M74HC09 ## Quad 2-input and gate (open drain) ### **Features** - HIgh Speed: t_{PD} = 7ns (Typ.) at V_{CC} = 6V - Low power dissipation: $I_{CC} = 1\mu A \text{ (Max.)}$ at $T_A = 25^{\circ}C$ - High noise immunity: V_{NIH} = V_{NIL} = 28 % V_{CC} (Min.) - Balanced propagation delays: t_{PLH} ≅ t_{PHL} - Wide operating voltage range: V_{CC} (Opr) = 2V to 6V - Pin and function compatible with 74 series 09 ### Description The M74HC09 is an high speed CMOS Quad 2-input open drain and gate fabricated with silicon gate C²MOS technology. The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output. All inputs are equipped with protection circuits against static d'scharge and transient excess voltage. ### Order codes | Fart number | Package | Packaging | |---------------|---------|---------------| | M74HC09B1R | DIP-14 | Tube | | M74HC09M1R | SO-14 | Tube | | M74HC09RM13TR | SO-14 | Tape and reel | May 2006 Rev 2 1/13 Contents M74HC09 ### **Contents** | 1 | Pin settings 3 | |------------------|--| | | 1.1 Pin connection | | | 1.2 Pin description | | 2 | Device summary 4 | | 3 | Maximum rating | | | 3.1 Recommended operating conditions 5 | | 4 | Electrical characteristics 6 | | 5 | Test circuit | | | iste autou | | 6 | Waveforms | | 7 | Package mechanical data | | 8 | Revision history | | Obsole
obsole | ate Product(s) obseste Product(s) | | Ops | | M74HC09 Pin settings #### 1 Pin settings #### 1.1 Pin connection Figure 1. Pin connection (top through view) #### 1.2 Pin description Table 1. Pin description | 14450 111 111 4100011 | | | |-----------------------|-----------------|-------------------------| | Pin N° | Symbol | Name and function | | 1, 4, 9, 12 | 1A to 4A | Data Inputs | | 2, 5, 10 13 | 1B to 4B | Data Inputs | | 3 6, 6, 11 | 1Y to 4Y | Data Outputs | | 7(5 | GND | Ground (0V) | | 14 | V _{CC} | Positive Supply Voltage | | Obsolete Prod | | | Device summary M74HC09 # 2 Device summary Figure 2. Ilnput and output equivalent circuit Figure 3. Logic diagram Table 2. Truth table | A | В | Υ | |------|---|---| | L | L | L | | YO L | Н | L | | Н | L | L | | Н | Н | Z | Note: Z: High Impedance M74HC09 **Maximum rating** #### 3 **Maximum rating** Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |-------------------------------------|--------------------------------------|-------------------------------|------| | V _{CC} | Supply Voltage | -0.5 to +7 | ٧ | | V _I | DC Input Voltage | -0.5 to V _{CC} - 0.5 | V | | V _O | DC Output Voltage | -0.5 to 100 + 0.5 | V | | I _{IK} | DC Input Diode Current | ±20 | mA | | lok | DC Output Diode Current | ±20 | mA | | Io | DC Output Current | ±25 | mA | | I _{CC} or I _{GND} | DC V _{CC} or Ground Current | ±50 | mA | | P_{D} | Power Dissipation | 500 ⁽¹⁾ | mW | | T _{stg} | Storage Temperature | -65 to +150 | °C | | T _L | Lead Temperature (10 sec) | 300 | °C | ^{1. 