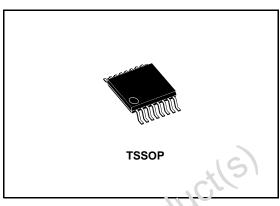


### STLVDS47


### 3V LVDS quad cmos differential line driver

#### **Feature summary**

- >400 MBPS (200MHz) switching rates
- Flow-through pinout simplifies pcb layout
- 300ps (max.) differential skew
- 1.8 ns (typ.) propagation delay
- 3.3V Power supply design
- ±350 mV Differential signaling
- Low power dissipation (3.5mW at 3.3V static in tristate)
- Interoperable with existing 5V LVDS receivers
- High impedance on LVDS Output on power down
- Conforms to TIA/EIA-644 LVDS standard
- Industrial operating temperature range (-40 °C to +85 °C)
- Available in surface mount (SOIC) and low profile TSSOP package

#### Description

The STLVDS47 is a quad CMOS flow-torough differential line driver designed for applications requiring ultra low power dissipation and high data rate. The device is designed to support data rates in excess of 400 Vope (200 MHz) utilizing Low Voltage Differential Signaling (LVDS) techology.



The STLVDS47 accepts low voltage TTL/CMOS input levels and translated them to low voltage (350 mV) differential output signals. In addition, the driver support a TRI-STATE function that may be used to disable the output stage, disabling the load current and thus dropping the device to an ultralic wide power state of 1.3mW typical. The STL/US47 has a flow-through pinout for easy FCB layout.

The EN and EN\* inputs are ANDed together and control the TRI-STATE output.

The STLVDS47 and companion line receiver (STLVDS48) provide a new alternative to high power pseudo-ECL devices for high-speed point-to-point interface applications.

#### Order code

| Part number | Temperature<br>Range | Package               | Comments            |  |
|-------------|----------------------|-----------------------|---------------------|--|
| STLVDS47BTR | -40 to 85 °C         | TSSOP16 (Tape & Reel) | 2500 parts per reel |  |

April 2006 Rev. 2 1/12

www.st.com

### **Contents**

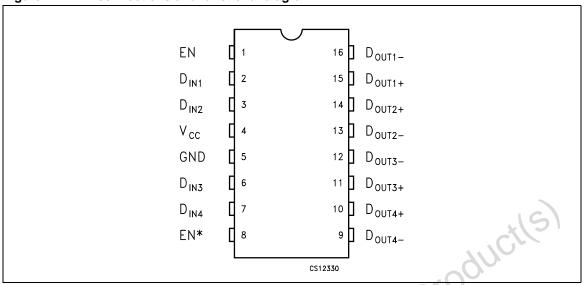
| 1   | Pin configuration            |
|-----|------------------------------|
| 2   | Diagram 4                    |
| 3   | Maximum ratings              |
| 4   | Electrical characteristics 6 |
| 5   | Package mechanical data      |
| 6   | Revision history             |
| 005 | Revision history             |

