19-1856; Rev 3; 3/02 EVALUATION KIT AVAILABLE

if a clock signal is available.

pulse-width distortion.

series damping resistor RD on chip.

Transmission Systems

Section Regenerators

10.7Gbps Laser Diode Drivers

General Description

Applications

The MAX3930/MAX3931/MAX3932 are designed for

direct modulation of laser diodes at data rates up to

10.7Gbps. They provide adjustable laser bias and

modulation currents and are implemented using Maxim's second-generation in-house SiGe process.

The MAX3930 accepts differential CML clock and data

input signals and includes 50Ω on-chip termination

resistors. It delivers a 1mA to 100mA laser bias current

and a 20mA to 100mA modulation current with a typical

(20% to 80%) 25ps rise time. An input data retiming latch can be used to reject input pattern-dependent jitter

The MAX3931/MAX3932 have an alternate pad out with

respect to the MAX3930. The MAX3931 includes the

The MAX3930/MAX3931/MAX3932 also include an adjustable pulse-width control circuit to minimize laser

SONET OC-192 and SDH STM-64

Up to 10.7Gbps Optical Transmitters

_Features

- Single +5V or -5.2V Power Supply
- 108mA Supply Current
- Operates to 10.7Gbps
- 50Ω On-Chip Input Termination Resistors
- Programmable Modulation Current to 100mA
- Programmable Laser Bias Current to 100mA
- 25ps Rise Time (MAX3930/MAX3932)
- ♦ Adjustable Pulse-Width Control
- Selectable Data Retiming Latch
- ESD Protection
- Internal Series Damping Resistor (MAX3931)

_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3930E/D	-40°C to +85°C	Dice
MAX3931E/D	-40°C to +85°C	Dice
MAX3932E/D	-40°C to +85°C	Dice
MAX3932E/W	-40°C to +85°C	Wafer

Note: Dice are designed to operate over a -40°C to +120°C junction temperature (T_J) range but are tested and guaranteed at $T_A = +25^{\circ}C$.

Typical Application Circuit

5V 5 VRIAS 5V Ī 0.01u V_{CC} DATA+ MON -|+(-) 50Ω DATA+ 5٧ BIASSET **NASN** MODN $R_D=15\Omega$ l+() 50Ω DATA-DATA MOD1 20Ω MAXIM 5V MAX3910 //IXI//I V_{TT} MOD2 MAX3930 51/ 10Gbps CLK+ $|+() \overline{50\Omega}$ CL K4 MODN: SERIALIZER BIAS -|+() 50Ω CLK-CLK-MOMDON MODSET MODEN RTFN S Vee -2kΩ REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE VMOD <u>ē</u>

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX3930/MAX3931/MAX3932

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} - V _{EE})0.5V to +6.0V	MODSET and BIASSET(VEE - 0.5V) to (VEE + 1.5V)
DATA+, DATA-, CLK+,	Storage Temperature Range55°C to +150°C
CLK(V _{TT} - 1.2V) to the lower of	Operating Junction Temperature55°C to +150°C
(V _{TT} + 1.2V) or (V _{CC} + 0.5V)	Processing Temperature (die)+400°C
MODEN, RTEN, VTT, BIASMON, MODMON,	Current into DATA+, DATA-, CLK+,
PWC+, and PWC(V _{EE} - 0.5V) to (V _{CC} + 0.5V)	CLK- (V _{TT} = V _{CC})24mA to +30.5mA
MODN1, MODN2(V _{CC} - 0.5V) to (V _{CC} + 0.5V)	Current into DATA+, DATA-, CLK+,
BIAS, MOD1, MOD2($V_{EE} + 1V$) to ($V_{EE} + 1.5V$)	CLK- (V _{TT} = V _{CC} - 1.3V)24mA to +24mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS—MAX3930