500}mW at 65 °C derate to 300mW by 10mW/°C from 65°C to 85°C #### 3.1 Recommended operating conditions Table 4. Recommended operating conditions |), | Symbol | Paramet | Parameter | | | |----|-----------------|--------------------------|------------------------|-----------|----| | | V _{CC} | Supply Voltage | 2 to 6 | V | | | C | V _I | Input Voltage | 0 to V _{CC} | V | | | | Vo | Output Voltage | 0 to V _{CC} | V | | | • | T _{op} | Operating Temperature | -55 to 125 | °C | | |) | | | V _{CC} = 2.0V | 0 to 1000 | ns | | | t_r, t_f | Input Rise and Fall Time | V _{CC} = 4.5V | 0 to 500 | ns | | | | | $V_{CC} = 6.0V$ | 0 to 400 | ns | Electrical characteristics M74HC09 ## 4 Electrical characteristics **Table 5. DC specifications** | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | |---| | Variable | | V _{IH} High Level Input Voltage 4.5 3.15 3.15 3.15 V V _{IL} Low Level Input Voltage 2.0 0.5 0.5 0.5 0.5 0.5 V V _{IL} Input Voltage 4.5 1.35 1.35 1.35 V V _{OL} Input Voltage 2.0 I _O = 20μA 0.0 0.1 0.1 0.1 V _{OL} Output Voltage 6.0 I _O = 20μA 0.0 0.1 0.1 0.1 0.1 V _{OL} Output Voltage 6.0 I _O = 20μA 0.17 0.26 0.33 0.40 I _I Input Leakage 6.0 V _I = V _{CC} or COLD ±0.1 ±1 ±1 ±1 ±1 ±1 μA | | V _{IH} Input Voltage 4.5 3.15 3.15 3.15 V V _{IL} Low Level Input Voltage 2.0 0.5 0.5 0.5 0.5 0.5 V Low Level Voltage 4.5 1.35 1.35 1.35 1.35 1.35 V Low Level Voltage 4.5 I _O = 20μA 0.0 0.1 0.1 0.1 0.1 Voltage 6.0 I _O = 20μA 0.0 0.1 0.1 0.1 0.1 Voltage 6.0 I _O = 20μA 0.0 0.1 0.1 0.1 0.1 Voltage 6.0 I _O = 20μA 0.0 0.1 0.1 0.1 0.1 Voltage 6.0 I _O = 20μA 0.0 0.1 0.1 0.1 0.1 Voltage 4.5 I _O = 20μA 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | | V _{IL} Low Level 2.0 0.5 0.5 0.5 0.5 V | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $V_{OL} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Input Leakage 6.0 $V_I = V_{CC}$ or ± 0.1 ± 1 ± 1 μA | | I_1 Leakage 6.0 $V_1 = V_{CC}$ ± 0.1 ± 1 ± 1 μ A | | Current | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Quiescent Supply Current 6.0 V _I = V _{CC} or GND 1 10 20 µA | Table 6. AC electrical characteristics ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ns}$) | | | Те | Test Condition | | | | Valu | е | | | | |------------------|--------------------|----------|-----------------------|-----|-------------------|-----|--------|------|-------------|-------|------| | Symbol | Parameter | v_{cc} | | T, | _A = 25 | °C | -40 to | 85°C | -55 to | 125°C | Unit | | | | (V) | | Min | Тур | Max | Min | Max | Min | Max | | | t _{THL} | Output | 2.0 | | | 30 | 75 | | 95 | | 110 | ns | | | Transition
Time | 4.5 | | | 8 | 15 | | 19 | | 22 | | | | | 6.0 | | | 7 | 13 | | 16 | | 19 | | | t _{PLZ} | Propagatio | 2.0 | R _L = 1 KΩ | | 10 | 75 | | 95 | | 110 | ns | | | n Delay
Time | 4.5 | | | 8 | 15 | | 19 | | 22 | | | | | 6.0 | | | 7 | 13 | | 16 | | 10 | | | t _{PZL} | Propagatio | 2.0 | $R_L = 1 K\Omega$ | | 20 | 75 | | 95 | . \C | 110 | ns | | | n Delay
Time | 4.5 | | | 8 | 15 | | 19 | | 22 | | | | | 6.0 | | | 7 | 13 | | 16 | | 19 | | **Table 7. Capacitive characteristics** | | Table 7. | oapacitive ci | iaiacteristics | | | | | | $A \cup P$ | | | |------------------|------------------|---|-----------------|------|---------|-----|--------|------|------------|-------|------| | | | | Test condition | | -0 | 10 | Valu | e O | O, | | | | | Symbol | Parameter | v _{cc} | | 4 = 25° | C | -40 to | 85°C | -55 to | 125°C | Unit | | | | | (V) | N in | Тур | Max | Min | Max | Min | Max | | | | C _{IN} | Input
