically designed for modern programming techniques such as calculated branching, table processing and the use of high-level languages such as C. The CPU can address the complete address range without paging.

The CPU features include:

- RISC architecture with 27 instructions and 7 addressing modes.
- Orthogonal architecture with every instruction usable with every addressing mode
- · Full register access including program counter, status registers, and stack pointer
- 16 registers including PC, SP and status register
- non paged 16-Bit address space
- Word and byte addressing and instruction formats.
- Single-cycle register operations.
- interrupt support
- standby and stop mode support
- bus wait support
- debugging support (JTAG interface)
- failsafe architecture

6.2 Debugging

To access the debug structures of the EL16 CPU a 4-wire standard JTAG interface is used. The JTAG interface can be accessed via the GPIO pins 2 to 5 when the TMODE pin is set to one. TMODE pin set to zero resets all test and debug structures and the ASIC operates in normal mode (see Fehler: Referenz nicht gefunden Fehler: Referenz nicht gefunden for details).

6.3 CPU Registers

The EL16 contains 16 registers (R0 to R15) including program counter, stack pointer and status register

6.3.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be executed. Each instruction uses an even number of bytes (two, four, or six), and the PC is incremented accordingly. Instruction accesses in the 64-KB address space are performed on word boundaries, and the PC is aligned to even addresses. The PC can be addressed with all instructions and addressing modes.

6.3.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and interrupts. It uses a pre-decrement, post-increment scheme. In addition, the SP can be used by software with all instructions and addressing modes. The SP is initialized into RAM by the user, and is aligned to even addresses.

PRELIMINARY INFORMATION AUG 02, 2011

6.3.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be used in the register mode only addressed with word instructions. The remaining combinations of addressing modes are used to support the constant generator.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reset value 0																	
Internal access R/W R/W	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
External access R	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit Description Bit 8 : V Bit 5 : CLK OFF Bit 4 : CPU OFF BIT3 : GIE Bit2 : N	Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit 5 : CLK OFF Bit 4 : CPU OFF BIT3 : GIE Bit2 : N	External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
BITO : C	Bit Description	Bit 8 : V Bit 5 : CLK OFF Bit 4 : CPU OFF BIT3 : GIE Bit2 : N															

Register Status Register (SR/R2)

Table 6.3.3.1: Status Register

V: Overflow bit

This bit is set when the result of an arithmetic operation overflows the signed-variable range.

CLKOFF: Stop flag CPU clock gated

CPUOFF: Standby flag CPU halted

GIE: Global Interrupt Enable

N: Negative bit

This bit is set when the result of a byte or word operation is negative and cleared when the result is not negative. Word operation: N is set to the value of bit 15 of the result Byte operation: N is set to the value of bit 7 of the result

Z: Zero bit

This bit is set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C: Carry bit

This bit is set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

6.3.4 Constant Generation Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator registers R2 and R3, without requiring an additional 16-bit word of program code. The constants are selected with the source-register addressing modes (As), as described in the table below:

Register	As	Value	Remarks
R2	00		Register Mode
R2	01	(0)	Absolute Address Mode
R2	10	00004h	+4, bit processing

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Register	As	Value	Remarks
R2	11	00008h	+8, bit processing
R3	00	00000h	0, byte processing
R3	01	00001h	+1
R3	10	00002h	+2, bit processing
R3	11	0FFFFh	-1, word processing

Table	6341	Constant	Generation	Register	CG1/CG2	Table
rubic	0.0.4.1.	constant	Concration	ricgioloi	001/002	rubic

The constant generator advantages are:

- No special instructions required
- No additional code word for the six constants
- · No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed explicitly; they act as source-only registers.

6.3.5 General-Purpose Register R4 - R15

The twelve registers, R4–R15, are general-purpose registers. All of these registers can be used as data registers, address pointers, or index values and can be accessed with byte or word instructions.

6.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand can address the complete address space with no exceptions. The bit numbers in the table below describe the contents of the As(source) and Ad (destination) mode bits.

As/Ad	Addressing Mode	Syntax	Description
00/0	Register mode	Rn	Register contents are operand
01/1	Indexed mode	X(Rn)	(Rn + X) point to the operand. Xis stored in the next word
01/1	Symbolic mode	ADDR	(Rn + X) point to the operand. Xis stored in the next word. Indexed mode X(PC) is used.
01/1	Absolute mode	&ADDR	The word following the instruction con- tains the absolute address. X is stored in the next word. Indexed mode X(SR) is used.
10/-	Indirect Register mode	@Rn	Rn is used as a pointer to the operand.
11/-	Indirect auto increment	@Rn+	Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B instructions and by 2 for .W instructions.

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

As/Ad	Addressing Mode	Syntax	Description
11/-	Immediate mode		The word following the instruction con- tains the immediate constant N. Indirect auto-increment mode @PC+ is used.

Table 6.4.1: Addressing Modes Table

6.5 EL16 Instruction Set

The complete EL16 instruction set consists of 27 core instructions and 24 emulated instructions. The core instructions are instructions that have unique op-codes decoded by the CPU. The emulated instructions are instructions that make code easier to write and read, but do not have op-codes themselves, instead they are replaced automatically by the assembler with an equivalent core instruction. There is no code or performance penalty for using emulated instruction.

There are three core-instruction formats:

- Dual-operand
- Single-operand
- Jump

All single-operand and dual-operand instructions can be byte or word instructions by using .B or .W extensions. Byte instructions are used to access byte data or byte peripherals. Word instructions are used to access word data or word peripherals. If no extension is used, the instruction is a word instruction. The source and destination of an instruction are defined by the following fields:

Abbr.	Description
src	The source operand defined by As and S-reg
dst	The destination operand defined by Ad and D-reg
As	The addressing bits responsible for the addressing mode used for the source (src)
S-reg	The working register used for the source (src)
Ad	The addressing bits responsible for the addressing mode used for the destination (dst)
D-reg	The working register used for the destination (dst)
B/W	Byte or word operation: 0: word operation, 1: byte operation

Table 6.5.1: source and destination of an instruction

The following tables shows coding table of the 16 bit opcode:

PRELIMINARY INFORMATION AUG 02, 2011

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Mnemonic
0	0	0	0	0	0					1		1				
						0	0	0	0							RRC
						0	0	0	1							RRC.B
						0	0	1	0							SWP.B
						0	0	1	1							
						0	1	0	0							RRA
						0	1	0	1							RRA.B
						0	1	1	0							SXT
0	0	0	1	0	0	0	1	1	1	٨٩			Dee	/C D		
0	0	0	I	0	0	1	0	0	0	Ad	AS		-кед	/S-Re	eg	PUSH
						1	0	0	1							PUSH.B
						1	0	1	0							CALL
						1	0	1	1							
						1	1	0	0					RETI		
						$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
						1	1	1	1			-				
				0	1											
0	0	0	1	1	0											
				1	1											
			0	0	0										JNZ / JNE	
			0	0	1											JZ / JEQ
			0	1	0	JNC / J						JNC / JLO				
0	0	1	0	1	1	10-Bit PC Offset					JC / JHS					
0	0		1	0	0				10-	DILT	0.01	1961				JN
			1	0	1											JGE
			1	1	0											JL
			1	1	1											JMP
0	1	0	0													MOV
0	1	0	1													ADD
0	1	1	0													ADDC
0	1	1	1													SUBC
1	0	0	0													SUB
1	0	0	1		с г	200		24	DAA	•	<u> </u>		D 1	200		CMP
1	0	1	0]	3-H	S-Reg Ad B/W As D-Reg									DADD	
1	0	1	1]										BIT		
1	1	0	0	1												BIC
1	1	0	1]												BIS
1	1	1	0	1											XOR	
1	1	1	1]												AND

