NTB0101 # Dual supply translating transceiver; auto direction sensing; 3-state Rev. 4 — 6 August 2012 **Product data sheet** ### 1. General description The NTB0101 is a 1-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation. It features two 1-bit input-output ports (A and B), one output enable input (OE) and two supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). $V_{CC(A)}$ can be supplied at any voltage between 1.2 V and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.65 V and 5.5 V, making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins A and OE are referenced to $V_{CC(A)}$ and pin B is referenced to $V_{CC(B)}$. A LOW level at pin OE causes the outputs to assume a high-impedance OFF-state. This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. #### 2. Features and benefits - Wide supply voltage range: - ♦ V_{CC(A)}: 1.2 V to 3.6 V and V_{CC(B)}: 1.65 V to 5.5 V - I_{OFF} circuitry provides partial Power-down mode operation - Inputs accept voltages up to 5.5 V - ESD protection: - ◆ HBM JESD22-A114E Class 2 exceeds 2500 V for A port - ◆ HBM JESD22-A114E Class 3B exceeds 15000 V for B port - ◆ MM JESD22-A115-A exceeds 200 V - ◆ CDM JESD22-C101E exceeds 1500 V - Latch-up performance exceeds 100 mA per JESD 78B Class II - Multiple package options - Specified from -40 °C to +85 °C and -40 °C to +125 °C ### Dual supply translating transceiver; auto direction sensing; 3-state # 3. Ordering information Table 1. Ordering information | Type number | Package | ackage | | | | | | | |-------------|-------------------|--------|---|---------|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | NTB0101GW | −40 °C to +125 °C | SC-88 | plastic surface-mounted package; 6 leads | SOT363 | | | | | | NTB0101GV | –40 °C to +125 °C | TSOP6 | plastic surface-mounted package (TSOP6); 6 leads | SOT457 | | | | | | NTB0101GM | –40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm | SOT886 | | | | | | NTB0101GF | –40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm | SOT891 | | | | | | NTB0101GS | –40 °C to +125 °C | XSON6 | extremely thin small outline package; no leads; 6 terminals; body 1.0 \times 1.0 \times 0.35 mm | SOT1202 | | | | | # 4. Marking Table 2. Marking | 3 | | |-------------|-----------------------------| | Type number | Marking code ^[1] | | NTB0101GW | t1 | | NTB0101GV | t01 | | NTB0101GM | t1 | | NTB0101GF | t1 | | NTB0101GS | t1 | ^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code. # 5. Functional diagram NTB0101 Dual supply translating transceiver; auto direction sensing; 3-state # 6. Pinning information ### 6.1 Pinning ### 6.2 Pin description Table 3. Pin description | Symbol | Pin | Description | |--------------------|-----|--| | V _{CC(A)} | 1 | supply voltage A | | GND | 2 | ground (0 V) | | A | 3 | data input or output (referenced to V _{CC(A)}) | | В | 4 | data input or output (referenced to V _{CC(B)}) | | OE | 5 | output enable input (active HIGH; referenced to V _{CC(A)}) | | V _{CC(B)} | 6 | supply voltage B | # 7. Functional description Table 4. Function table[1] | Supply voltage | | Input | Input/output | | | |-----------------------------|--------------------|-------|-----------------|-----------------|--| | V _{CC(A)} | V _{CC(B)} | OE | A | В | | | 1.2 V to V _{CC(B)} | 1.65 V to 5.5 V | L | Z | Z | | | 1.2 V to V _{CC(B)} | 1.65 V to 5.5 V | Н | input or output | output or input | | | GND[2] | GND[2] | Χ | Z | Z | | ^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state. NTB010 All information provided in this document is subject to legal disclaimers. ^[2] When either $V_{\text{CC}(A)}$ or $V_{\text{CC}(B)}$ is at GND level, the device goes into Power-down mode. #### Dual supply translating transceiver; auto direction sensing; 3-state # 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|-------------------------|--|-------------------|-----------------|------| | $V_{CC(A)}$ | supply voltage A | | -0.5 | +6.5 | V | | V _{CC(B)} | supply voltage B | | -0.5 | +6.5 | V | | VI | input voltage | | [<u>1</u>] -0.5 | +6.5 | V | | Vo | output voltage | Active mode | [1][2][3] -0.5 | $V_{CCO} + 0.5$ | V | | | | Power-down or 3-state mode | [<u>1]</u> -0.5 | +6.5 | V | | I _{IK} | input clamping current | V _I < 0 V | -50 | - | mA | | I _{OK} | output clamping current | V _O < 0 V | -50 | - | mA | | I _O | output current | $V_O = 0 V \text{ to } V_{CCO}$ | [2] _ | ±50 | mA | | I _{CC} | supply current | I _{CC(A)} or I _{CC(B)} | - | 100 | mA | | I _{GND} | ground current | | -100 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ | <u>[4]</u> _ | 250 | mW | ^[1] The minimum input and minimum output voltage ratings may be exceeded if the input and output current ratings are observed. # 9. Recommended operating conditions Table 6. Recommended operating conditions[1][2] | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|-------------------------------------|---|------|------|------| | $V_{CC(A)}$ | supply voltage A | | 1.2 | 3.6 | V | | V _{CC(B)} | supply voltage B | | 1.65 | 5.5 | V | | VI | input voltage | | 0 | 5.5 | V | | Vo | output voltage | Power-down or 3-state mode;
$V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | | | | | | | A port | 0 | 3.6 | V | | | | B port | 0 | 5.5 | V | | T _{amb} | ambient temperature | | -40 | +125 | °C | | Δt/ΔV | input transition rise and fall rate | $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 40 | ns/V | ^[1] The A and B sides of an unused I/O pair must be held in the same state, both at V_{CCI} or both at GND. TB0101 All information provided in this document is subject to legal disclaimers. ^[2] V_{CCO} is the supply voltage associated with the output. ^[3] $V_{CCO} + 0.5 \text{ V}$ should not exceed 6.5 V. ^[4] For SC-88 and SC-74A packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K. ^[2] $V_{CC(A)}$ must be less than or equal to $V_{CC(B)}$. Dual supply translating transceiver; auto direction sensing; 3-state ### 10. Static characteristics Table 7. Typical static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|------------------------------|---|-------|------|-----|------| | V _{OH} | HIGH-level output voltage | A port; $V_{CC(A)} = 1.2 \text{ V}$; $I_O = -20 \mu\text{A}$ | - | 1.1 | - | V | | V_{OL} | LOW-level output voltage | A port; $V_{CC(A)} = 1.2 \text{ V}$; $I_O = 20 \mu\text{A}$ | - | 0.09 | - | V | | I _I | input leakage
current | OE input; V_I = 0 V to 3.6 V; $V_{CC(A)}$ = 1.2 V to 3.6 V; $V_{CC(B)}$ = 1.65 V to 5.5 V | - | - | ±1 | μΑ | | l _{OZ} | OFF-state output current | A or B port; V_O = 0 V to V_{CCO} ; $V_{CC(A)}$ = 1.2 V to 3.6 V; $V_{CC(B)}$ = 1.65 V to 5.5 V | [1] - | - | ±1 | μΑ | | I _{OFF} | power-off
leakage current | A port; V_1 or $V_0 = 0$ V to 3.6 V;
$V_{CC(A)} = 0$ V; $V_{CC(B)} = 0$ V to 5.5 V | - | - | ±1 | μΑ | | | | B port; V_1 or $V_0 = 0$ V to 5.5 V;
$V_{CC(B)} = 0$ V; $V_{CC(A)} = 0$ V to 3.6 V | - | - | ±1 | μΑ | | I _{CC} | supply current | $V_I = 0 \text{ V or } V_{CCI}; I_O = 0 \text{ A}$ | [2] | | | | | | | $I_{CC(A)}$; $V_{CC(A)} = 1.2 \text{ V}$; $V_{CC(B)} = 1.65 \text{ V}$ to 5.5 V | - | 0.05 | - | μΑ | | | | $I_{CC(B)}$; $V_{CC(A)} = 1.2 \text{ V}$; $V_{CC(B)} = 1.65 \text{ V}$ to 5.5 V | - | 3.3 | - | μΑ | | | | $I_{CC(A)} + I_{CC(B)}$; $V_{CC(A)} = 1.2 \text{ V}$; $V_{CC(B)} = 1.65 \text{ V}$ to 5.5 V | - | 3.5 | - | μΑ | | Cı | input
