

Differential Microphone Preamplifiers with Internal Bias and Complete Shutdown

General Description

The MAX4060/MAX4061/MAX4062 are differential-input microphone preamplifiers optimized for notebook and PDA audio systems. These devices feature adjustable gain with excellent power-supply rejection and common-mode rejection ratios, making them ideal for low-noise applications in portable audio systems.

The MAX4060/MAX4062 are capable of switching their output between the differential input and a singleended auxiliary microphone amplifier input. In addition, the MAX4060/MAX4062 have a low-noise microphone bias generator. The differential gain of the MAX4061/MAX4062 is set with a single resistor. The MAX4060 has a fixed gain of 10V/V and is PC99/2001 compliant. The MAX4061 includes a complete shutdown mode. In shutdown, the supply current is reduced to 0.3µA and the current to the microphone bias is cut off for ultimate power savings.

The MAX4060 operates from a 4.5V to 5.5V single supply and the MAX4061/MAX4062 operate from 2.4V to 5.5V. All devices are specified over the extended operating temperature range, -40°C to +85°C. The MAX4060/MAX4061 are available in tiny 8-pin TDFN (3mm x 3mm x 0.8mm) and 8-pin μ MAX[®] packages. The MAX4062 is available in a 10-pin μ MAX package.

Notebook Audio	USB Audio Peripherals
Systems	AES-42-Compliant
Tablet PCs	Microphones
PDA Audio Systems	Signal Conditioning

Ordering Information

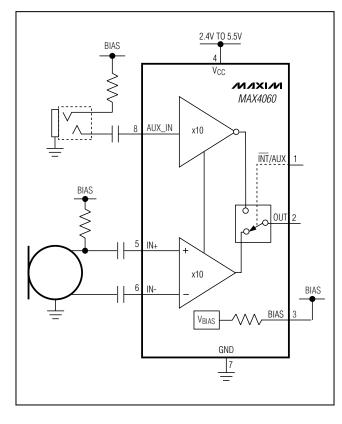
Applications

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4060ETA+	-40°C to +85°C	8 TDFN-EP*	ABY
MAX4060EUA+	-40°C to +85°C	8 µMAX	_
MAX4061ETA+	-40°C to +85°C	8 TDFN-EP*	ABZ
MAX4061EUA+	-40°C to +85°C	8 µMAX	_
MAX4062EUB+	-40°C to +85°C	10 µMAX	_

^{*}EP = Exposed pad.

+Denotes a lead(Pb)-free/RoHS-compliant package.

Pin Configurations and Selector Guide appear at end of data sheet.


µMAX is a registered trademark of Maxim Integrated Products, Inc.

Features

- ♦ 2.4V to 5.5V Single-Supply Operation
- Adjustable Gain or Fixed-Gain Options
- High PSRR (86dB at 1kHz)
- High CMRR (70dB at 1kHz)
- Low Input-Referred Noise
- Integrated Microphone Bias
- ♦ 750µA Supply Current
- 0.3µA Shutdown Current
- ±4kV ESD Protection (AUX_IN)
- Rail-to-Rail Outputs
- ◆ THD+N: 0.04% at 1kHz
- Available in Space-Saving Packages 8-Pin TDFN (MAX4060/MAX4061) 8-Pin µMAX (MAX4060/MAX4061) 10-Pin µMAX (MAX4062)

Typical Operating Circuit

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to GND)	
Duration of Short Circuit to GND or V _{CC}	
Continuous Input Current (any pin)	±10mA
Continuous Power Dissipation ($T_A = +70^{\circ}$	C)
8-Pin TDFN (derate 24.4mW/°C above -	+70°C)1951.2mW
8-Bump μMAX (derate 4.8mW/°C above 10-Bump μMAX (derate 8.8mW/°C above	