(V_{CC} - V_{EE} = 4.75V to 5.5V, T_A = -40°C to +85°C. Typical values are at V_{CC} - V_{EE} = 5V, I_{BIAS} = 50mA, I_{MOD} = 70mA, and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Power-Supply Voltage	V _{CC} - V _{EE}		4.75	5	5.50	V
Power-Supply Current	ICC	Excluding bias current and modulation current		108	140	mA
Single-Ended Input Resistance			42.5	50	57.5	Ω
Bias Current-Setting Range			1		100	mA
Pige Current Setting Error		Bias current = 100mA, T _A = +25°C	-5		+5	0/
blas Current-Setting Error		Bias current = 1mA, $T_A = +25^{\circ}C$	-10		+10	/0
Bias Sensing Resistor	R _{BIAS}		2.7	3	3.3	Ω
Bias Current Temperature		I _{BIAS} = 100mA (Note 1)	-480		+480	nnm/°C
Stability		I _{BIAS} = 1mA (Note 1)		-200		ppn/C
Bias Off-Current		$BIASSET \le (V_{EE} + 0.4V)$			0.05	mA
MODEN and RTEN Input High	VIH		V _{EE} + 2			V
MODEN and RTEN Input Low	VIL				V _{EE} + 0.8	V
Power-Supply Rejection Ratio	PSRR	V _{CC} = 4.75V to 5.5V (Note 2)	39.5	60		dB
SIGNAL INPUT FOR VTT = VCC						
		At high		VCC		
Single-Ended Input (DC-Coupled)	VIS	At low	V _{CC} - 1		V _{CC} - 0.15	V
Single-Ended Input	Mic	At high	V _{CC} + 0.075		V _{CC} + 0.4	V
(AC-Coupled)	VIS	At low	V _{CC} - 0.4		V _{CC} - 0.075	V
Differential Input Swing (DC-Coupled)	V _{ID}		0.3		2.0	Vp-p
Differential Input Swing (AC-Coupled)	V _{ID}		0.3		1.6	VP-P
SIGNAL INPUT FOR $V_{TT} = (V_{CC})$	- 1.3V)		-			-
Input Common Mode	VICM			VCC - 1.3		V
2						

DC ELECTRICAL CHARACTERISTICS—MAX3930 (continued)

(V_{CC} - V_{EE} = 4.75V to 5.5V, T_A = -40°C to +85°C. Typical values are at V_{CC} - V_{EE} = 5V, I_{BIAS} = 50mA, I_{MOD} = 70mA, and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Circula Ended langet	ngle-Ended Input VIS	At high	V _{CC} - 1.225		V _{CC} - 0.8	
Single-Ended input		At low	V _{CC} - 1.8		V _{CC} - 1.375	V
Differential Input Swing	VID		0.3		2.0	VP-P

DC ELECTRICAL CHARACTERISTICS—MAX3931/MAX3932

(V_{CC} - V_{EE} = 4.75V to 5.5V, T_A = -40°C to +85°C. Typical values are at V_{CC} - V_{EE} = 5V, I_{BIAS} = 50mA, I_{MOD} = 70mA, and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	
Power-Supply Voltage	V _{CC} - V _{EE}		4.75	5	5.50	V	
Power-Supply Current	Icc	Excluding bias current and modulation current		108	140	mA	
Single-Ended Input Resistance			42.5	50	57.5	Ω	
Bias Current Setting Range			1		100	mA	
Riss Current Sotting Error		Bias current = 100mA, T _A = +25°C	-5		+5	%	
Bias Current Setting Error		Bias current = 1mA, T_A = +25°C	-10		+10		
Bias Sensing Resistor	R _{BIAS}		2.7	3	3.3	Ω	
Bias Current Temperature		I _{BIAS} = 100mA (Note 1)	-480		+480	nnm/°C	
Stability		I _{BIAS} = 1mA		-200		ppin/ C	
Bias Off-Current		$BIASSET \le (V_{EE} + 0.4V)$			0.05	mA	
MODEN and RTEN Input High	VIH		V _{EE} + 2			V	
MODEN and RTEN Input Low	VIL				V _{EE} + 0.8	V	
Power-Supply Rejection Ratio	PSRR	V _{CC} = 4.75V to 5.5V (Note 3)	39.5	60		dB	
SIGNAL INPUT							
		At high		Vcc			
(DC-Coupled)	VIS	At low	V _{CC} - 1		V _{CC} - 0.15	V	
Single-Ended Input (AC-Coupled)	Mis	At high	V _{CC} + 0.075		V _{CC} + 0.4	M	
	VIS	At low	V _{CC} - 0.4		V _{CC} - 0.075	V	
Differential Input Swing (DC-Coupled)	VID		0.3		2.0	Vp-p	
Differential Input Swing (AC-Coupled)	VID		0.3		1.6	Vp-p	