Fig. 6.5-1: coding of the 16 bit op-code

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

ELMOS Semiconductor AG

Data Sheet 27 / 67

QM-No.: 25DS0014E.00

PRELIMINARY INFORMATION AUG 02, 2011

Mnemonic	Parameters	Description		v	N	z	с
ADC(.B)**	dst	Add C to destination	dst + C -> dst	*	*	*	*
ADD(.B)	src, dst	Add source to destination	src + dst -> dst	*	*	*	*
ADDC(.B)	src, dst	Add source to C and destination	src + dst + C -> dst	*	*	*	*
AND(.B)	src, dst	AND source and destination	src AND dst -> dst	0	*	*	*
BIC(.B)	src, dst	Clear bits in destination	NOT(src) AND dst -> dst	0			\vdash
BIS(.B)	src, dst	Set bits in destination	src OR dst -> dst	-		-	Ē
BI3(.B) BIT(.B)	src, dst	Test bits in destination	src AND dst	-	- *	*	-
BR BR	dst	Branch to destination	dst -> PC	U			\vdash
				-	-	-	-
CALL CLR (.B)**	dst	Call destination	SP-2 -> SP, PC+2 -> @SP, dst -> PC	-	•	-	-
()	dst	Clear destination 0	0 -> dst 0 -> C	-	-		-
CLRC**		Clear C 0		-	-	-	0
CLRN**		Clear N 0	0->N	-	0	-	-
CLRZ**		Clear Z 0	0->Z	-	-	0	-
CMP (.B)	src, dst	Compare source and destination	dst - src				
DADC (.B)**	dst	Add C decimally to destination	dst + C -> dst	0	*	*	*
DADD (.B)	src, dst	Add source and C decimally to destination	src + dst + C -> dst	0	*	*	*
DEC (.B)**	dst	Decrement destination	dst -1 -> dst	*	*	*	*
DECD (.B)**	dst	Double decrement destination	dst -2 -> dst	*	*	*	*
DINT**		Disable interrupts 0	0 -> GIE	-	-	-	-
EINT**		Enable interrupts 1	1 -> GIE	-	-	-	-
INC (.B)	dst	Increment destination	dst +1 -> dst	*	*	*	*
INCD (.B)**	dst	Double increment destination	dst +2 -> dst	*	*	*	*
INV (.B)**	dst	Invert destination	NOT(dst) -> dst	*	*	*	*
JC / JHS	label	Jump if C set / Jump if higher or same	if (condition) PC + 2 * offset -> PC	-	-	1	-
JZ / JEQ	label	Jump if Z set / Jump if equal	if (condition) PC + 2 * offset -> PC	-	-	-	-
JGE	label	Jump if greater or equal	if (condition) PC + 2 * offset -> PC	-	-	-	-
JL	label	Jump if less	if (condition) PC + 2 * offset -> PC	-	-	-	-
JMP	label	Jump	PC + 2 * offset -> PC	-	-	-	-
JN	label	Jump if N set / Jump if negative	if (condition) PC + 2 * offset -> PC	-	-	-	-
JNC /JLO	label	Jump if C not set / Jump if lower	if (condition) PC + 2 * offset -> PC	-	-	-	-
JNZ / JNE	label	Jump if Z not set / Jump if equal	if (condition) PC + 2 * offset -> PC	-	-	-	-
MOV (.B)	src, dst	Move source to destination	src -> dst	-	-	-	-
NOP		No operation		-	-	-	-
POP (.B)**	dst	Pop item from stack to destination	@SP+ -> dst	-	-	-	-
PUSH (.B)	src	Push source onto stack	SP -2 -> SP, src -> SP	-	-	-	-
RET**		Return from subroutine	@SP -> PC	-	-	-	-
RETI		Return from interrupt	@SP -> SR, @SP+ -> PC	*	*	*	*
RLA (.B)**	dst	Rotate left arithmetically	dst * 2 -> dst	*	*	*	*
RLC (.B)**	dst	Rotate left through C	dst * 2 -> dst, C -> LSB(dst)	*	*	*	*
RRA (.B)	dst	Rotate right arithmetically	dst / 2 -> dst	0	*	*	*
RRC (.B)	dst	Rotate right through C	dst / 2 -> dst, C -> MSB(dst)	0	*	*	*
SBC (.B)**	dst	Subtract not(C) from destination	dst + NOT(0) + C -> dst	*	*	*	*
SETC**		Set C	1-> C	-	-	-	1
SETN**		Set N	1 -> N	-	1	-	-
SETZ**		Set Z	1->Z	-	-	1	-
SUB (.B)	src, dst	subtract source from destination	dst + NOT(src) + 1 -> dst	*	*	*	*
SUBC (.B)**	src, dst	subtract source and not(C) from destination	dst + NOT(src) + C -> dst	*	*	*	*
SWPB	dst	Swap bytes					\square
SXT	dst		••••	-	-	*	-
		Extend sign			•	*	
TST (.B)**	dst	Test destination	dst + NOT (0) + 1	0	*	*	1
XOR(.B)	src, dst	Exclusive OR source and destination	src XOR dst -> dst	*	*	*	×