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3V \text{ for MAX4061/MAX4062}, V_{CC} = 5V \text{ for MAX4060}, V_{GND} = 0V, V_{SHDN} = V_{CC}, V_{INT/AUX} = 0V, R_G = 11.11k\Omega, R_L = 100k\Omega \text{ to } 1.5V, R_{BIAS} = \infty, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Supply Voltage Dange	Vee	Inferred from	MAX4061/MAX4062	2.4		5.5	v
Supply Voltage Range	Vcc	PSRR test	MAX4060	4.5		5.5	v
Supply Current	ICC				0.75	1.2	mA
Output Common-Mode Voltage	VOCM			1.25	1.5	1.75	V
Slew Rate	SR	$A_V = 10V/V$			±1		V/µs
Supply Current in Shutdown	I SHDN	$V_{\overline{SHDN}} = 0V, MAX406$	1		0.001	1	μA
Output Short Circuit Current	laa	To GND			30		mA
Output Short-Circuit Current	ISC	To V _{CC}			30		- IIIA
DIFFERENTIAL INPUT (VINT/AUX	= 0V for MAX	4060/MAX4062, default	for MAX4061)				
Input Offset Voltage	Vos				±0.1	±5	mV
Common-Mode Input Voltage Range	V _{CM}			1		2	V
Maximum Differential Input Voltage	VDIFFMAX	A _V = 1V/V, MAX4061/N	MAX4062		1		V
Small-Signal Bandwidth	BW-3dB				600		kHz
Input Resistance	R _{IN}	Either differential input	Either differential input		100		kΩ
Input Resistance Match	RMATCH				1		%
		$A_V = 10V/V$, f = 1kHz			100		
Input Noise-Voltage Density	e _n	$A_V = 100V/V$, f = 1kHz, MAX4061/MAX4062 only			20		nV/√Hz
RMS Output Noise Voltage	V _{NRMS}	A _V = 10V/V, BW = 22⊦	Iz to 22kHz		125		μV _{RMS}

ELECTRICAL CHARACTERISTICS (continued)

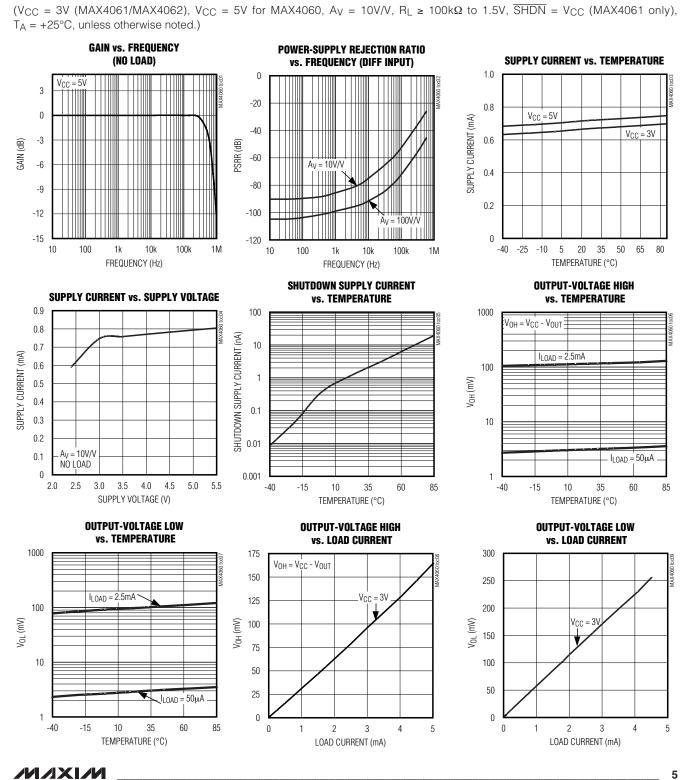
 $(V_{CC} = 3V \text{ for MAX4061/MAX4062}, V_{CC} = 5V \text{ for MAX4060}, V_{GND} = 0V, V_{SHDN} = V_{CC}, V_{INT/AUX} = 0V, R_G = 11.11k\Omega, R_L = 100k\Omega \text{ to } 1.5V, R_{BIAS} = \infty, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) (Notes 1, 2)$

SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
THD+N	$A_V = 10V/V$, f = 1kHz, $V_{OUT} = 0.7V_{RMS}$, BW = 22Hz to 22kHz			0.04		%
	1V < V _{CM} < 2V,	RG = open	1	1.13	1.3	
A	$VOUT = 0.7 V_{RMS},$	$R_G = 11.11 k\Omega$	9.6	10	10.4	
AVDIFF	MAX4061/MAX4062	$R_G = 1.01 k\Omega$	96	100	104	V/V
	1V < V _{CM} < 2V, V _{OUT}	⁻ = 0.7V _{RMS} , MAX4060	9.6	10.0	10.4	
CMRR	$V_{CM} = 500 m V_{P-P}, f =$	1kHz		70		dB
	$T_A = +25^{\circ}C$		72	89		
PSRR	$T_A = T_{MIN}$ to T_{MAX}		60			dB
	$V_{CC} = 5V \pm 100 \text{mV}, \text{ f} =$	= 1kHz		86		
X4062, INT/A	UX = V _{CC})					-
BW-3dB				200		kHz
RIN				100		kΩ
en	f = 1kHz			45		nV/√Hz
VNRMS	BW = 22Hz to 22kHz			385		μVRMS
THD+N	f = 1kHz, BW = 22Hz to 22kHz			0.05		%
	$T_A = +25^{\circ}C$		65	90		
PSRR	T _A = T _{MIN} - T _{MAX}		50			dB
Avaux			-10.7	-10	-9.3	V/V
62)	•					
	$I_{BIAS} = 0.8 \text{mA}$ to GNE), MAX4060	2	2.2		
VOUT	$I_{BIAS} = 0.5 mA$ to GNE), MAX4062	2	2.2		V
	$I_{BIAS} = 0.8mA$ to GNE (T _A = +25°C)	I _{BIAS} = 0.8mA to GND, MAX4060		2.5		kΩ
KOUT	$I_{BIAS} = 0.5$ mA to GND, MAX4062 (T _A = +25°C)			22	40	Ω
N	I _{BIAS} = 0.8mA to GNE 22kHz, MAX4060	D, BW = 22 Hz to		50		
VNRMS	I _{BIAS} = 0.5mA to GND, BW = 22Hz to 22kHz, MAX4062			20		μVRMS
	THD+N AVDIFF CMRR CMRR PSRR X4062, INT/A BW-3dB RIN en VNRMS THD+N PSRR AVAUX 62) VOUT ROUT	$\begin{tabular}{ c c c c c } \hline THD+N & Av = 10V/V, f = 1kHz, \\ BW = 22Hz to 22kHz \\ BW = 22Hz to 22kHz \\ \hline BW = 22Hz to 22kHz \\ \hline IV < V_{CM} < 2V, \\ V_{OUT} = 0.7V_{RMS}, \\ MAX4061/MAX4062 \\ \hline IV < V_{CM} < 2V, V_{OUT} \\ \hline CMRR & V_{CM} = 500mV_{P-P}, f = \\ \hline TA = +25^{\circ}C \\ \hline TA = T_{MIN} to TMAX \\ \hline V_{CC} = 5V \pm 100mV, f = \\ \hline X4062, INT/AUX = V_{CC}) \\ \hline BW-3dB \\ \hline R_{IN} \\ \hline en & f = 1kHz \\ \hline V_{NRMS} & BW = 22Hz to 22kHz \\ \hline THD+N & f = 1kHz, BW = 22Hz \\ \hline THD+N & f = 1kHz, BW = 22Hz \\ \hline THD+N & f = 1kHz, BW = 22Hz \\ \hline PSRR & TA = +25^{\circ}C \\ \hline TA = T_{MIN} - T_{MAX} \\ \hline Avaux & V_{OUT} = 0.7V_{RMS} \\ \hline 62) \\ \hline V_{OUT} & \hline I_{BIAS} = 0.8mA to GNE \\ \hline I_{BIAS} = 0.5mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.5mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.8mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.5mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline I_{BIAS} = 0.5mA to GNE \\ \hline (TA = +25^{\circ}C) \\ \hline CMRM = \frac{1000}{10000000000000000000000000000000$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

3

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3V \text{ for MAX4061/MAX4062}, V_{CC} = 5V \text{ for MAX4060}, V_{GND} = 0V, V_{SHDN} = V_{CC}, V_{INT/AUX} = 0V, R_G = 11.11k\Omega, R_L = 100k\Omega \text{ to } 1.5V, R_{BIAS} = \infty, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) (Notes 1, 2)$