MXXIM

AC ELECTRICAL CHARACTERISTICS—MAX3930/MAX3932

 $(V_{CC} - V_{EE} = 4.75V \text{ to } 5.5V, V_{TT} = V_{CC}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$. Typical values are at $V_{CC} - V_{EE} = 5V$, $I_{MOD} = 70\text{mA}$, and $T_A = +25^{\circ}\text{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Data Rates		NRZ		10.7		Gbps
Modulation Current Setting Range			20		100	mA
Modulation Current Setting Error		20Ω load, T _A = +25°C	-5		+5	%
Modulation Sensing Resistor	R _{MOD}		2.7	3	3.3	Ω
Modulation Current Temperature Stability			-480		+480	ppm/°C
Modulation Off-Current		$MODSET \le (V_{EE} + 0.4V)$			0.1	mA
Output Current Rise Time	t _R	Z _L = 20Ω, 20% to 80% (Note 4)		25	35	ps
Output Current Fall Time	tF	Z _L = 20Ω, 20% to 80% (Note 4)		29	36	ps
Setup/Hold Time	t _{SU} , t _{HD}	Figure 2	25			ps
Pulse-Width Adjustment Range		(Note 4)	±25	±55		ps
Pulse-Width Stability		PWC+ and PWC- open (Note 4)			±13	ps
Pulse-Width Control Input Range		For PWC+ and PWC	V _{EE} +	V _{EE} + 1	V _{EE} + 2	V
Overshoot		(Note 4)			13	%
Driver Random Jitter				0.75	1	ps _{RMS}
Driver Deterministic Jitter		(Note 5)		6.7	21	psp-p
Input Return Loss				12		dB

AC ELECTRICAL CHARACTERISTICS—MAX3931

(V_{CC} - V_{EE} = 4.75V to 5.5V, V_{TT} = V_{CC}, T_A = -40°C to +85°C. Typical values are at V_{CC} - V_{EE} = 5V, I_{MOD} = 70mA, and T_A = +25°C, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Input Data Rates		NRZ		10.7		Gbps
Modulation Current Setting Range			20		100	mA
Modulation Current Setting Error		$20\Omega \text{ load}, \text{T}_{\text{A}} = +25^{\circ}\text{C}$	-5		+5	%
Modulation Sensing Resistor	R _{MOD}		2.7	3	3.3	Ω
Output Series Resistance		R _{MOD1} in parallel with R _{MOD2}	12.75	15	17.25	Ω
Modulation Current Temperature Stability			-480		+480	ppm/°C
Modulation Off-Current		$MODSET \le (V_{EE} + 0.4V)$			0.1	mA
Setup/Hold Time	tsu, t _{HD}	Figure 2	25			ps
Pulse-Width Adjustment Range		(Note 4)	±25	±55		ps
Pulse-Width Stability		PWC+ and PWC- open (Note 4)			13	ps
Pulse-Width Control Input Range		For PWC+ and PWC-	V _{EE} + 0	V _{EE} +	V _{EE} + 2	V
Input Return Loss				12		dB

Note 1: Guaranteed by design and characterization.