Fig. 6.5-2: Instruction Set of EL16

6.5.1 EL16 Instruction Cycle Counts

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

ELMOS Semiconductor AG

QM-No.: 25DS0014E.00

PRELIMINARY INFORMATION AUG 02, 2011

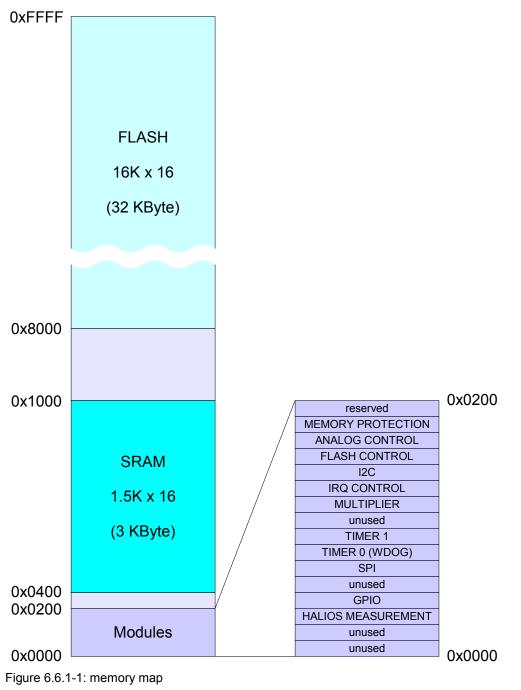

command type	operation	cycles	cycles(dreg==PC)
MOV	sreg -> dreg	1	2
DOUBLE	sreg x dreg -> dreg	1	2
MOV	sreg -> Y(dreg) -> dreg	3	
DOUBLE	sreg x Y(dreg) -> Ydreg	4	
MOV	@sreg -> dreg	2	3
DOUBLE	@sreg x dreg -> dreg	2	3
MOV	@sreg -> Y(dreg) -> dreg	4	
DOUBLE	@sreg x Y(dreg) -> Ydreg	5	
MOV	@sreg+ -> dreg	2	3
DOUBLE	@sreg+ x dreg -> dreg	2	3
MOV	@sreg+ -> Y(dreg) -> dreg	4	
DOUBLE	@sreg+ x Y(dreg) -> Ydreg	5	
MOV	Xsreg+ -> dreg	3	4
DOUBLE	Xsreg+ x dreg -> dreg	3	4
MOV	Xsreg+ -> Y(dreg) -> dreg	5	
DOUBLE	Xsreg+ x Y(dreg) -> Ydreg	6	
SINGLE SINGLE SINGLE SINGLE	dreg @dreg @dreg+ Y(dreg)		2
JUMP RETI IRCQ		2 3 4	
PUSH	reg	3	
PUSH	@reg	4	
PUSH	@reg+	4	
PUSH	X(reg)	5	
CALL	reg	3	
CALL	@reg	4	
CALL	@reg+	4	
CALL	X(reg)	5	

Fig. 6.5.1-1: EL16 Instruction Cycle Counts

PRELIMINARY INFORMATION AUG 02, 2011

6.6 Memory Description

6.6.1 Memory Map

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

6.6.2 Base Address Table

base address	size	module name
0x8000	0x7FFF	FLASH
0x1000	0x7000	reserved
0x0400	0x0C00	SRAM
0x0200	0x0200	reserved
0x01E0	0x0020	reserved
0x01C0	0x0020	memory protection module
0x01A0	0x0020	analogue control module
0x0180	0x0020	FLASH control module
0x0160	0x0020	I2C module
0x0140	0x0020	interrupt control module
0x0120	0x0020	multiplier module
0x0100	0x0020	reserved
0x00E0	0x0020	timer module 1
0x00C0	0x0020	timer module 0 (watchdog)
0x00A0	0x0020	SPI module
0x0080	0x0020	reserved
0x0060	0x0020	GPIO module
0x0040	0x0020	HALIOS measurement module
0x0020	0x0020	reserved
0x0000	0x0020	reserved

Table 6.6.2.1: Base Address Table

PRELIMINARY INFORMATION AUG 02, 2011

6.6.3 FLASH

- main block size: 16k x 16Bit (32 kByte)
- info block size: 64 x 16Bit (128 Byte)
- for FLASH test mode details see flash control and test mode description

6.6.4 SRAM

- size: 1.5K x 16Bit (3KByte)
- byte write enable support
- each byte is extended by a parity bit

6.7 Memory Protection Module

- opcode execute area configuration (granularity: 1KByte, 64 areas)
- stack area configuration (granularity: 256Byte, 12 areas)
- invalid module register address handling

address offset	reset value	register name	size
0x00	0x0000	opcode execute enable 0	16
0x02	0x0000	unused	16
0x04	0xFFFF	opcode execute enable 2	16
0x06	0xFFFF	opcode execute enable 3	16
0x08	0x0000	execute address value	16
0x0A	0x0FFF	stack enable	16
0x0C	0x0000	invalid address value	16
0x0E	-	interrupt clear	16

6.7.1 Memory Protection Module Registers

Table 6.7.1.1: Memory Protection Module Registers

Register op-code **execute enable 0** (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	X/W R/W R/W R/W R/W R/W R/W R/W R														
Bit Description	enab 0 - ex 1 - ex area bit 0 bit 1 bit 2	unuse le cecutio size: - - area - area - area - area	on of c on of c 1 KBy 0x000 0x040 0x040	opcod te 00 to (00 to (00 to (e allov 0x03F 0x07F 0x0BF	wed E E										

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Table 6.7.1.2: op-code execute enable 0

Register op-code execute enable 1 (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/														R/W
Bit Description	area bit 0 · bit 1 · 		on of c KByi 0x400 0x440	bpcod te 00 to (00 to (e allov 0x43F 0x47F	wed E E										

Table 6.7.1.3: op-code execute enable 0

Register op-code **execute enable 2** (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	1 - ex area bit 0 - bit 1 -	le (ecutio (ecutio size: 7 - area - area 5 - area	on of 0 1KByte 0x800 0x840	opcod e 00 to (00 to (e allo 0x83F 0x87F	wed E E										

Table 6.7.1.4: op-code execute enable 2

Register op-code **execute enable 3** (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/														R/W
Bit Description	1 - e> area bit 0 - bit 1 - 	le kecutio size: 7 - area - area 5 - are	on of o 1KByte 0xC0 0xC4	opcod e 00 to 00 to	e allo 0xC3 0xC7	wed FE FE										

Table 6.7.1.5: op-code execute enable 3

PRELIMINARY INFORMATION AUG 02, 2011

Register execute	Register execute address value (0x08)															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	5:0 : address of last denied opcode access														

Table 1: failure address value

Register stack enable (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R R R R/W R/W R/W R/W R/W R/W R/W R/W R/														R/W
Bit Description	1 - us area bit 0 bit 1	le se as : size: 2 - area - area I - are	stack 256By 0x04 0x05	allowe te 00 to (00 to (ed 0x04F 0x05F	E										

Table 2: stack enable

Register invalid address value (0x0C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	5:0 : address of last invalid module register access														

Table 3: invalid address value

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	-	-	-	W	W	W	W	W
External access	-	-	-	-	-	-	-	-	-	-	-	W	W	W	W	W
Bit Description	ing to 0 - no 1 - cl 3 : m 0 - no 1 - cl 2 : in 0 - no 1 - cl 1 : st 0 - no 1 - cl 0 - no 1 - cl 0 - no 0 - no 0 - no 0 - no 0 - no 0 - no 0 - no 1 - cl 2 : in 0 - no 1 - cl 2 : ex 0 - no		eturn ence terrup ned 1 ence terrup addre ence terrup rotect ence terrup e prote ence	addre ot 6 bit a ot ss IR ot ion IR ot ection	ess st access Q clea Q cle	ored i s IRQ ar ar	n stad	ck mir	f unde nus - 2		op-cc	ode ca	n be c	obtain	ed by	look-

Register interrupt clear (0x0E)

Table 4: interrupt clear

6.8 Analogue Control Module

• controls clock and reset generator (CRG)

6.8.1 Analogue Control Module Registers

address offset	reset value	register name	size
0x00	0x0010	wakeup timer config	16
0x02	0x0000	MCLK trim value	16
0x04	0x0000	WKCLK trim value	16
0x10	-	reset source status	16
0x12	-	reset source status clear	16
0x14	-	wakeup timer interrupt status	16
0x16	-	wakeup timer interrupt clear	16

