General Description

The MAX3736 is a compact, +3.3V multirate laser driver for SFP/SFF applications up to 3.2Gbps. The device accepts differential data and provides bias and modulation currents for driving a laser. DC-coupling to the laser allows for multirate applications, and reduces the number of external components.

The wide 5mA to 60mA (85mA AC-coupled) modulation current range and 1mA to 100mA bias current make the MAX3736 ideal for driving FP/DFB laser diodes in fiberoptic modules. The laser current setting can be controlled by a current DAC, a voltage DAC, or a resistor. Very low power dissipation, small package size, and reduced component count, make this part an ideal solution for SFP-module applications.

The MAX3736 is available in a small 3mm x 3mm, 16-pin thin QFN package. It operates over a -40°C to +85°C temperature range.

Applications

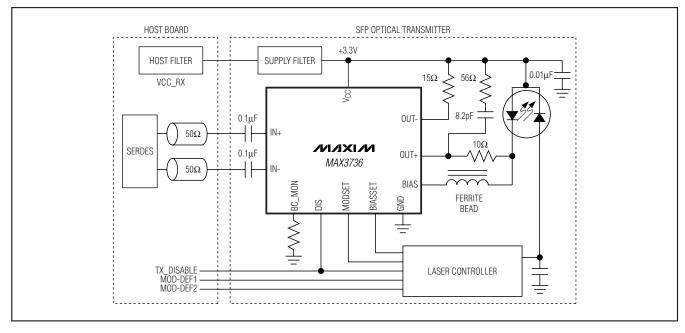
Gigabit Ethernet SFP/SFF Transceiver Modules 1G/2G Fibre-Channel SFP/SFF Transceiver Modules

Multirate OC-3 to OC-48 FEC SFP/SFF Transceiver Modules

10G Ethernet LX-4 Modules

_Features

- Fully Compatible with SFP and SFF-8472 Specifications
- Programmable Modulation Current from 5mA to 60mA (DC-Coupled)
- Programmable Modulation Current from 5mA to 85mA (AC-Coupled)
- Programmable Bias Current from 1mA to 100mA
- ♦ 56ps Edge Transition Times
- ♦ 22mA (typ) Power-Supply Current
- Multirate Operation Up to 3.2Gbps
- On-Chip Pullup Resistor for DIS
- 16-Pin, 3mm × 3mm Thin QFN Package


_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3736ETE	-40°C to +85°C	16 Thin QFN-EP*
MAX3736ETE+	-40°C to +85°C	16 Thin QFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Pin Configuration appears at end of data sheet.

Typical Application Circuit

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX3736

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage V _{CC} Voltage at IN+, IN-, DIS Voltage at BC_MON, MODSET, BIASSE	0.5V to (V _{CC} + 0.5V)
Voltage at OUT+, OUT	
Voltage at BIAS	
Current into BIAS, OUT+, OUT	
Current into IN+, IN	
Continuous Power Dissipation ($T_A = +8$	
16-Pin Thin QFN (derate 25mW/°C at	DOVE +85°C)2W