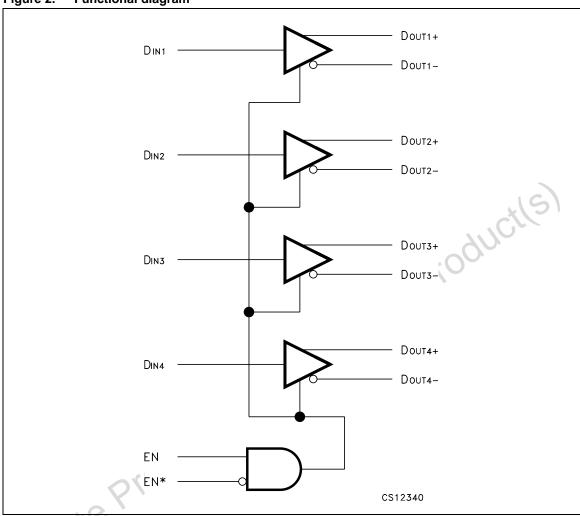


STLVDS47 Pin configuration

# 1 Pin configuration

Figure 1. Pin connections and functional diagram





Table 1. Pin description

| Pin n° | Symbol              | Name and function                  |  |  |
|--------|---------------------|------------------------------------|--|--|
| 1      | EN                  | Enable                             |  |  |
| 2      | D <sub>IN1</sub>    | First driver input                 |  |  |
| 3      | D <sub>IN2</sub>    | Second driver input                |  |  |
| 4      | V <sub>CC</sub>     | Supply voltage                     |  |  |
| 5      | GND                 | Ground                             |  |  |
| 6      | D <sub>IN3</sub>    | Third driver input                 |  |  |
| 7      | D <sub>IN4</sub>    | Fourth driver input                |  |  |
| 8      | EN*                 | Enable (inverting)                 |  |  |
| 9      | D <sub>OUT4</sub> . | Fourth driver inverting output     |  |  |
| 10     | D <sub>OUT4+</sub>  | Fourth driver non-inverting output |  |  |
| CO 11  | D <sub>OUT3+</sub>  | Third driver non-inverting output  |  |  |
| 12     | D <sub>OUT3-</sub>  | Third driver inverting output      |  |  |
| 13     | D <sub>OUT2</sub> - | Second driver inverting output     |  |  |
| 14     | D <sub>OUT2+</sub>  | Second driver non-inverting output |  |  |
| 15     | D <sub>OUT1+</sub>  | First driver non-inverting output  |  |  |
| 16     | D <sub>OUT1-</sub>  | First driver inverting output      |  |  |

Diagram STLVDS47

# 2 Diagram

Figure 2. Functional diagram



STLVDS47 Maximum ratings

### 3 Maximum ratings

Table 2. Absolute maximum ratings

| Symbol                               | Parameter                 | Value       | Unit |
|--------------------------------------|---------------------------|-------------|------|
| V <sub>CC</sub>                      | Supply voltage            | -0.3 to 4   | V    |
| D <sub>IN</sub>                      | Input voltage             | -0.3 to 6   | V    |
| EN, EN*                              | Enable input voltage      | -0.3 to 6   | V    |
| D <sub>OUT+</sub> ,D <sub>OUT-</sub> | Output voltage            | -0.3 to 3.9 | V    |
| I <sub>SCTOUT</sub>                  | Short circuit duration    | Continuous  |      |
| T <sub>stg</sub>                     | Storage temperature range | -65 to +150 | °C   |

Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Recommended operating conditions

| Symbol          | Parameter                      | Min. | Тур. | Max. | Unit |
|-----------------|--------------------------------|------|------|------|------|
| V <sub>CC</sub> | Supply voltage                 | 3    | 3.3  | 3.6  | V    |
| V <sub>IH</sub> | High-level input voltage       | 2    | 1    |      | V    |
| V <sub>IL</sub> | Low-level input voltage        | 0,10 |      | 0.8  | V    |
| T <sub>A</sub>  | Operating free-air temperature | -40  |      | 85   | °C   |
| opsol6          | ate Product(s)                 |      |      |      |      |

Electrical characteristics STLVDS47

### 4 Electrical characteristics

Table 4. Electrical characteristics (Typical values are at  $T_A = 25$ °C,  $V_{CC} = 3.3$ V  $\pm$  10%,  $T_A = -40$  to 85 °C, unless otherwise specified). (Note 1, 2).

| Symbol            | Parameter                                                               | Test conditions                                                           | Min.  | Тур. | Max.  | Unit |
|-------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|------|-------|------|
| V <sub>OD1</sub>  | Differential output voltage                                             | R <sub>L</sub> = 100 Ω                                                    | 247   | 350  | 454   | mV   |
| ΔV <sub>OD1</sub> | Change in magnitude of V <sub>OD1</sub> for complementary output states |                                                                           | -35   |      | 35    | mV   |
| V <sub>OC</sub>   | Offset voltage                                                          |                                                                           | 1.125 | 1.2  | 1.375 | V    |
| ΔV <sub>OC</sub>  | Change in magnitude of V <sub>OS</sub> for complementary output states  |                                                                           | -25   |      | 25    | mV   |
| I <sub>IH</sub>   | Input high current                                                      | V <sub>IN</sub> = 2V                                                      |       |      | 20    | μA   |
| I <sub>IL</sub>   | Input low current                                                       | V <sub>IN</sub> = 0.8V                                                    |       |      | 10    | μA   |
| I <sub>OS</sub>   | Output short circuit current (Note 3)                                   |                                                                           |       | 6    | 10    | mA   |
| I <sub>OSD</sub>  | Differential output short circuit (Note 3)                              | ENABLED, V <sub>OD</sub> = 0V                                             | OYC   | 3    | 10    | mA   |
| l <sub>OFF</sub>  | Power-off leakage                                                       | V <sub>OUT</sub> = 0V or 3.6V,<br>V <sub>CC</sub> = 0V or Open            |       |      | ±1    | μΑ   |
| I <sub>OZ</sub>   | Output TRI-STATE current                                                | $EN = 0.8V$ and $EN^* = 2V$<br>$V_{OUT} = 0V$ or $V_{CC}$                 |       |      | ±1    | μΑ   |
| I <sub>CCL</sub>  | Loaded supply current drivers enabled                                   | $R_L = 100 \Omega$ All Channels,<br>$D_{IN} = V_{CC}$ or GND (all inputs) |       | 18   | 26    | mA   |
| I <sub>CCZ</sub>  | No load supply current drivers disabled                                 | $D_{IN} = V_{CC}$ or GND,<br>EN = GND, EN* = $V_{CC}$                     |       | 0.4  | 1     | mA   |

