

Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
CP	Clock Pulse Input
$\overline{\mathrm{OE}}$	3-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3-STATE Outputs

Absolute Maximum Ratings(Note 1)
Supply Voltage (V_{CC}) DC Input Voltage (V_{IN}) DC Output Voltage ($\mathrm{V}_{\mathrm{OUT}}$) Input Diode Current (l_{IK}) Output Diode Current DC Output Current (IOUT) DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current (I_{CC}) Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$) Lead Temperature (T_{L})
(Soldering, 10 seconds)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-20 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 75 \mathrm{~mA}$

Recommended Operating Conditions (Note 2)

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.0 V to +5.5 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to +5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{OPR}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$0 \sim 100 \mathrm{~ns} / \mathrm{V}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$0 \sim 20 \mathrm{~ns} / \mathrm{V}$

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions	
			Min	Typ	Max	Min Max			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{array}{c\|} \hline 2.0 \\ 3.0-5.5 \end{array}$	$\begin{gathered} 1.50 \\ 0.7 V_{C C} \end{gathered}$			$\begin{gathered} 1.50 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V		
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage	$\begin{gathered} \hline 2.0 \\ 3.0-5.5 \end{gathered}$	0.50$0.3 \mathrm{~V}_{\mathrm{CC}}$			$\begin{gathered} 0.50 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V		
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}^{\text {a }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$	V		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{I}} \mathrm{OZ}$	3-STATE Output Off-State Current	5.5			± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	
$\overline{I_{\mathrm{IN}}}$	Input Leakage Current	0-5.5			± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	r GND
I_{CC}	Quiescent Supply Current	5.5			4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{C}}$	GND

Noise Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$		Units	Conditions
			Typ	Limits		
$\mathrm{V}_{\text {OLP }}$ (Note 3)	Quiet Output Maximum Dynamic V_{OL}	5.0	1.0	1.2	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{V}_{\text {OLV }}$ (Note 3)	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.8	-1.0	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{gathered} \mathrm{V}_{\mathrm{IHD}} \\ \text { (Note 3) } \end{gathered}$	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{V}_{\text {ILD }} \\ & \text { (Note 3) } \end{aligned}$	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Note 3: Parameter guaranteed by design.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENIATION

DIMENSIONS ARE IN MILLIMETERS
NOTES:
A. CONFORUS TO JEDEC REGISTRATION ML-153, VARIATION AC,
REF NOTE G. DATE $^{7} / 93$.
B. DIMENSIONS ARE IN MILLIMETERS.
c. IIMENSIONS ARE EXCLUSIVE DF BURRS, MDLDS FLASH,
AND TE GAR EXTRUSIONS.
C. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A
MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20
74VHC574 Octal D-Type Flip-Flop with 3-STATE Outputs
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