Operating Junction Temperature Range .	55°C to +150°C
Storage Temperature Range	55°C to +150°C
Die Attach Temperature	+400°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	
Lead(Pb)-free	+260°C
Containing lead(Pb)	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.97V to +3.63V, T_A = -40°C to +85°C. Typical values are at V_{CC} = +3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Power-Supply Current	Icc	Excludes the laser bias and modulation currents (Note 2)			22	35	mA
I/O SPECIFICATIONS	•						•
Differential Input Voltage	VID	$V_{ID} = V_{IN+} - V_{IN-}$, Fi	gure 1	0.2		2.4	VP-P
Common-Mode Input Voltage	VINCM				0.6× V _{CC}		V
Differential Input Resistance	RIN			85	100	115	Ω
DIS Input Pullup Resistance	R _{PULL}			4.7	7.2	10.0	kΩ
		V _{DIS} = V _{CC}				15	
DIS Input Current		V _{DIS} = V _{GND} , V _{CC} =	= 3.3V, R_{PULL} = 7.4k Ω		-450		μΑ
DIS Input High Voltage	VIH			2.0			V
DIS Input Low Voltage	VIL					0.8	V
BIAS GENERATOR							
Bias Current Range	IBIAS	Current into BIAS pin		1		100	mA
Bias Off-Current	IBIASOFF	Current into BIAS pin, DIS asserted high				100	μA
BIASSET Current Gain	GRUND	(Note 3)	$5mA \le I_{BIAS} \le 10mA$	70	85	95	A/A
	GBIAS		$10mA \le I_{BIAS} \le 100mA$	79	85	91	
BIASSET Current Gain Stability		$10mA \le I_{BIAS} \le 100$	mA (Note 4)	-4.4		+4	%
BIASSET Current Gain Linearity		$10\text{mA} \le I_{\text{BIAS}} \le 100\text{mA}$ (Note 5)		-2.3		+2.3	%
Bias Overshoot		During SFP module hot plugging; see Figure 3 (Notes 5, 6)				10	%
Bias-Current Monitor Gain		(Note 5)			13.7		mA/A
		$1mA \le I_{BIAS} \le 5mA$ $5mA \le I_{BIAS} \le 10mA$			4		
Bias-Current Monitor Gain Stability (Notes 4, 5)				-7	2.8	+7	%
		$10mA \le I_{BIAS} \le 100$	mA	-5	2.4	+5	

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.97V to +3.63V, T_A = -40°C to +85°C. Typical values are at V_{CC} = +3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	ТҮР	MAX	UNITS
Modulation Oursent Dange	IMOD	Current into OUT+, $R_L = 15\Omega$, V _{OUT+} and V _{OUT-} \geq 0.6V (DC-coupled)		5		60	
Modulation Current Range		Current into OUT+, $R_L = 15\Omega$, V _{OUT+} and V _{OUT-} \geq 2.0V (AC-coupled)		5		85	mA _{P-P}
MODULATOR							
Modulation Current Gain	GMOD	(Note 3)	$5mA \le I_{MOD} \le 10mA$	70	85	95	- A/A
Modulation Current Gain		(INDLE S)	10mA ≤ I _{MOD} ≤ 85mA	79	85	91	
Modulation Current Gain Stability		$10mA \le I_{MOD} \le 85$	mA (Notes 4, 5)	-4.4		+4	%
Modulation Current Gain Linearity		$10mA \le I_{MOD} \le 85$	mA (Note 5)	-3.3		+3.3	%
		IBIASSET = 0.15mA; I _{MODSET} = 0.7mA			2.3		
Bias Current Gain and		IBIASSET = I _{MODSET} = 0.15mA			0.1	1.4	%
Modulation Current Gain		IBIASSET = IMODSET = 0.4mA			0.1	1	
Matching (Notes 5, 7)		IBIASSET = IMODSET = 0.6mA			0.1	1	
		IBIASSET = IMODSET = 0.9mA			0.1	1	
Modulation OFF Current	IMODOFF	DIS asserted high				100	μA
Rise Time	t _R	20% to 80%; 10mA \leq I _{MOD} \leq 60mA (Note 5)			48	80	ps
Fall Time	tF	80% to 20%; 10mA \leq I _{MOD} \leq 60mA (Note 5)			58	80	ps
		$10mA \le I_{MOD} \le 600$ 2^{23} -1 PRBS	mA; 2.67Gbps;		16	38	
Deterministic Jitter		$10mA \le I_{MOD} \le 600$ K28.5 pattern	mA; 3.2Gbps;		17	38	psp-p
(Notes 5, 8)		$10\text{mA} \le I_{\text{MOD}} \le 600$ $2^{23}-1 \text{ PRBS}$	mA; 155Mbps;		30		
		$10mA \le I_{MOD} \le 600$ $T_{A} = +100^{\circ}C$	mA; 3.2Gbps; K28.5;		6.3		ps
Random Jitter		$10mA \le I_{MOD} \le 60$	mA (Note 5)		0.6	1	psRMS

Note 1: Specifications at -40°C are guaranteed by design and characterization.