Note: 1 Current into device pins is defined as positive. Current out of device pins as negative. All voltage are reference to ground except:  $V_{OD1}$  and  $\Delta V_{OD1}$ .

3 Output short circuit current ( $I_{OS}$ ) is specified as magnitude only, minus sign indicates direction only.

The STLVDS47 is a current mode device and only functions within datasheet specifications when a resostive load is applied to the driver outputs typical range is  $(90 \Omega \text{ to } 110 \Omega)$ .

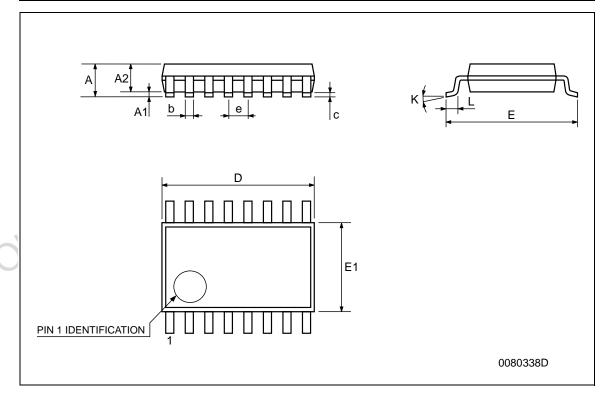
Table 5. Switching characteristics (Typical values are at  $T_A = 25$ °C,  $V_{CC} = 3.3V \pm 10\%$ ,  $T_A = -40$  to 85 °C, unless otherwise specified). (Note 1, 2).

| Symbol              | Parameter                                                       | Test conditions                | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------|--------------------------------|------|------|------|------|
| t <sub>PLH</sub>    | Propagation delay time low-to-<br>high-level output             |                                | 1.6  | 1.8  | 2.7  | ns   |
| t <sub>PHL</sub>    | Propagation delay time high-to-<br>low-level output             |                                | 1.6  | 1.8  | 2.7  | ns   |
| t <sub>r</sub>      | Differential output signal rise time                            | $R_L = 100 \Omega, C_L = 5 pF$ |      | 0.5  | 1    | ns   |
| t <sub>f</sub>      | Differential output signal fall time                            |                                |      | 0.5  | 1    | ns   |
| t <sub>SK(p)</sub>  | Pulse skew ( t <sub>PHL</sub> - t <sub>PLH</sub>  )             |                                |      | 100  | 300  | ps   |
| t <sub>SK(o)</sub>  | Channel-to-channel output skew (Note 1)                         |                                |      | 100  | 300  | ps   |
| t <sub>SK(pp)</sub> | Part-to-part skew (Note 2)                                      |                                |      |      | 1    | ns   |
| t <sub>PZH</sub>    | Propagation delay time, high-<br>impedance-to-high-level output |                                |      | 5.4  | 10   | ns   |
| t <sub>PZL</sub>    | Propagation delay time, high-<br>impedance-to-low-level output  |                                |      | 7.4  | 12   | ns   |
| t <sub>PHZ</sub>    | Propagation delay time, high-<br>level-to-high-impedance output | . 0                            | 6//  | 3.5  | 6    | ns   |
| t <sub>PLZ</sub>    | Propagation delay time, low-<br>level-to-high-impedance output  | deile                          |      | 3.9  | 6    | ns   |
| f <sub>MAX</sub>    | Maximum operating frequency                                     | 105                            |      | 250  |      | MHz  |

Note: 1 CL includes probe and jig capacitance.