PARAMETER	SYMBOL	CONDITIONS			ТҮР	MAX	UNITS
		MAX4060	$I_{BIAS} = 0.8mA$ to GND, V _{CC} = 4.5V to 5.5V	50	80		
			$I_{BIAS} = 0.8mA$, $V_{CC} = 5V$ + 100mV _{P-P} , f = 1kHz		70		dB
Power-Supply Rejection Ratio	PSRR	MAX4062	$I_{BIAS} = 0.5mA$ to GND, $V_{CC} = 2.4V$ to 5.5V	50	74		
			$I_{BIAS} = 0.5mA$, $V_{CC} = 3V$ + 100mV _{P-P} , f = 1kHz		71		
DIGITAL INPUTS (SHDN for MAX4	061 and INT/A	UX for MAX4060/MAX	4062)				
Input Leakage Current	l _{IN}	$V_{IN} = 0V \text{ or } V_{CC}$				±1	μA
Input-Voltage High	V _{INH}			0.7 x V _{CC}			V
Input-Voltage Low	VINL					0.3 x V _{CC}	V
Shutdown Enable Time	ton	MAX4061			10		μs
Shutdown Disable Time	toff	MAX4061			10		μs

Note 1: All specifications are 100% tested at $T_A = +25$ °C. Specification limits over temperature ($T_A = T_{MIN}$ to T_{MAX}) are guaranteed by design, not production tested.

Note 2: MAX4062 requires a 1µF capacitor from BIAS to ground.

4

Typical Operating Characteristics

TOTAL HARMONIC DISTORTION PLUS NOISE MAX4060 **TOTAL HARMONIC DISTORTION PLUS NOISE** MIC BIAS VOLTAGE vs. TEMPERATURE vs. FREQUENCY (DIFF INPUT) vs. FREQUENCY (AUX INPUT) 2.300 $I_{BIAS} = 800 \mu A$ $V_{OUT} = 2.26V_{P-P}$ = 2 26Vp r VOUT 2.275 2.250 2.225 2.225 2.200 2.175 2.175 : 3V 31 0.1 0.1 THD+N (%) THD+N (%) 5 0.01 0.01 2.150 2.125 2,100 0.001 0.001 -15 10 35 60 85 100 1k 10k 100k -40 10 10 100 1k 10k 100k TEMPERATURE (°C) FREQUENCY (Hz) FREQUENCY (Hz) TOTAL HARMONIC DISTORTION PLUS NOISE **TOTAL HARMONIC DISTORTION PLUS NOISE** TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT AMPLITUDE vs. OUTPUT AMPLITUDE vs. OUTPUT AMPLITUDE (DIFF INPUT, V_{CC} = 5V) (DIFF INPUT, $V_{CC} = 3V$) (AUX INPUT, $V_{CC} = 3V$) 10 10 10 BW = 22kHz BW = 22kHzBW = 22kHz f = 1kHz 1 1 1 THD+N (%) THD+N (%) 1kH THD+N (%) 0.1 0.1 0.1 f = 1 kHz10kHz 10kHz 10kHz 0.01 0.01 0.01 0.001 0.001 0.001 0.5 0 1.0 1.5 2.0 2.5 3.0 35 0 0.5 1.0 1.5 2.0 2.5 3.0 0 05 10 15 20 25 3.0 OUTPUT VOLTAGE (VP-P) OUTPUT VOLTAGE (VP-P) OUTPUT VOLTAGE (VP-P) **TOTAL HARMONIC DISTORTION PLUS NOISE INPUT-REFERRED NOISE vs. OUTPUT AMPLITUDE** MAX4060 (AUX INPUT, V_{CC} = 5V) vs. FREQUENCY (DIFF INPUT) **MIC BIAS OUTPUT NOISE** MAX4060 toc18 10 800 BW = 22kHz $V_{CC} = 5V$ 700 BW = 22Hz TO 22kHz 1 600 500 THD+N (%) (nV/VHz) = 1kHz 0.1 5µV/div 400 300 f = 10kHz 0.01 200 100

0

10

100

1k

FREQUENCY (Hz)

10k

100k

100ms/div

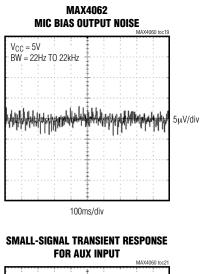
MXXIM

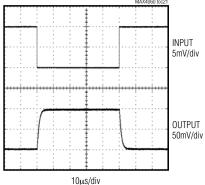
Typical Operating Characteristics (continued)