Note 2: Maximum value is specified at I_{MOD} = 60mA and IBIAS = 100mA. BC_MON connected to V_{CC}.

Note 3: Modulation current gain, G_{MOD} , is defined as $G_{MOD} = I_{MOD} / I_{MODSET}$. Bias current gain, G_{BIAS} , is defined as $G_{BIAS} = I_{BIAS} / I_{BIASSET}$. The nominal gain is measured at V_{CC} = +3.3V and T_A = +25°C.

Note 4: Gain stability is defined as $[(Gain) - (Nom_Gain)] / (Nom_Gain)$ over the listed current range, temperature, and supply variation. Nominal gain is measured at V_{CC} = +3.3V, T_A = +25°C. The voltage at the BC_MON pin must not exceed 1.39V.

Note 5: Guaranteed by design and characterization; see Figure 2.

Note 6: V_{CC} turn-on time must be less than 0.8s, DC-coupled interface.

Note 7: The gain matching is defined as ABS [(G_{MOD}/G_{BIAS} - G_{MODNOM}/G_{BIASNOM})/(G_{MODNOM}/G_{BIASNOM})] over the specified temperature and voltage supply range.

Note 8: For supply noise tolerance, noise is added to the supply (100mVP-P) up to 2MHz; see Figure 3.

MAX3736

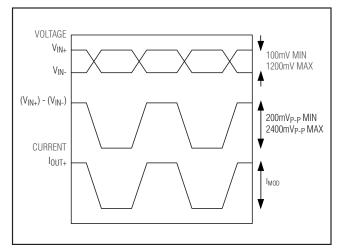
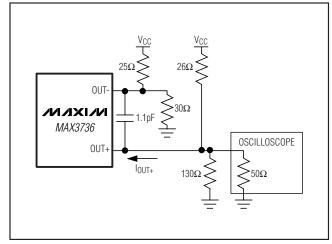


Figure 1. Definition of Single-Ended Input Voltage Range



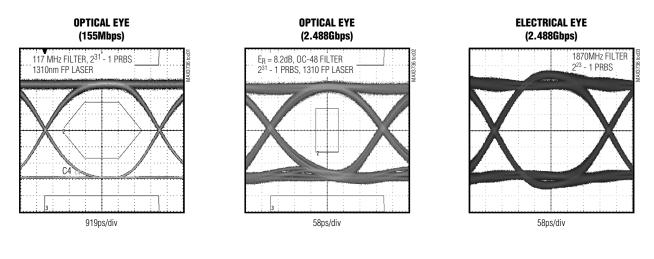
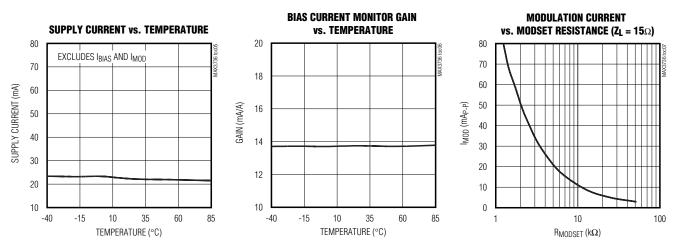
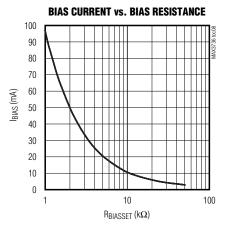

Figure 2. Output Termination for Characterization

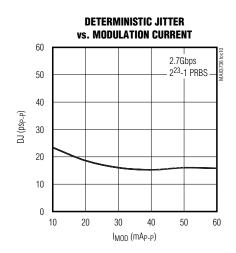
Figure 3. Supply Filter

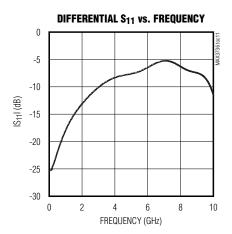

Typical Operating Characteristics


(Typical values are at V_{CC} = 3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(Typical values are at V_{CC} = 3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.)