Table 6.8.1.1: Analog Control Module Registers

Register wake-up timer config (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
	 15:8 : password must be written as 0xA5, will always be read as 0x96 4 : enable timer 0 - timer off 1 - timer on 3:0 : timer value: timer period = 2 ms * [timer value + 1], with timer value 015 															

Table 6.8.1.2: wake-up timer config

PRELIMINARY INFORMATION AUG 02, 2011

Register MCLK trim value (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W R/W <td>R/W</td>															R/W
	3:0:	value I": Iow)": cer	for ma rest fre	equen equen	cy cy	oscilla	ator:									

Table 6.8.1.3: MCLK trim value

Register **WKLK trim value** (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W R/W <td>R/W</td>														R/W	
Bit Description	3:0: Trim "0111 "0000	: unus value I": low)": cer)": hig	for wa est fre	equen equen	су су	oscill	ator:									

Table 6.8.1.4: WKCLK trim value

Register reset source status (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R R														
Bit Description	8 : T 7 : R 6 : F 5 : C 4 : w 1 : ex		mask arity ei uncoi gister og res I rese	ed int rror rectal parity et t	errup ole bit error	t ever		urred	(interr	upt n	umbe	r 0 an	d 1)			

Table 6.8.1.5: reset source status

Register reset source status clear (0x12)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W
External access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 - no	ears a o influ ears a	ence													

Table 6.8.1.6: reset source status clear

Register wake-up timer interrupt status (0x14)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0 - n	o inter	rupt	er inte asse	•	status										

Table 6.8.1.7: wake-up timer interrupt status

Register wake-up timer interrupt clear (0x16)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W
External access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W
	0 : tir 0 - no 1 - cl	o influ														

Table 6.8.1.8: wake-up timer interrupt clear

6.9 FLASH Control Module

- FLASH area protection (area size: 2K words)
- · main and info block read, program, page erase and mass erase support
- software adaptable program and erase timing

PRELIMINARY INFORMATION AUG 02, 2011

6.9.1 Flash Control Module Registers

address offset	reset value	register name	size
0x00	0x9600	area protection (areas 7 - 0)	16
0x02	0x9600	area protection (info block)	16
0x04	0x9600	mode	16
0x06	-	status	16
0x08	-	IRQ clear	16
0x0A	0	wait cycle register	16
0x0C	0	bit error corrected address	16
0x10	6	Tnvs / Tnvh	16
0x12	120	Tnvh1	16
0x14	12	Tpgs	16
0x16	1	Tpgh	16
0x18	2	Trcv	16
0x1A	30	Tprog	16
0x1C	6	Terase	16
0x1E	60	Тте	16

Table 6.9.1.1: FLASH Control Module Registers

Register area protection (areas 0 - 7) (0x00)

register area pro	100110			(0	<u>, , , , , , , , , , , , , , , , , , , </u>											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	passv must	15:8 : bassword must be written as 0xA5 will always be read as 0x96														
	1 - ar	able rea pro rea wr s 0 - 7	iteable	Э	main	block	area	s (8 *	2K wa	ords)						

Table 6.9.1.2: area protection (areas 0 - 7)

Register area protection (info_block) (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Internal access	R/W															
External access	R/W															

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Description	mus	: sword t be w always			-	i										
	0 - a	eable area pr area w	rotecte riteab	ed Ie												
	6:0	: reser	ved													

Table 6.9.1.3: area protection (info block)

Register **mode** (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	must will a 7:0 : 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80	: pass be wr lways mode - main - info - main - eras - eras - mas - mas	itten a be rea block block block se mai se info ss eras ss eras	k reac read k prog progr n block se ma se ma	0x96 J gram am ck pac c in blo in and	ck d info		ı "maiı	n bloc	k read	d" moo	de				

Table 6.9.1.4: mode

Register status (0x06) Bit 15 14 13 12 11 10 9 8 7 5 3 2 0 6 4 1 Reset value _ -Internal access R External access R R Bit Description 2 : write error unexpected FLASH write access this bit is cleared by write error IRQ clear 1 : row programming incomplete current number of programmed row words != word config (see below) 0 : busy 0 - ready 1 - busy (program or erase is still in progress) Table 1: status

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W
External access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W
Bit Description	0 - r	vrite e no influ clear in	Jence		ar											

Table 2: IRQ clear

Register wait cycle register (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W															
External access	R/W															R/W
	15:8 passv must will a	word be wr			-											
	wait o	cycles	per F	LASH	read	acces	ss									

Table 3: wait cycles register

Register bit error corrected address (0x0C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	: add	ress c	of last	correc	table	flash	bit err	or							

Table 4: bit error corrected address

Register **Tnvs/Tnvh** (0x010)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Internal access	R/W R/W <td>R/W</td>															R/W
External access	R/W															R/W
Bit Description	time 0 or 1 2 - 2* this re	8 syst	tem cl	ock c	ycles							read'				

Table 5: Tnvs/Tnvh

Register **Tnvh1** (0x012)

	0//0 12	-,														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W R/W <td>R/W</td>															R/W
Bit Description		8 syst	em cl	ock c	ycles							read'	,			

Table 6: Tnvh1

Register Tpgs (0x014)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W															R/W
Bit Description	time 0 or 1 2 - 2* this re	8 syst	tem cl	ock c	ycles							read'	1			

Table 7: Tpgs

Register Tpgh (0x016)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Internal access	R/W															R/W
External access	R/W															R/W
	time 0 or 1 2 - 2* this re	8 syst	em cl	ock cy	vcles							read'				

Table 8: Tpgh

Register **Trcv** (0x018)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Internal access	R/W R/W <td>R/W</td>															R/W
External access	R/W															R/W
	0 or 1 2 - 2* 	8 syst	em cl	ock cy	vcles			en FS`				read"	1			

Table 9: Trcv

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Register **Tprog** (0x01A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0
Internal access																R/W
External access	R/W															R/W
	time 0 or 1 2 - 2* this re	8 syst	tem cl	ock c	ycles							read'	1			

Table 10: Tprog

6.9.2 Terase / Tme

Register Terase	(0x01)	C)														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Internal access	R/W	/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R														
External access	R/W	R/W														
Bit Description	2 - 2* 	1 - 32(3200(egiste) syste	em clo	ock cy	cles	·						,			

Table 6.9.2.1: Terase

Register **Tme** (0x01E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0
Internal access	R/W															
External access	R/W	R/W														
	time 0 or 1 2 - 2* this re	32000) syste	em clo	ock cy	cles	·						1			