Note 2: PSRR = $20 \times \log (\Delta V_{CC/}(\Delta I_{MOD} \times 20\Omega))$. $I_{MOD} = 100$ mA

Note 3: Guaranteed by design and characterization using the circuit shown in Figure 1.

Note 4: Measured using a 10.7Gbps repeating 0000 0000 1111 1111 pattern.

Note 5: Measured using a 10.7Gbps 2¹³ - 1 PRBS with eighty 0s pattern.

4

M/IXI/M

MAX3930/MAX3931/MAX3932

Pad Description

PAD			
MAX3930	MAX3931/ MAX3932	NAME	FUNCTION
1, 5, 9, 12, 22, 23, 28, 29	1, 3, 5, 7, 9, 10, 12, 22, 23, 28, 29	Vcc	Power-Supply Voltage (V _{CC} - V _{EE} = 5V). All pads must be connected to V _{CC} .
2	2	DATA+	Noninverting Data Input. CML with on-chip termination resistor.
3	—	VTT	Terminating Voltage for Data Inputs
4	4	DATA-	Inverting Data Input. CML with on-chip termination resistor.
6	6	CLK+	Noninverting Clock Input for Data Retiming. CML with on-chip termination resistor.
7	_	VTT	Terminating Voltage for Clock Inputs
8	8	CLK-	Inverting Clock Input for Data Retiming. CML with on-chip termination resistor.
10, 11, 17, 18, 21, 32, 35, 36, 37	11, 17, 18, 19, 32, 35, 36, 37	V _{EE}	Power-Supply Voltage ($V_{CC} - V_{EE} = 5V$)
13	13	RTEN	TTL/CMOS Data Retiming Input. Low for latched data, high for direct data. Internal 100k Ω pullup to VCC.
14	14	PWC+	Positive Input for Modulation Pulse-Width Adjustment. Connected to ground through RPWC.
15	15	PWC-	Negative Input for Modulation Pulse-Width Adjustment. Connected to ground through RPWC.
16	16	MODEN	TTL/CMOS Modulation Enable Input. Low for normal operation, high to switch modulation output off. Internal $100k\Omega$ pullup to V _{CC} .
19	20	MODMON	Modulation Current Monitor (V _{MODMON} - V _{EE}) / R _{MOD} = I _{MOD}
20	21	MODSET	Modulation Current Set. Connected to the output of the external operational amplifier (see the <i>Design Procedure</i> section).
24, 27	24, 27	MODN2, MODN1	Complementary Laser Modulation Current Outputs. Connect to V _{CC} .
25, 26	25, 26	MOD2, MOD1	Laser Modulation Current Outputs
30	30	BIAS	Laser Bias Current Output
31	31	N.C.	No Connection. Leave unconnected.
33	33	BIASSET	Bias Current Set. Connected to the output of the external operational amplifier (see the <i>Design Procedure</i> section).
34	34	BIASMON	Bias Current Monitor (VBIASMON - VEE) / RBIAS = IBIAS

Figure 2. Required Input Signal, Setup/Hold Time Definition, and Output Polarity

8

M/IXI/M

Detailed Description

The MAX3930 laser driver consists of two main parts, a high-speed modulation driver and a laser-biasing block. The circuit operates from a single 5V or -5.2V supply. When operating from a 5V supply, connect all VCC pins to 5V and all VEE pins to ground. If operating from a -5.2V supply, connect all VEE pins to -5.2V and all VCC pins to ground. To eliminate pattern-dependent jitter on the input data signal, the device accepts a differential CML clock signal for data retiming. When RTEN is tied to a low potential, the input data is synchronized by the clock signal. When RTEN is tied high or left floating, the input data is transmitted directly to the output stage (retiming is disabled).

The output stage is composed of a high-speed differential pair and a programmable modulation current source with a maximum modulation current of 100mA. The rise and fall times are typically 25ps and 29ps, respectively.