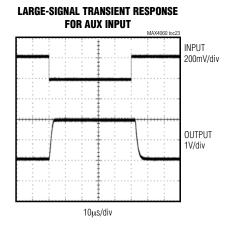
 $(V_{CC} = 3V (MAX4061/MAX4062), V_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 5V \text{ for } MAX4060, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} (MAX4061 \text{ only}), W_{CC} = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = 10V/V, R_L \ge 10V/V, R_L \ge$

OUTPUT VOLTAGE (VP-P)

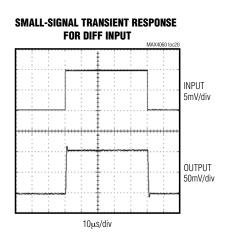
0.001

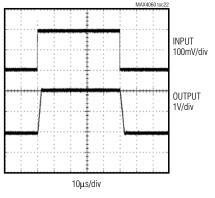

6

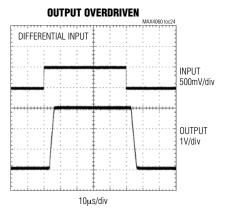

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5


MAX4060/MAX4061/MAX4062

Typical Operating Characteristics (continued)


 $(V_{CC} = 3V \text{ (MAX4061/MAX4062)}, V_{CC} = 5V \text{ for MAX4060}, A_V = 10V/V, R_L \ge 100k\Omega \text{ to } 1.5V, \overline{SHDN} = V_{CC} \text{ (MAX4061 only)}, T_A = +25^{\circ}C, \text{ unless otherwise noted.}$





LARGE-SIGNAL TRANSIENT RESPONSE FOR DIFF INPUT

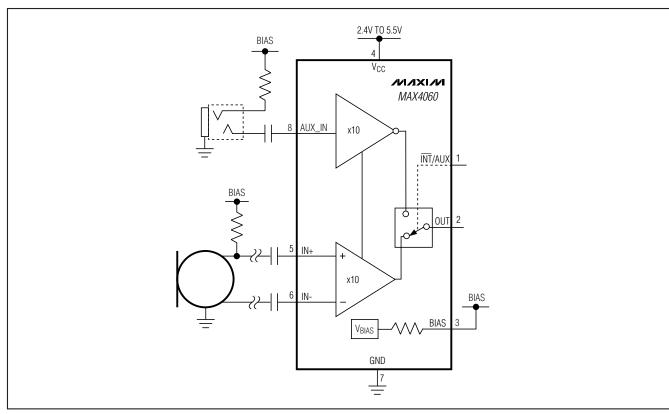
Pin Description

	PIN			FUNCTION		
MAX4060	MAX4061	MAX4062	NAME			
1	_	2	ĪNT/AUX	Internal (Differential) or Auxiliary (Single-Ended) Input Select. Drive INT/AUX low to select internal or high to select auxiliary microphone input.		
2	3	3	OUT	Amplifier Output. OUT is high impedance when in shutdown mode.		
3	_	_	BIAS	External Electret Microphone Capsule Bias Output. BIAS has a greater than $2k\Omega$ output impedance.		
4	4	5	V _{CC}	Power Supply. Bypass the V_{CC} to GND with a 0.1 μF capacitor.		
5	5	6	IN+	Noninverting Differential Amplifier Input. AC-couple the audio signal into IN+.		
6	6	7	IN-	Inverting Differential Amplifier Input. AC-couple the audio signal into IN		
7	7	8	GND	Ground		
8	_	9	AUX_IN	Single-Ended Input for Auxiliary Microphone. AC-couple the audio signal into AUX_IN.		
_	1	1	G2	Gain-Selectable Input. Connect an external resistor between G1 and G2 to set the gain for the differential amplifier. (See <i>Adjustable Differential-Gain Setting</i> section.)		
	2	_	SHDN	Shutdown Input. Drive $\overline{\rm SHDN}$ high for normal operation. Drive $\overline{\rm SHDN}$ low for shutdown mode.		
	_	4	BIAS	External Electret Microphone Capsule Bias Output. Bypass BIAS with $1\mu\text{F}$ capacitor to ground.		
_	8	10	G1	Gain-Selectable Input. Connect an external resistor between G1 and G2 to set the gain for the differential amplifier.		
_			EP	Exposed Pad (TDFN Only). Internally connected to GND. Connect to a large ground plane to minimize thermal performance. Not intended as an electrical connection point.		