Table 6.9.2.2: Tme

PRELIMINARY INFORMATION AUG 02, 2011

6.10 I²C Interface

6.10.1 I²C Block Diagram

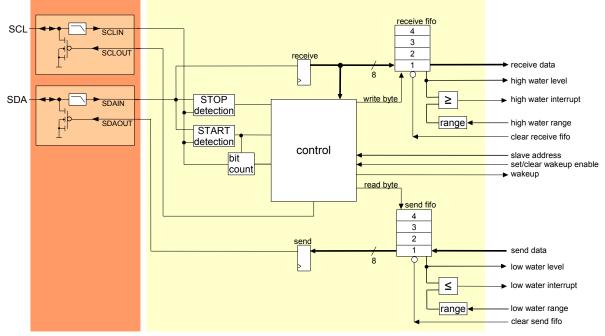
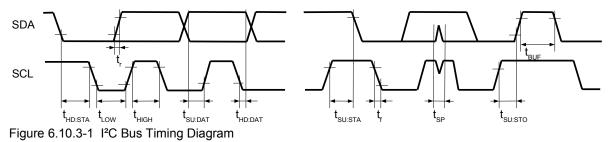



Figure 6.10.1-1 Block Diagram

6.10.2 I²C Function

The I²C slave interface operates in 7 bit addressing mode with a maximum frequency of 400 kHz (fast mode). To synchronize the ASIC to different operation voltages of the I²C bus the interface has a separate supply voltage input at pin V_{DDI} which is responsible for all interface pins. For more details of the addressing modes please refer to the "I²C - BUS SPECIFICATION VERSION 2.1" from Philips.

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice. ELMOS Semiconductor AG Data Sheet 44 / 67

QM-No.: 25DS0014E.00

PRELIMINARY INFORMATION AUG 02, 2011

6.10.4 I²C Module Registers

address offset	reset value	register name	size
0x00	0x00	Receive data fifo register	8
0x02	0x00	Send data fifo register	8
0x04	0x0040	Control register	16
0x06	0x0000	Status register	16

Table 6.10.4.1: I²C Module Registers

6.10.5 Data FIFO Registers

Receive Data FIFO Registers

The data received from the master is stored in the receive fifo registers and has a depth of 4. The current fill level can be read in the status register. If the fifo is completely filled up and another byte should be received the interface will force the master into a wait state until the application software reads one byte from the fifo.

Register Receive Data FIFO Register (0x00)

Bit	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R
Bit Description	7:0 : receiv (see Data I		ters for deta	iils)				1

Table 6.10.5.1: Receive Data FIFO Register

Send Registers:

The master reads data that is stored in the send fifo registers. This fifo buffer has a depth of 4 registers. The current fill level can be read in the status register. If the fifo is empty and a byte is requested by the master the interface will force the master into a wait state until the application software writes one byte to the fifo.

Register Send Data FIFO Register (0x02)

regiotor conta de		gietei (exe	=/					
Bit	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-
Internal access	W	W	W	W	W	W	W	W
External access	W	W	W	W	W	W	W	W
Bit Description	7:0 : send	data						
	(see Data	FIFO Regist	ters for deta	ails)				
Table 6 10 5 2. C	and Data El	EO Dogiata						

Table 6.10.5.2: Send Data FIFO Register

6.10.6 Control Register

Register **Control Register** (0x04)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Internal access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
External access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Description	13 : (0 - re 1 - w 12 : (0 - re 1 - w 11 : (0 - re 1 - w 10 : \$ 0 - re 1 - w 9:8 : "00" "01" "10" "11" 7 : res 6:4 : 3 : res	ead rite Clear cite Clear cite Clear cite Set sad Slave - \$58 - \$58 - \$58 - \$58 - \$58 serve High	conte conte wake- ake-up ake-up (reset d water d	nts of nts of up mo o mod ess value range range	receiv ode er e ena	ve FIF nable ble bit	O reg bit (se t (see	jisters ee des desci	ription	belov						

Table 6.10.6.1 Configuration Register: I²C Control Register

6.10.7 Status Register

Register Status F	Regist	er (0>	(06)													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	S R															R
Bit Description	8 : W 0 - w 1 - w 7: re: 6:4 : 3: re:	/ake-u ake-u ake-u serve Fill le serve	ip moo p moo p moo d vel of	le disa le ena receiv	abled abled ve FIF											

Table 6.10.7.1 Configuration Register: I²C Status Register

6.10.8 Interrupt Handling

I2C receive command (see 6.11.2 List Of All Interrupts)

PRELIMINARY INFORMATION AUG 02, 2011

Command word pending in receive fifo, this means the next byte read from the receive fifo is the first received byte after the slave has been addressed. Depending on the application software this byte could be interpreted as a command. The interrupt flag is set back by reading a byte from the receive fifo. The master will force the interface into a wait state until the application software reads one byte from the fifo.

I2C send request (see 6.11.2 List Of All Interrupts)

This flag signalises that the master is requesting a byte but the send fifo is empty. The interrupt flag is set back by writing a byte to the send fifo. The master will force the interface into a wait state until the application software writes one byte to the fifo.

If this interrupt is not used for the communication protocol a default routine has to be implemented to clear the interrupt in case of unintentional appearance of this interrupt (the interrupt can occur under different circumstances when the slave address is enclosed in a data byte).

C-code example for default routine:

```
I2C_TXDATA = 0xff; // fill "send data fifo register" (see above)
// with one byte of data to clear the interrupt
I2C_CTRL |= I2C_CLRTXFIFO; // clear contents of send fifo registers to
// remove previous written 0xff (control reg.)
```

I2C send fifo low water (see 6.11.2 List Of All Interrupts)

In case the low water mark (defined in control register) is reached or is exceeded the send fifo low water flag becomes active. The flag is set back by filling to the send fifo.

I2C receive fifo high water (see 6.11.2 List Of All Interrupts)

If the high water mark (defined in control register) is reached or is exceeded the receive fifo high water flag becomes active. The flag is set back by reading from the receive fifo.

6.10.9 I²C Wake-up Detection

The I²C interface can be used to wake up the ASIC from any system state. In system state "off" the interface has to be configured to wake the CPU. Therefore the 'wakeup mode enable bit' has to be set (defined in control register) before setting the ASIC to "off-mode". It is only possible to set the 'wakeup mode enable bit' if the I²C Master has closed the communication on the bus, so the application software has to poll the bit 'wakeup mode enable' (defined in status register) after it was set to make sure the bus is in idle state and the ASIC can be set to "off-mode". After a new addressing of the slave on the bus the system will wake up from "off-mode" and the "I2C wakeup event" interrupt is active as long as the 'wakeup mode enable bit' is set back to zero (defined in control register). While the wake-up process the interface will force the Master into a wait state by holding the SCL line low. The application software has to clear the 'wakeup mode enable bit' (defined in control register) to release the SCL line in order to continue the communication.