EDGE TRANSITION TIME vs. MODULATION AMPLITUDE 80 70 EDGE TRANSITION TIME (ps) FALL TIME 60 50 40 **RISE TIME** 30 20 10 10 20 30 40 50 60


I_{MOD} (mA)

MAX3736

_Typical Operating Characteristics (continued)

(Typical values are at V_{CC} = 3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 4, 9, 12, 15	V _{CC}	+3.3V Supply Voltage. All pins must be connected to V_{CC} .
2	IN+	Noninverted Data Input
3	IN-	Inverted Data Input
5	BIASSET	A current DAC, a voltage DAC, or a resistor, connected from this pin to ground, sets the desired bias current for the laser (see the <i>Programming the Laser Bias Current</i> section).
6	MODSET	A current DAC, a voltage DAC, or a resistor, connected from this pin to ground, sets the desired bias current for the laser (see the <i>Programming the Laser Modulation Current</i> section).
7	BC_MON	Bias Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an external resistor that is proportional to the bias current.
8	BIAS	Laser Bias Current Output
10	OUT+	Noninverted Modulation Current Output. I _{MOD} flows into this pin when input data is high.
11	OUT-	Inverted Modulation Current Output. I _{MOD} flows into this pin when input data is low.
13, 14	GND	Ground
16	DIS	Transmitter Disable, TTL. Laser output is disabled when DIS is asserted high or left unconnected. The laser output is enabled when this pin is asserted low.
_	EP	Exposed Pad. Must be soldered to the circuit board ground for proper thermal and electrical performance (see the <i>Exposed-Pad Package</i> section).

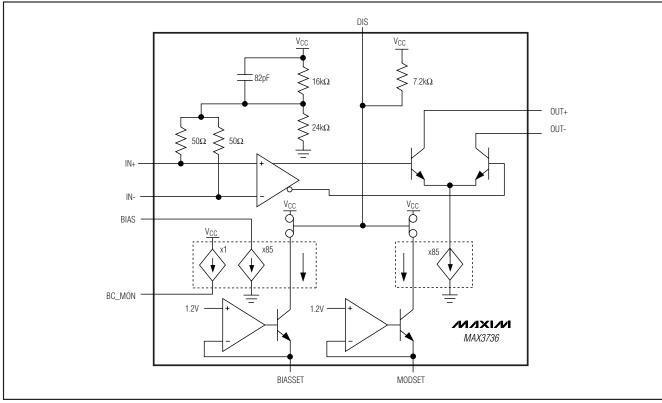


Figure 4. Functional Diagram

Detailed Description

The MAX3736 laser driver consists of three operational blocks: a bias current generator, a modulation current generator, and a high-speed modulation path. The laser-biasing block includes a monitor output for biassensing purposes. Both the bias and modulation generating blocks are enabled and disabled by the DIS pin. The high-speed modulation path provides a 100 Ω differential input resistance.

Bias Current Generator

To maintain constant average optical power, the MAX3736 is designed to interface to a laser controller IC. The laser controller IC controls the MAX3736, and maintains a constant laser power using an automatic power-control (APC) circuit. A back-facet photodiode, mounted in the laser package, is used to convert the optical power into a photocurrent. The laser controller IC adjusts the laser bias current so the monitor photodiode's current matches the level programmed by the user. It does this by adjusting the current sourced by the MAX3736's BIASSET pin. The MAX3736 reacts by increasing or decreasing the laser current at BIAS.

Bias Current Monitor

MAX3736

The MAX3736 features a bias current monitor (BC_MON). This monitor is realized by mirroring a fraction of the bias current and developing a voltage across an external resistor connected to ground. For example, connecting a 100Ω resistor to ground gives the following relationship:

 $V_{BC_MON} = (I_{BIAS} / 73) \times 100\Omega$. For compliance, the voltage on BC_MON must be kept below 1.39V.