Detailed Description

The MAX4060/MAX4061/MAX4062 are differential microphone preamplifiers providing high-quality audio, optimized for use in computer and mobile applications. These devices feature rail-to-rail outputs, very high power-supply rejection, and common-mode rejection, making them ideal for low-noise applications. The MAX4060/MAX4061/MAX4062 are particularly effective when layout constraints force the microphone amplifier to be physically remote from the ECM microphone and/or the rest of the audio circuitry.

The MAX4060/MAX4062 are capable of switching their output between the differential input and an inverting single-ended input. $\overline{\rm INT}/\rm AUX$ selects either the differential input or single-ended auxiliary input. In addition, the MAX4060 has an internal bias generator to bias the microphone in either differential or single-ended modes. The MAX4061 includes a complete 0.3µA shut-


down mode for ultimate power savings. The differential gain of the MAX4061/MAX4062 is set with a single resistor connected between the G1 and G2 pins. The MAX4060 has a fixed gain of 10V/V.

Differential Input

The main microphone input is a low-noise, differential input structure. This is an almost essential element when faced with amplification of low-amplitude analog signals in digitally intense environments such as notebook PCs or PDAs. Used correctly, the advantages over a single-ended solution are:

- Better power-supply noise rejection.
- Less degradation from noise in PC board ground planes.
- The microphone and preamplifier can be placed physically further apart, easing PC board layout restrictions.

Functional Diagram

Fixed Differential Gain (MAX4060)

The MAX4060 has an internal fixed gain of 10V/V for its differential input. This feature simplifies design, reduces pin count, footprint, and eliminates external gain-setting resistors.

Adjustable Differential-Gain Setting

The MAX4061/MAX4062 allow the user to alter the gain to optimize the signal-to-noise ratio (SNR) of their system. The gain is set by a single external resistor (RG) connected between the G1 and G2 pins, where:

$$R_{\rm G} = 100 k\Omega / (A_{\rm V} - 1)$$

where A_V is the required voltage gain.

Hence, an 11.11k Ω resistor yields a gain of 10V/V, or 20dB. Leaving the pins unconnected results in a gain of 1V/V. Gain for the MAX4061/MAX4062 is defined as:

$$A_V = V_{OUT} / (V_{IN+} - V_{IN-})$$

The resistor can be either fixed or variable, allowing the use of a digitally controlled potentiometer to alter the gain under software control.

Input Capacitors

The two differential microphone inputs and the singleended auxiliary input of the MAX4060/MAX4061/ MAX4062 have on-chip bias components, allowing the user to AC-couple any signals onto the input. The input resistance is $100k\Omega$ (typ), so the capacitor size may be chosen accordingly to define the LF rolloff desired. This can be calculated as:

$$C_{IN} = 1 / (2\pi f_{CUT}R_{IN})$$

This assumes a low source impedance driving the inputs.

A further consideration for the differential input is the effect of these series input capacitors on low-frequency, common-mode rejection. Any mismatch in the values of these two capacitors degrades the CMRR at frequencies where the impedance of the capacitor is significant compared to the input resistance of the amplifier—this is usually most noticeable at low frequencies. One way to avoid the need for matched or tight tolerance capacitors is to deliberately oversize the values on the differ-

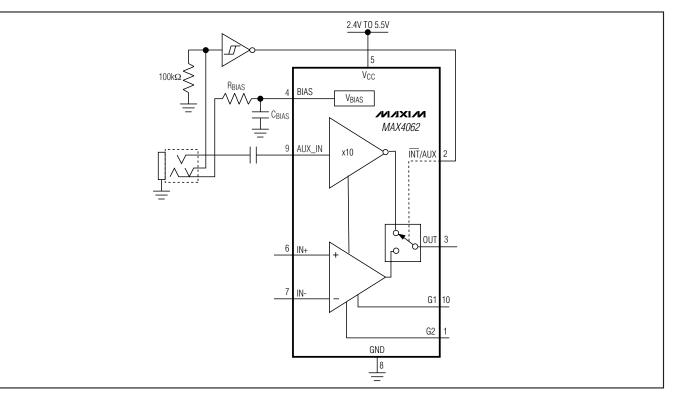


Figure 1. MAX4062 with Auxiliary Input Configuration

ential inputs and to set the lower 3dB point (f_{CUT}) of the amplifier by sizing the output capacitor appropriately.