The MAX3930/MAX3932 modulation output is optimized for driving a 20 Ω load. The minimum voltage required at MOD is 1.55V. To interface with a laser diode, a series damping resistor (R_D) is required for impedance matching (R_D = 15 Ω , assuming a laser resistance of 5 Ω ; see *Typical Application Circuit*).

The MAX3931 output has an internal series damping resistor consisting of two parallel 30Ω resistors in series with the output. This simplifies interfacing with the laser diode. The MAX3931/MAX3932 have an alternate pad out with respect to MAX3930.

At the 10.7Gbps data rate, any capacitive load at the cathode of a laser diode will degrade the optical output performance. Since the BIAS output is directly connected to the laser cathode, minimize the parasitic capacitance associated with this pad by using a ferrite bead (LB) to isolate the BIAS pin from the laser cathode.

Optional Input Data Retiming

To eliminate pattern-dependent jitter on the input data, a synchronous differential clock signal should be connected to the CLK+ and CLK- inputs, and the RTEN control input should be tied low. The input data is retimed on the rising edge of CLK+. If RTEN is tied high or left floating, the retiming function is disabled, and the input data is directly connected to the output stage. Leave CLK+ and CLK- open when retiming is disabled.

Modulation Output Enable

The MAX3930/MAX3931/MAX3932 incorporate a modulation current enable input. When MODEN is low, the modulation outputs (MOD1, MOD2) are enabled. When MODEN is high, the modulation outputs (MOD1, MOD2)

are disabled. The typical laser enable time is 2ns, and the typical disable time is 5ns.

Pulse-Width Control

The pulse-width control circuit can be used to precompensate for laser pulse-width distortion. The differential voltage between PWC+ and PWC- adjusts the pulsewidth compensation.

When PWC+ and PWC- are left open, the pulse-width control circuit is automatically disabled.

Current Monitors

The MAX3930/MAX3931/MAX3932 feature a bias current monitor output (BIASMON) and a modulation current monitor output (MODMON). The voltage at BIASMON is equal to (IBIAS × RBIAS) + VEE, and the voltage at MODMON is equal to (IMOD × RMOD) + VEE, where IBIAS represents the laser bias current, IMOD represents the modulation current, and RBIAS and RMOD are internal 3 Ω (±10%) resistors. BIASMON and MODMON should be connected to the inverting input of an operational amplifier to program the bias and modulation current (see *Design Procedure*).

Design Procedure

When designing a laser transmitter, the optical output is usually expressed in terms of average power and extinction ratio. Table 1 gives relationships that are helpful in converting between the optical average power and the modulation current. These relationships are valid if the mark density and duty cycle of the optical waveform are 50%.

Programming the Modulation Current

For a desired laser average optical power, P_{AVG} , and optical extinction ratio, r_e , the required modulation current can be calculated based on the laser slope efficiency, η , using the equations in Table 1.

To program the desired modulation current, connect the inverting input of an operational amplifier (such as the MAX480) to MODMON and connect the output to MODSET. Connect the positive op amp voltage supply to V_{CC} and the negative supply to V_{EE} (for 5V operation, V_{CC} = 5V and V_{EE} = ground; for -5.2V operation, V_{CC} = ground and V_{EE} = -5.2V). The modulation current is set by connecting a reference voltage, V_{MOD}, to the noninverting input of the operational amplifier. Refer to the I_{MOD} vs. V_{MOD} graph in the *Typical Operating Characteristics* to select the value of V_{MOD} that corresponds to the required modulation current.