- $t_{SK(0)}$  is the magnitude of the time difference between the  $t_{PLH}$  or  $t_{PHL}$  of all drivers of a single device with all of their inputs connected together.
- 3 t<sub>SK(pp)</sub> is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with same supply voltage, at the same temperature, and have identical packages and test circuits.

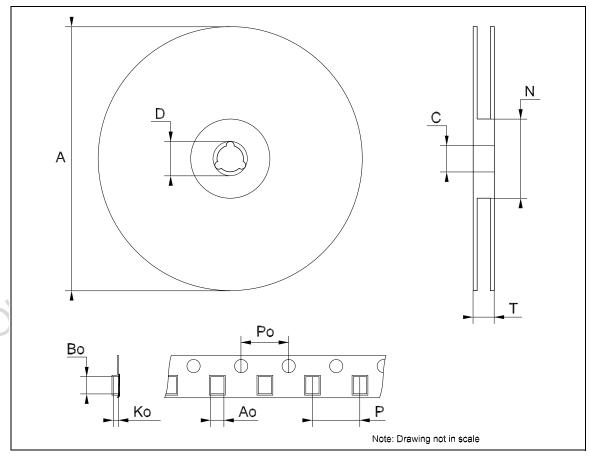
577


### 5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.



### **TSSOP16 MECHANICAL DATA**


| DIM  | mm.  |          |      |       | inch       |        |
|------|------|----------|------|-------|------------|--------|
| DIM. | MIN. | TYP      | MAX. | MIN.  | TYP.       | MAX.   |
| А    |      |          | 1.2  |       |            | 0.047  |
| A1   | 0.05 |          | 0.15 | 0.002 | 0.004      | 0.006  |
| A2   | 0.8  | 1        | 1.05 | 0.031 | 0.039      | 0.041  |
| b    | 0.19 |          | 0.30 | 0.007 |            | 0.012  |
| С    | 0.09 |          | 0.20 | 0.004 |            | 0.0079 |
| D    | 4.9  | 5        | 5.1  | 0.193 | 0.197      | 0.201  |
| E    | 6.2  | 6.4      | 6.6  | 0.244 | 0.252      | 0.260  |
| E1   | 4.3  | 4.4      | 4.48 | 0.169 | 0.173      | 0.176  |
| е    |      | 0.65 BSC |      |       | 0.0256 BSC |        |
| К    | 0°   |          | 8°   | 0°    |            | 8°     |
| L    | 0.45 | 0.60     | 0.75 | 0.018 | 0.024      | 0.030  |



**47/** 

| Tape | & | Reel | TSSOP16 | MECH | IANICAL | DATA |
|------|---|------|---------|------|---------|------|
|------|---|------|---------|------|---------|------|

| DIM.   |      | mm. |      |       | inch |        |  |
|--------|------|-----|------|-------|------|--------|--|
| DIIVI. | MIN. | TYP | MAX. | MIN.  | TYP. | MAX.   |  |
| А      |      |     | 330  |       |      | 12.992 |  |
| С      | 12.8 |     | 13.2 | 0.504 |      | 0.519  |  |
| D      | 20.2 |     |      | 0.795 |      |        |  |
| N      | 60   |     |      | 2.362 |      |        |  |
| Т      |      |     | 22.4 |       |      | 0.882  |  |
| Ao     | 6.7  |     | 6.9  | 0.264 |      | 0.272  |  |
| Во     | 5.3  |     | 5.5  | 0.209 |      | 0.217  |  |
| Ko     | 1.6  |     | 1.8  | 0.063 |      | 0.071  |  |
| Ро     | 3.9  |     | 4.1  | 0.153 |      | 0.161  |  |
| Р      | 7.9  |     | 8.1  | 0.311 |      | 0.319  |  |



STLVDS47 Revision history

### 6 Revision history

Table 6. Revision history

| Date        | Revision | Changes                                        |
|-------------|----------|------------------------------------------------|
| 06-Apr-2006 | 2        | Order codes has been updated and new template. |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577