The input impedance matching on the differential input is typically 1%, allowing input capacitor matching to be effective at improving low-frequency PSRR.

Common-Mode Rejection Ratio

The common-mode rejection ratio (CMRR) refers to the amount of rejection that the amplifier is capable of providing to any signal applied equally to the IN+ and IN-inputs. In the case of amplifying low-level microphone signals in noisy digital environments, it is a key figure of merit. In audio circuits, this is generally measured for V_{IN} as an AC signal:

$CMRR(dB) = A_{DM} / A_{CM}$

where A_{DM} is the differential gain, A_{CM} is the common-mode gain.

Input voltages are sufficiently small such that the output is not clipped in either differential or common-mode application. The topology used in the MAX4061/ MAX4062 means that the CMRR actually improves at higher differential gains—another advantage of using differential sensing.

Auxiliary Input

///XI///

The auxiliary input is a single-ended input intended to be used with a jack-socket-type microphone input (Figure 1). Internal DC-bias components (as on the main inputs) allow the input signal to be AC-coupled. Mechanically switched jack sockets can be used in conjunction with the INT/AUX select pin, allowing the auxiliary microphone input to be automatically selected when a jack socket is inserted.

Microphone Bias Voltage MAX4060

The MAX4060 has a microphone bias voltage designed to comply with the Microsoft/Intel PC99/2001 audio standard. It features source impedance of greater than $2k\Omega$, and delivers more than 2V of bias when loaded with a current of 800µA. This limits operation of this part to supplies between 4.5V to 5.5V (see Figure 2).

10

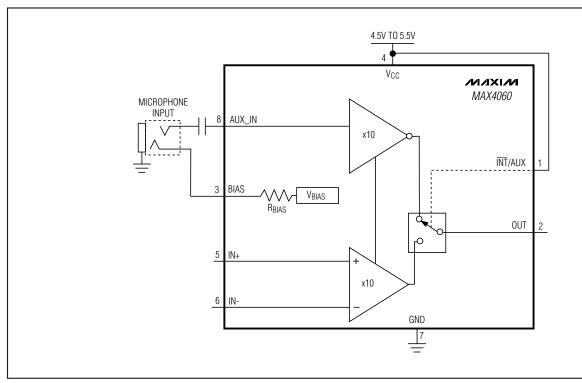


Figure 2. MAX4060 Used for Biasing a Microphone

MAX4061/MAX4062

The MAX4062 has a lower bias voltage and low-impedance outputs (optimum electret bias resistor can then be set externally). This gives a low-noise, flexible solution that can run from 2.4V to 5.5V, suitable for handheld devices such as PDAs that typically have audio power supplies in the 3V region (see Figure 3).

In applications where the differential microphone is placed some distance from the MAX4060/MAX4061/ MAX4062, using a remote differential bias scheme as shown in Figure 4 can provide improved noise rejection.

Output

MAX4060/MAX4061 DC Bias

The output voltage has a DC-bias voltage independent of the power supplies, resulting in superior PSRR performance. The MAX4061 output is high impedance when the part is in shutdown mode. AC-coupling the output into the next audio stage (e.g., CODEC) is recommended.

Applications Information

Shutdown Mode

The MAX4061 features a low-power, complete shutdown mode. When SHDN goes low, the supply current drops to 0.3μ A, the output enters a high-impedance state, and the bias current to the microphone is switched off. Driving SHDN high enables the amplifier. SHDN should not be left unconnected.

Power Supplies and Layout

The MAX4060 operates from a 4.5V to 5.5V single supply and the MAX4061/MAX4062 operate from a 2.4V to 5.5V single supply. Bypass the power supply with a 0.1 μ F capacitor to ground. In systems where analog and digital grounds are available, the MAX4060/MAX4061 should be connected to the analog ground.