Modulation Current Generator

The laser's modulation amplitude can be controlled by placing a resistor from MODSET to ground. To set the modulation amplitude, see the I_{MOD} vs. R_{MODSET} graph in the *Typical Operating Characteristics*. A more advanced control scheme employs the use of a laser controller IC to control modulation current to stabilize the extinction ratio. For more information on controlling the extinction ratio, refer to Application Note 1092: *HFAN-02.3.1: Maintaining Average Power and Extinction Ratio, Part 1, Slope Efficiency and Threshold Current*.

MAX3736

High-Speed Modulation Driver

The output stage is composed of a high-speed differential pair and a programmable modulation current source. The MAX3736 is optimized for driving a 15Ω load; the minimum instantaneous voltage required at OUT+ is 0.6V. Modulation current swings up to 60mA are possible.

To interface with the laser diode, a damping resistor (R_D) is required for impedance matching. The combined resistance of the series damping resistor and the equivalent series resistance of the laser diode should equal 15 Ω . To reduce optical output aberrations and duty-cycle distortion caused by laser diode parasitic inductance, an RC shunt network might be necessary. Refer to Application Note 274: *HFAN-02.0: Interfacing Maxim Laser Drivers with Laser Diodes* for more information.

At high data rates, e.g., 2.5Gbps, any capacitive load at the cathode of a laser diode degrades optical output performance. Because the BIAS output is directly connected to the laser cathode, minimize the parasitic capacitance associated with the pin by using an inductor to isolate the BIAS pin parasitics from the laser cathode.

In the absence of input data, the modulation current switches to OUT-, squelching the transceiver output.

Disable

The DIS pin disables the modulation and bias current. The typical enable time is 2µs for bias current and 1µs for modulation current. The typical disable time is 200ns for bias current and 250µs for modulation current. The DIS pin has a 7.4k Ω internal pullup resistor.

Design Procedure

Programming the Modulation Current

There are three methods for setting the modulation current on the MAX3736 laser driver. The current can be set by using a current DAC, a voltage DAC in series with a resistor, or by using a resistor connected to GND.

To program the laser modulation current using a current DAC, attach the DAC to the MODSET pin and set the current using the following equation:

$$I_{MOD} = I_{MODSET} \times 85$$

To program the laser modulation current using a voltage DAC, attach the DAC to the MODSET pin through a series resistor, R_{SERIES}, and set the current using the following equation:

$$I_{MOD} = \frac{1.2V - V_{DAC}}{R_{SERIES}} \times 85$$

To program the laser modulation current using a resistor, place the resistor from MODSET to ground. I_{MOD} current can be calculated by the following equation:

$$I_{MOD} = \frac{1.2V}{R_{MODSET}} \times 85$$

Programming the Bias Current

There are three methods for setting the bias current on the MAX3736 laser driver. The current can be set by using a current DAC, a voltage DAC in series with a resistor, or by using a resistor connected to GND.

To program the laser bias current using a current DAC, attach the DAC to the BIASSET pin and set the current using the following equation:

$$I_{BIAS} = I_{BIASET} \times 85$$

To program the laser bias current using a voltage DAC, attach the DAC to the BIASSET pin through a series resistor, R_{SERIES}, and set the current using the following equation:

$$I_{\text{BIAS}} = \frac{1.2\text{V} - \text{V}_{\text{DAC}}}{\text{R}_{\text{SERIES}}} \times 85$$

To program the laser bias current using a resistor, place the resistor from BIASSET to ground. I_{BIAS} current can be calculated by the following equation:

$$I_{\text{BIAS}} = \frac{1.2V}{R_{\text{BIASET}}} \times 85$$

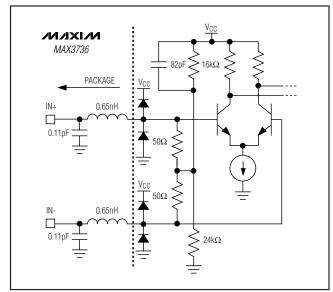


Figure 5. Simplified Input Circuit Schematic

Input Termination Requirements

The MAX3736 data inputs are SFP MSA compliant. Onchip 100 Ω , differential input impedance is provided for optimal termination (Figure 5). Because of the on-chip biasing network, the MAX3736 inputs self-bias to the proper operating point to accommodate AC-coupling.