Capacitance | 5.0 | | 5 | 10 | | 10 | | 10 | pF | | | C _{OUT} | Output
Capacitance | 5.0 | 2)6 | 10 | | | | | | pF | | | C _{PL} | Power
Liscipation
Capacitance
(note 1) | 5.0 | | 6.5 | | | | | | pF | | Obsole
Obsole | ter | Kogo | | | | | | | | | | Test circuit M74HC09 ## 5 Test circuit Figure 4. Test circuit Note: $C_L = 50 pF$ or equivalent (includes jig and probe caped) ance) $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω) # 6 Waveforms Figure 5. Wayeter a - propagation delay (f = 1MHz; 50% duty cycle) **577** ## 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com Obsolete Product(s) Obsolete Product(s) Obsolete Product(s) Obsolete Product(s) ### **Plastic DIP-14 MECHANICAL DATA** | DIM. | | mm. | | | inch | | |------|------|-------|------|-------|--------|-------| | DIM. | MIN. | TYP | MAX. | MIN. | TYP. | MAX. | | a1 | 0.51 | | | 0.020 | | | | В | 1.39 | | 1.65 | 0.055 | | 0.065 | | b | | 0.5 | | | 0.020 | | | b1 | | 0.25 | | | 0.010 | | | D | | | 20 | | | 0.787 | | E | | 8.5 | | | 0.335 | | | е | | 2.54 | | | 0.7.00 | | | e3 | | 15.24 | | | 7.330 | | | F | | | 7.1 | | | 0.280 | | I | | | 5.1 | 40 | | 0.201 | | L | | 3.3 | | 0 | 0.130 | | | Z | 1.27 | | 2.51 | 0.050 | | 0.100 | ### **SO-14 MECHANICAL DATA** | DIM | | mm. | | | inch | | |------|------|------|-------|-------|-------|-------| | DIM. | MIN. | TYP | MAX. | MIN. | TYP. | MAX. | | Α | 1.35 | | 1.75 | 0.053 | | 0.069 | | A1 | 0.1 | | 0.25 | 0.004 | | 0.010 | | A2 | 1.10 | | 1.65 | 0.043 | | 0.065 | | В | 0.33 | | 0.51 | 0.013 | | 0.020 | | С | 0.19 | | 0.25 | 0.007 | | 0.010 | | D | 8.55 | | 8.75 | 0.337 | | 1344 | | E | 3.8 | | 4.0 | 0.150 | | 0.157 | | е | | 1.27 | | | 0.000 | | | Н | 5.8 | | 6.2 | 0.228 | (0= | 0.244 | | h | 0.25 | | 0.50 | 0.010 | | 0.020 | | L | 0.4 | | 1.27 | L 018 | | 0.050 | | k | 0° | | 8° | 0° | | 8° | | ddd | | | 0.150 | | | 0.004 | Revision history M74HC09 # 8 Revision history **Table 8. Revision history** | Date | Revision | Changes | |-------------|----------|---| | 07-Aug-2001 | 1 | First Release | | 19-May-2006 | 2 | New template, deleted TSSOP14 package information | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and it's subsultaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and ser rices described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property lights is granted under this document. If any part of this document refers to any third party products or services it shall not be de included a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained the rein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USF AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, F'T NEGS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINCEME 'T OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN MIRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARPAITED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OF SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of CT products with provisions different from the statements and/or technical features set forth in this document shall immediately void any wan anty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any l'autility of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 477