MAX4060/MAX4061/MAX4062

VBIAS

AUX_IN

G1

G2

IN-

6 IN-

2.4V TO 5.5V

*/*и//XI//И

MAX4062

Ò

INT/AUX 2

OUT 3

5 V_{CC}

x10

GND 8

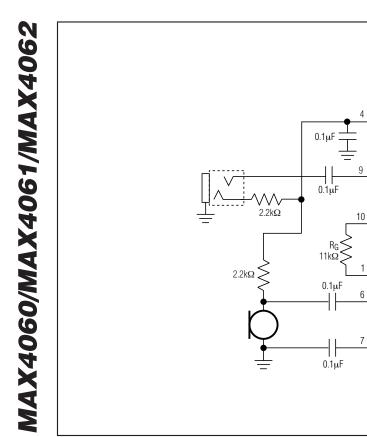
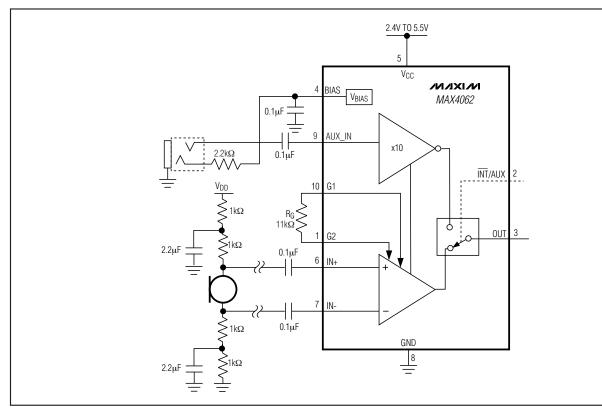
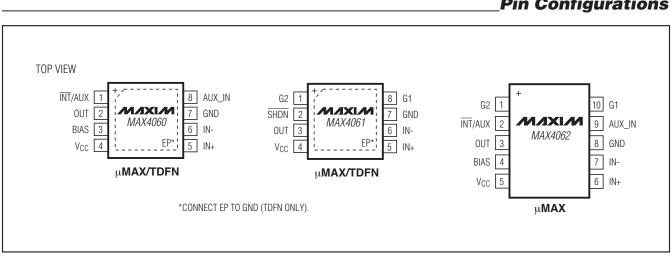
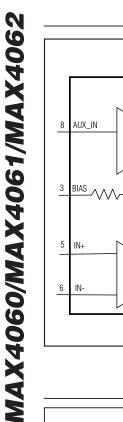
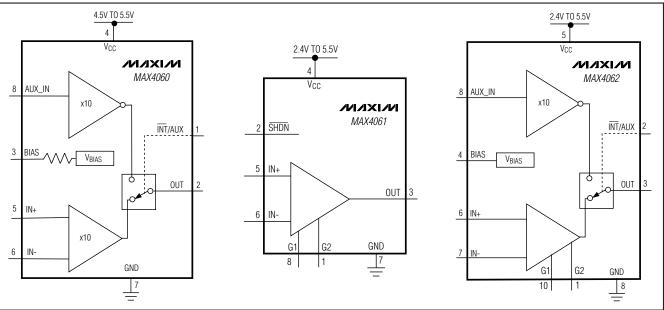


Figure 3. MAX4062 Used to Bias a Microphone Connected to the Auxiliary Input and the Differential Input


Figure 4. Remote Differential Microphone Bias Network Optimizes Noise Rejection in Long-Run, PC Board Traces


Pin Configurations

Downloaded from Elcodis.com electronic components distributor

Block Diagrams

Selector Guide

PRODUCT*	AUXILIARY INPUT	DIFF INPUT GAIN	SINGLE-ENDED INPUT GAIN (dB)	MICROPHONE BIAS	SHUTDOWN MODE	SUPPLY VOLTAGE (V)
MAX4060	~	20dB	20	~	_	4.5 to 5.5
MAX4061	—	ADJ	—	—	~	2.4 to 5.5
MAX4062	~	ADJ	20	~	_	2.4 to 5.5

*See Block Diagrams.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.	LAND PATTERN NO.
8 TDFN	T833+2	<u>21-0137</u>	<u>90-0059</u>
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>
10 µMAX	U10+2	<u>21-0061</u>	<u>90-0030</u>

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
3	4/11	Added exposed pad information to Pin Description and Pin Configurations sections	8, 13

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

15 _

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.