6.11 Interrupt Control Module

6.11.1 Interrupt Control Module Structure

- interrupt pending bit flipflops (request hold elements) are located inside asserting modules
- interrupt vector support for more simple and faster interrupt entry
- nested interrupt support
- main interrupt enable MIE for easy cli() and sei() implementation
- N is the number of interrupt vectors

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

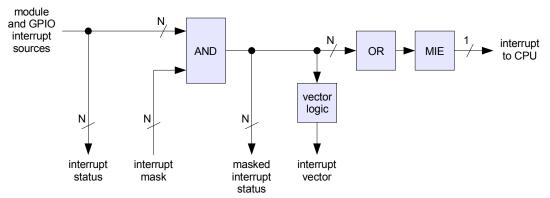


Figure 6.11.1-1: interrupt control circuit

PRELIMINARY INFORMATION AUG 02, 2011

vector number	interrupt source	priority
0	undefined opcode	highest
1	misaligned word access	
2	opcode execute protection error	
3	stack protection error	
4	invalid module register address access	
5	FLASH write error	
6	HALIOS measurement ready	
7	timer0 window error (watchdog)	
8	timer1 window error	
9	timer1 event	
10	I2C receive command	
11	I2C send request	
12	I2C send fifo low water	
13	I2C receive fifo high water	
14	SPI timeout	
15	SPI fifo error	
16	SPI receive high water	
17	SPI send low water	
18	GPIO rising	
19	GPIO falling	
20	I2C wakeup event	
21	wakeup timer wakeup event	
22	reserved	
23	reserved	
24	reserved	
25	reserved	
26	reserved	
27	reserved	
28	reserved	
29	reserved	
30	reserved	
31	reserved	lowest

6.11.2 List Of All Interrupts

Table 6.11.2.1: List Of All Interrupts

PRELIMINARY INFORMATION AUG 02, 2011

address offset	reset value	register name	size
0x00	0x0000	interrupt mask	32
0x04	-	interrupt status	32
0x08	-	masked interrupt status	32
0x10	-	interrupt vector number	16
0x12	0x0000	interrupt routine address	16
0x14	0x0020	maximum interrupt level	16
0x16	0x0001	main interrupt enable	16

6.11.3 Interrupt Control Module Registers

Table 6.11.3.1: Interrupt Control Module Registers

6.11.4 Interrupt Mask

Register interrupt	t m	as	k (()x0	0)																											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Bit Description	31	:0	: m	as	k (s	see	Li	st C	Df /	41I I	Inte	erru	ipts	s fo	or d	eta	ils)														
	0 -	- di	sat	ble																												
	1 -	- er	nab	led																												

Table 6.11.4.1: interrupt mask

6.11.5 Interrupt Status

Register interrupt status (0x04)

incegioter interrup				(0/)	۰.	/																										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0 -		ot a	atu ictiv e	```	see	e L	ist	Of	All	Int	err	upt	s fo	oro	deta	ails	;)														

Table 6.11.5.1: interrupt status

6.11.6 Masked Interrupt Status

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Register masked	in	ter	rup	ot s	sta	tus	(0	x08	3)																							
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0 ·	- no		icti		d st	atu	is (se	e L	ist	Of	All	Int	err	upt	ts f	or	det	ails	5)											

Table 6.11.6.1: masked interrupt status

6.11.7 Interrupt Vector Number

Register **interrupt vector number** (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	vecto wher	: num or num i no in value	iber o terrup	f penc t is pe	ling in	terrup	ot with	highe	est prio	ority (s	smalle	st veo	tor nu	umber)	

Table 6.11.7.1: interrupt vector number

6.11.8 Interrupt Routine Address

Register interrupt	routin	e addres	ss (0x12)
		1	· · ·	<i>'</i>

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description		: addr ess of outine	the so													

Table 6.11.8.1: interrupt routine address

PRELIMINARY INFORMATION AUG 02, 2011

6.11.9 Maximum Interrupt Level

Register maximu		ւշուսբ	IL IEVE	1 (07 1	7)											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	neec softv	level led for vare w er prio	rites o	curren	t vect	or nur	nber t		regist t.	er, so	only i	nterru	pts wi	th		

Register maximum interrupt level (0x14)

Table 6.11.9.1: maximum interrupt level

6.11.9.1 Main Interrupt Enable

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	routi Note flag GIE	nes. e: cli() atomi shoul	usua c (nor d only	lly mu n inter / be u:	st che ruptat sed fo	eck (sa ble). E er inter	ave cu EL16 h rrupt r	urrent las no lesting	enabl such g. Wh	le stat opera ien MI	ation,	nd the so Gll nly us	n clea Ξ flag ed ins	ir inter canno side cl	rupt e ot be i i() and	enable

Table 6.11.9.1.1: main interrupt enable

PRELIMINARY INFORMATION AUG 02, 2011

6.12 Multiplier Module

The hardware multiplier is a peripheral and is not part of the EL16 CPU. This means, its activities do not interfere with the CPU activities. The multiplier registers are peripheral registers that are loaded and read with CPU instructions.

The hardware multiplier supports:

- Unsigned multiply
- Signed multiply
- Unsigned multiply accumulate
- Signed multiply accumulate
- 16 x 16 bits, 16 x 8 bits, 8 x 16 bits, 8 x 8 bits
- CPU is halted until result is valid (1 clock cycle)

The hardware multiplier supports unsigned multiply, signed multiply, unsigned multiply accumulate, and signed multiply accumulate operations. The type of operation is selected by the address the first operand is written to. The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and three result registers, SumLo, SumHi, and SumExt. SumLo stores the low word of the result, SumHi stores the high word of the result, and SumExt stores information about the result.

6.12.1 Module Registers

address offset	reset value	register name	size
0x10	0x0000	MPY (operand 1)	16
0x12	0x0000	MPYS (operand 1)	16
0x14	0x0000	MAC (operand 1)	16
0x16	0x0000	MACS (operand 1)	16
0x18	0x0000	operand 2	16
0x1A	0x0000	SumLo	16
0x1C	0x0000	SumHi	16
0x1E	0x0000	SumExt	16

Table 6.12.1.1: Multiplier Module Registers

Register MPY (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 unsig	: Ope			•		•	•	•	•	•	•	•	•	•	

Table 6.12.1.2: MPY

Register MPYS (0x12)

	/															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description		: Ope d mul	rand 1 tiply													

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Table 6.12.1.3: MPYS

Register MAC (0x14)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	V R/W R/W R/W R/W R/W R/W R/W R/W														
	unsig	ned n	nultiply	у ассі	imula	te										

Table 6.12.1.4: MAC

Register MACS (0x16)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 signe	: Ope d mul			ulate											

Table 6.12.1.5: MACS

Register **Operand 2** (0x18)

regiotor eperane		(10)														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Rv	R/W						
Bit Description	15:0 (write	: Ope acce			ultiplic	ation)										

Table 6.12.1.6: Operand 2

Register SumLo (0x1A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	: lowe	r 16 b	it of re	esult											

Table 6.12.1.7: SumLo

PRELIMINARY INFORMATION AUG 02, 2011

Register **SumHi** (0x1C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	result MAC	uppe S: The . Two uppe	r 16 b MSB 's con r 16 b	it of re is the plem oit of re	esult e sign ent no esult	otatior	n is us	ed for	the re	esult.			uppe ed for			the

Table 6.12.1.8: SumHi

Register **SumExt** (0x1E)

	<u>`</u>	/									-	-	-	-	-	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	MPY: MPY: 0x000 0xFF MAC 0x000 0x000 MPY: 0x000	: In ca alwa S: con 00 if ro FF if r : conta 00 no 01 res S: con 00 if ro FF if r	ys 0x0 tains esult v esult v ains th carry sult wit tains esult v	0000 the ex was po was n ne can result the can the ex was po	egative egative ry of t y ttende ositive	e ve he res ed sigi	sult									