• • • • • • • • • • • • • • • • • • •		
PARAMETER	SYMBOL	RELATION
Average Power	Pavg	$P_{AVG} = (P_0 + P_1) / 2$
Extinction Ratio	r _e	$r_{e} = P_{1} / P_{0}$
Optical Power of a "1"	P ₁	$P_1 = 2P_{AVG} r_e / (r_e + 1)$
Optical Power of a "0"	Po	$P_0 = 2P_{AVG} / (r_e + 1)$
Optical Amplitude	P _{P-P}	P _{P-P} = P ₁ - P ₀ = 2P _{AVG} (r _e - 1) / (r _e + 1)
Laser Slope Efficiency	η	$\eta = P_{P-P} / I_{MOD}$
Modulation Current	IMOD	$I_{MOD} = P_{P-P} / \eta$

Table 1. Optical Power Relations

Note: Assuming a 50% average input duty cycle and mark density.

Figure 3. Optical Power Relations

Programming the Bias Current

To program the desired laser bias current, connect the inverting input of an operational amplifier (such as the MAX480) to BIASMON, and connect the output to BIASSET. Connect the positive op amp voltage supply to V_{CC} and the negative supply to V_{EE} (for 5V operation, V_{CC} = 5V and V_{EE} = ground; and for -5.2V operation, V_{CC} = ground and V_{EE} = -5.2V). The laser bias current is set by connecting a reference voltage, V_{BIAS}, to the noninverting input of the operational amplifier. Refer to the I_{BIAS} vs. V_{BIAS} graph in the *Typical Operating Characteristics* to select the value of V_{BIAS} that corresponds to the required laser bias current.

Interfacing with Laser Diodes

Refer to Maxim Application Note HFAN-2.0, *Interfacing Maxim Laser Drivers with Laser Diodes*, for detailed information.

To minimize optical output aberrations caused by signal reflections at the electrical interface to the laser diode, a series damping resistor (RD) is required (Figure 4). The MAX3930/MAX3932 modulation outputs are optimized for a 20 Ω load; therefore, the series combination of RD and RL (where RL represents the laser diode resistance) should equal 20 Ω . Typical values for RD are 13 Ω to 17 Ω . The MAX3931 includes an on-chip series damping resistor RD at 15 Ω (Figure 5).

For best performance, a bypass capacitor (C), typically $0.01\mu F$, should be placed as close as possible to the anode of the laser diode.

In some applications (depending on the laser diode parasitic inductance), an RF matching network at the laser cathode will improve the optical output.

Applications Information

Wire Bonding Die

For high current density and reliable operation, the MAX3930/MAX3931/MAX3932 use gold metalization. Make connections to the die with gold wire only, using ball-bonding techniques. Do not use wedge bonding. Die-pad size is 3.0mil (76 μ m) and 4.5mil (114 μ m). Die thickness is 8mil (203 μ m). Die size is 46mil x 82mil (1.168mm x 2.083mm).

Layout Considerations

To minimize inductance, keep the connections between the driver output and the laser diode as short as possible. Optimize the laser diode performance by placing a bypass capacitor as close as possible to the laser anode. Use good high-frequency layout techniques and multilayer boards with an uninterrupted ground plane to minimize EMI and crosstalk. Use controlled impedance lines for the clock and data inputs.

Laser Safety and IEC 825

M/XI/M

Using the MAX3930/MAX3931/MAX3932 laser driver alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Customers must determine the level of fault tolerance required by their application, recognizing that Maxim products are not designed or authorized for use as components in systems intended for surgical implant into the body, for applications intended to support or sustain life, or for any other application where the failure of a Maxim product could create a situation where personal injury or death may occur.

Figure 4. MAX3930/MAX3932 Functional Diagram

MAX3930/MAX3931/MAX3932

Figure 5. MAX3931 Functional Diagram

Figure 6. MAX3930 Equivalent Input Circuit

Figure 8. MAX3931/MAX3932 Equivalent Input Circuit

Figure 7. MAX3930/MAX3932 Equivalent Output Circuit

Figure 9. MAX3931 Equivalent Output Circuit

Chip Information

TRANSISTOR COUNT: 1555 SUBSTRATE: SOI PROCESS: BIPOLAR SILICON GERMANIUM DIE THICKNESS: 8mil

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.