Applications Information

Data Input Logic Levels

The MAX3736 is directly compatible with +3.3V reference CML. Either DC or AC-coupling can be used for CML referenced to +3.3V. For all other logic types, AC-coupling should be used. DC coupling to CML is fine, but it negates the squelching function on the modulation path.

Modulation Currents Exceeding 60mA

For applications requiring a modulation current greater than 60mA, headroom is insufficient for proper operation of the laser driver if the laser is DC-coupled. To avoid this problem, the MAX3736 modulation output can be AC-coupled to the cathode of a laser diode. An external pullup inductor is necessary to DC-bias the modulation output at V_{CC}. Such a configuration isolates laser forward voltage from the output circuitry and allows the output at OUT+ to swing above and below the supply

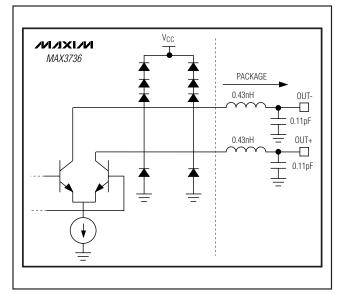


Figure 6. Simplified Output Circuit Schematic

voltage (V_{CC}). When AC-coupled, the MAX3736 modulation current can be programmed from 5mA to 85mA. Refer to Maxim Application Note *HFAN 02.0: Interfacing Maxim's Laser Drivers to Laser Diodes* for more information on AC-coupling laser drivers to laser diodes.

Interface Models

Figures 5 and 6 show simplified input and output circuits for the MAX3736 laser driver.

Layout Considerations

To minimize loss and crosstalk, keep the connections between the MAX3736 output and the laser as short as possible. Use good high-frequency layout techniques and multilayer boards with an uninterrupted ground plane to minimize EMI and crosstalk.

Exposed-Pad Package

The exposed pad on the 16-pin QFN provides a very low thermal resistance path for heat removal from the IC. The pad is also electrical ground on the MAX3736 and must be soldered to the circuit board ground for proper thermal and electrical performance. Refer to Application Note 862: *HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages* for additional information.

MAX3736

Laser Safety and IEC 825

Using the MAX3736 laser driver alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Customers must determine the level of fault tolerance required by their application. Please recognize that Maxim products are not designed or authorized for use as components in systems intended for surgical implant into the body, for applications intended to support or sustain life, or for any other application where the failure of a Maxim product could create a situation where personal injury or death may occur.

TOP VIEW GND GND 3 SIC 14 16 15 13 Vcc 12 Vcc IN+ 11 OUT-MAXIM MAX3736 10 IN-OUT+ EP 9 Vcc 4 Vcc 7 6 8 5 BIAS I MODSET MON BIASSET B THIN QFN (3mm x 3mm) THE EXPOSED PAD MUST BE CONNECTED TO GROUND FOR PROPER THERMAL AND ELECTRICAL PERFORMANCE.

Pin Configuration

Chip Information

PROCESS: SiGe BiPOLAR

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
16 TQFN-EP	T1633-2	<u>21-0136</u>	<u>90-0030</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	12/03	Initial release	—
1	2/06	Added lead(Pb)-free part to the Ordering Information table	1
2	9/10	Removed the dice package from the Ordering Information table and the Electrical Characteristics table Note 1; removed the Wire-Bonding Die, Chip Topography/Pad Configuration, Chip Topography, and Bonding Coordinates sections and Table 1; added the soldering information for leaded and lead-free packages to the Absolute Maximum Ratings section; added the Package Information table	1, 2, 3, 9, 10, 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

© 2010 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

_____ 11

MAX3736