Table 6.12.1.9: SumExt

6.13 Timer0 (Window-Watchdog) Timer1

- two 32Bit width decrementing timers
- 32Bit little endian atomic read or write over 16Bit data bus
- timer 0 is used as watchdog, so it triggers a system reset instead of an interrupt
- timer reset window support

address offset	reset value	register name	size
0x00	0xFFFF.FFFF	timer value	32
0x04	0xFFFF.FFFF	timer counter	32
0x08	0x0000	timer control	16
0x0A	0x001F	timer window config	16
0x0C	-	timer interrupt clear	16

6.13.1 Module Registers

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Table 6.13.1.1: Timer 0 and Timer 1 Module Registers

Register timer va	lue	9 (0	x0(0)																												
Bit	31	30	29	28	27	16	25	24	23	22	21	20	19	18	17	6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Bit Description	31	:0	: tii	me	r st	art	va	lue	;																							

Table 6.13.1.2: timer value

Register **timer counter** (0x04)

Bit	31	30	29	28	27	16	25	24	23	22	21	20	19	18	17	6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	31	:0	: cı	urre	ent	tim	ner	va	lue						•																	,

Table 6.13.1.3: timer counter

Register timer control (0x08)

register timer ee	1	(0//00	<u>/</u>			1	1	1		1		1	1			1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	(R) W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	(R) W	R/W	R/W
Bit Description	must will a 3 : clo 0 - M 1 - N synch 2 : tir 0 - no 1 - re 1 : loo 0 - ru 1 - lo 0 : ru 0 - tir	ICLK/ nronizener re p influe set to op in onc	itten a be re- ase se (16*ba e time set ence start e and ble oppeo	ad as lector aud ra r to S value hold a	0x96 (time te) PI clo	ck		s "run	enabl	e")						

Table 6.13.1.4: timer control

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	passy must will a 5 : wi 0 - no 1 - wi 4:0 :	word be wr lways ndow o wind indow windo	itten a be rea enabl ow (d active	as 0xA ad as e efault e	,5 0x96)					ndow- w size		laog)				

Register **timer window config** (0x0A)

Table 6.13.1.5: timer window config

|--|

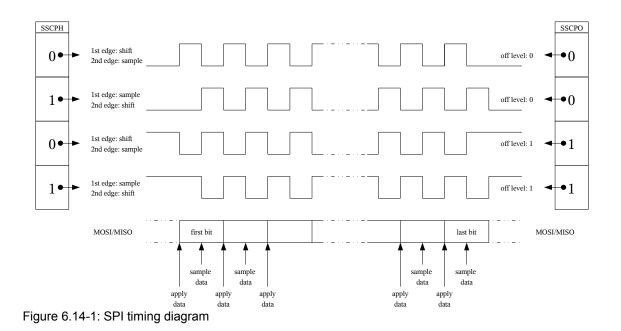

Register timer int			· `	r /				1	1				1	1		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W	W
External access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W	W
	0 : wi 0 - no	o influe ear inf ndow o influe	ence terrup IRQ (t clear												

Table 6.13.1.6: timer interrupt clear

PRELIMINARY INFORMATION AUG 02, 2011

6.14 SPI Module

- can be used as master or salve
- the SPI Interface consists of the following 4 signals:
 - SCK: SPI clock (driven by master)
 - CSB: low active chip select (driven by master)
 - MISO: master in, slave out (data from slave to master)
 - MOSI: master out, slave in (data from master to slave)
- configurable phase, polarity and bit order
- · byte and multi-byte transfer support
- slave mode SPI clock monitoring (time out)
- 4 data word transmit and receive FIFOs

6.14.1 SPI Module Registers

address offset	reset value	register name	size
0x00	0x0000	transmit data / receive data	16
0x02	0x2009	control	16
0x04	0x0000	baud config	16
0x06	0xFFFF	time out config	16
0x08	-	module reset	16
0x0A	-	status	16
0x0C	-	error	16
0x0E	-	interrupt clear	16

Table 6.14.1.1: SPI Module Registers

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	(R) W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	(R) W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	0 - by 1 - ka 7:0 : The ' (FIFC The ' regis	yte mo eep cs transr send l D).	ode sb acti mit da low w re higl IFO).	ive aft ta / re ater' ir n wate	er rela ceive nterrup er' inte	ated b data ot will	yte wa be cle	as trar eared	maste nsmitte by wri red by	ed ting a	byte t					

Register transmit data / receive data (0x00)

Table 6.14.1.2: transmit data / receive data

Register **control** (0x02)

Bit	15		13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1
Internal access	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
External access	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	interr defau 10:8 interr defau 3 : sla 0 - m 1 - sla 2 : pc 0 - cla 1 - cla 1 : pr 0 - 1s 1 - 1s 0 : or 0 - LS	ult valu : low v upt wi ult valu ave aster ave blarity: ock of ock of nase: \$ st edge st edge	II be a Je: 2 water 1 II be a Je: 0 SSCI f level f level SSCP e shift e sam	PO, se I 0 H, see	ed wh nit FIF ed wh ee SP e SPI edge	en reo ⁻ O lev en tra I mod mode samp	ceive l rel nsmit e diagr le	FIFO gram					is valu			

Table 6.14.1.3: control

	Register	baud	config	(0x04))
--	----------	------	--------	---	-------	---

i tegietei natata ee																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Internal access	R/W															
External access	R/W	R/W	Rv	R/W												

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Description	15:0	15:0 : baud divider = (system clock frequency) / (2 * baud rate)														
	= (sy	stem o	clock	freque	ency)	/(2*1	baud r	ate)								
	NÔŤ	E: Mir	nimal v	value	for ba	ud div	vider is	s 4								

Table 6.14.1.4: baud config

Register timeout config (0x06)

			- /													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	15:0 maxii				int of s	systen	n cloc	k cycl	es bei	tween	2 SP	l clocł	k edge	es		

Table 6.14.1.5: timeout config

Register **module reset** (0x08)

			Í				-	-	_	-	-		-	-		-
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	-	-	-	-	-	W	W	W
External access	-	-	-	-	-	-	-	-	-	-	-	-	-	W	W	W
Bit Description	-	eceive	FIFO	eset clear) cleai	r											

Table 6.14.1.6: module reset

Register status (0x0A)

regiotor otatao (
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	-	receiv transi	-													

Table 6.14.1.7: status

PRELIMINARY INFORMATION AUG 02, 2011

Register **error** (0x0C)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	will b 0 : re	e clea ceive	t FIFC ared o FIFO ared o	n reac was f	l ull (re				ode) e lostj)						

Table 6.14.1.8: error

Register interrupt clear (0x0E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W	W
External access	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W	W
Bit Description		ear er ear tin				·										

Table 6.14.1.9: interrupt clear

PRELIMINARY INFORMATION AUG 02, 2011

6.15 GPIO Module

- up to 6 GPIOs
- interrupt capable (configurable for positive and / or negative signal edge interrupt)

6.15.1 GPIO Module Registers

address offset	reset value	register name	size
0x00	0x0000	output data	16
0x02	0x003F	direction	16
0x04	-	input data	16
0x06	0x0000	posedge interrupt enable	16
0x08	-	posedge interrupt status	16
0x0A	-	posedge interrupt clear	16
0x0C	0x0000	negedge interrupt enable	16
0x0E	-	negedge interrupt status	16
0x10	-	negedge interrupt clear	16
0x12	0x0000	port config	16

Table 6.15.1.1: GPIO Module Registers

Register **output data** (0x00)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R/W							
External access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7:0 :	outpu	ut data	I												
	rese	t value	e: 0x0	000												

Table 6.15.1.2: output data

Register direction (0x02)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Internal access	R R R R R/W R/W															R/W
External access	R R R R R/W R/W															R/W
Bit Description	0 - oı 1 - in	utput,	pull do ull dov	own d wn en)FF		d										

Table 6.15.1.3: direction

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Register input ua	110	<u>~0+)</u>														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description		input t value		000												

Register input data (0x04)

Table 6.15.1.4: input data

Register **posedge interrupt enable** (0x06)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R R R R R R R R R R R/W R/W R/W R/W R/W															R/W
External access	R R R R R/W R/W														R/W	
Bit Description	0 - di 1 - a	sable	d ve edç		relate	d "inp	ut dat	a" bit v	will se	t inter	rupt b	it				

Table 6.15.1.5: posedge interrupt enable

Register posedge interrupt status (0x08)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0 - n 1 - in	status o inter terrup : value	rupt ot was		ted											

Table 6.15.1.6: posedge interrupt status

Register posedge interrupt clear (0x0A)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	W	W	W	W	W	W	W	W
External access	-	-	-	-	-	-	-	-	W	W	W	W	W	W	W	W
Bit Description	7:0 : clear 0 - no influence 1 - clears related interrupt bit															

Table 6.15.1.7: posedge interrupt clear

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	0 - di 1 - a	enabl sableo negat value	d ive ec	•	relate	ed "inp	out da	ta" bit	will se	et inte	rrupt l	bit				

Register **negedge interrupt enable** (0x0C)

Table 6.15.1.8: negedge interrupt enable

Register negedge interrupt status (0x0E)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0 - no 1 - in	status o inter terrup value	rupt t was	asser)00	ted											

Table 6.15.1.9: negedge interrupt status

Register negedge interrupt clear (0x10)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Internal access	-	-	-	-	-	-	-	-	W	W	W	W	W	W	W	W
External access	-	-	-	-	-	-	-	-	W	W	W	W	W	W	W	W
Bit Description	7:0 : clear 0 - no influence 1 - clears related interrupt bit															

Table 6.15.1.10: negedge interrupt clear

Register **port config** (0x12)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
External access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1:0 : IO port config for details see IO Port Multiplexer reset value: 0x0000															

Table 6.15.1.11: port config

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION AUG 02, 2011

6.15.2 IO Port Multiplexer

IO Port	Test Mode	Normal Mode			
		cfg[0] = 0	cfg[0] = 1		
TMODE	1	0	0		
IO0	GPIO00	GPIO00	GPIO00		
IO1	GPIO01	GPIO01	GPIO01		
IO2	TDO	GPIO02	SCK		
IO3	TDI	GPIO03	MISO		
IO4	TMS	GPIO04	MOSI		
IO5	TCK	GPIO05	CSB		

Table 6.15.2.1: IO port multiplexer

- "port config" register (cfg) is located in GPIO module
- test mode default: pull down
- IO port default: GPIO input and pull down

PRELIMINARY INFORMATION AUG 02, 2011

7 Robustness

7.1 ESD

The ESD protection circuitry is measured according to AEC-Q100-002 with the following conditions:

Test Method (HBM):

- VIN = 2000 V (according to device class H1C)
- REXT = 1500 Ohm
- CEXT = 100 pF

Test Method (CDM):

- VIN = 500 V for all pins
- VIN = 750 V for corner pins

7.2 Latch up Test

Test Method:

100 mA positive and negative pulses at 85 °C according to AEC-Q100-004.

8 Package

8.1 Marking

8.1.1 Top side

ELMOS	
E909.05A	
XXX#LYWW*@	

where

E/M/T	Volume production / prototype / test circuit
000.01	ELMOS project number
А	ELMOS project revision code
XXX	Production lot number
#	Assembler code
L	Production line code
YWW	Year and week of assembly
*	Mask revision code
@	ELMOS internal code

PRELIMINARY INFORMATION AUG 02, 2011

WARNING – Life Support Applications Policy

ELMOS Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing ELMOS Semiconductor AG products, to observe standards of safety, and to avoid situations in which malfunction or failure of an ELMOS Semiconductor AG Product could cause loss of human life, body injury or damage to property. In development your designs, please ensure that ELMOS Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications.

General Disclaimer

Information furnished by ELMOS Semiconductor AG is believed to be accurate and reliable. However, no responsibility is assumed by ELMOS Semiconductor AG for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of ELMOS Semiconductor AG. ELMOS Semi-conductor AG reserves the right to make changes to this document or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.

Application Disclaimer

Circuit diagrams may contain components not manufactured by ELMOS Semiconductor AG, which are included as means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. The information in the application examples has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of ELMOS Semiconductor AG or others.

Contact Information

Headquarters ELMOS Semiconductor AG Heinrich-Hertz-Str. 1 • D-44227 Dortmund (Germany)	© +492317549100	⊠: <u>sales@elmos.de</u> ∳: <u>www.elmos.de</u>
Regional Sales and Application Support Office Munich ELMOS Semiconductor AG Am Geflügelhof 12 • 85716 Unterschleißheim/Eching	© +49893183700	
Sales Office France ELMOS FRANCE SAS 9/11 allée de l'Arche • La Défense • 92671 Courbevoie cedex (France)	© +33149971591	
Sales and Application Support Office North America ELMOS NA. Inc. 32255 Northwestern Highway, Suite 45 • Farmington Hills, MI 48334	© +12488653200	
Sales and Application Support Office Korea and Japan ELMOS Korea Dongbu Root building, 16-2, Suite 509, • Sunae-dong, Bundang-gu, Seongnam-shi, Kyonggi-do (Korea)	© +82317141131	
Sales and Application Support Office China ELMOS Semiconductor Technology (Shanghai) Co., Ltd. 57-01E, Lampl Business Centre, 57F, The Exchange • 1486 Nanjing W (299 Tongren Rd) • JingAn Shanghai • P.R.China 200040	V Rd. © +862161717358	
Sales and Application Support Office Singapore ELMOS Semiconductor Singapore Pte Ltd. 60 Alexandra Terrace • #09-31 The Comtech • Singapore 118502	© +6566351141	

© ELMOS Semiconductor AG, 2011. Reproduction, in part or whole, without the prior written consent of ELMOS Semiconductor AG, is prohibited.

This document contains information on a pre-production product. ELMOS Semiconductor AG reserves the right to change specifications and information herein without notice.

ELMOS Semiconductor AG

Data Sheet 67 / 67