capacitance | OE input; $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V}; V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 1.0 | - | pF | | C _{I/O} | input/output | A port; $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V}; V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 4.0 | - | pF | | | capacitance | B port; $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V}; V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 7.5 | - | pF | | | | | | | | | ^[1] V_{CCO} is the supply voltage associated with the output. Table 8. Typical supply current At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C. | V _{CC(A)} | V _{CC(B)} | | | | | | | | | |--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----| | | 1.8 | 3 V | 2.5 | 5 V | 3.3 V | | 5.0 V | | | | - | I _{CC(A)} | I _{CC(B)} | | | 1.2 V | 10 | 10 | 10 | 10 | 10 | 20 | 10 | 1050 | nA | | 1.5 V | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 650 | nA | | 1.8 V | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 350 | nA | | 2.5 V | - | - | 10 | 10 | 10 | 10 | 10 | 40 | nA | | 3.3 V | - | - | - | - | 10 | 10 | 10 | 10 | nA | ^[2] V_{CCI} is the supply voltage associated with the input. ### Dual supply translating transceiver; auto direction sensing; 3-state Table 9. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | -40 °C to | o +85 °C | -40 °C to | +125 °C | Unit | |------------------|------------------------------|--|-----|------------------------|----------------------|----------------------|----------------------|------| | | | | | Min | Max | Min | Max | | | V_{IH} | HIGH-level | A or B port and OE input | [1] | ' | | | | ' | | | input voltage | $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | | 0.65V _{CCI} | - | 0.65V _{CCI} | - | V | | V_{IL} | | A or B port and OE input | [1] | | | | | | | input voltage | input voltage | $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | | - | 0.35V _{CCI} | - | 0.35V _{CCI} | V | | V_{OH} | HIGH-level
output voltage | $I_{O} = -20 \mu A$ | [2] | | | | | | | | | A port; $V_{CC(A)} = 1.4 \text{ V to } 3.6 \text{ V}$ | | V _{CCO} - 0.4 | - | $V_{CCO}-0.4$ | - | V | | | | B port; $V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | | $V_{\text{CCO}} - 0.4$ | - | $V_{CCO}-0.4$ | - | V | | | LOW-level | I _O = 20 μA | [2] | | | | | | | | output voltage | A port; $V_{CC(A)} = 1.4 \text{ V to } 3.6 \text{ V}$ | | - | 0.4 | - | 0.4 | V | | | | B port; V _{CC(B)} = 1.65 V to 5.5 V | | - | 0.4 | - | 0.4 | V | | II | input leakage
current | OE input; $V_I = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | | - | ±2 | - | ±5 | μА | | l _{OZ} | OFF-state output current | A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V}$; $V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | [2] | - | ±2 | - | ±10 | μА | | I _{OFF} | power-off
leakage | A port; V_1 or $V_0 = 0$ V to 3.6 V;
$V_{CC(A)} = 0$ V; $V_{CC(B)} = 0$ V to 5.5 V | | - | ±2 | - | ±10 | μА | | | current | B port; V_1 or $V_0 = 0$ V to 5.5 V;
$V_{CC(B)} = 0$ V; $V_{CC(A)} = 0$ V to 3.6 V | | - | ±2 | - | ±10 | μΑ | ### Dual supply translating transceiver; auto direction sensing; 3-state Table 9. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | –40 °C | to +85 °C | -40 °C to | +125 °C | Unit | |-----------------|-----------|--|--------|-----------|-----------|---------|------| | | | | Min | Max | Min | Max | | | I _{CC} | | $V_I = 0 \text{ V or } V_{CCI}; I_O = 0 \text{ A}$ | [1] | ' | | ' | ' | | | | I _{CC(A)} | | | | | | | | | OE = LOW;
$V_{CC(A)} = 1.4 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 3 | - | 15 | μА | | | | OE = HIGH;
$V_{CC(A)} = 1.4 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 3 | - | 20 | μА | | | | $V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$ | - | 2 | - | 15 | μΑ | | | | $V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 5.5 \text{ V}$ | - | -2 | - | -15 | μΑ | | | | I _{CC(B)} | | | | | | | | | OE = LOW;
$V_{CC(A)} = 1.4 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 5 | - | 15 | μА | | | | OE = HIGH;
$V_{CC(A)} = 1.4 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 5 | - | 20 | μА | | | | $V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$ | - | -2 | - | -15 | μΑ | | | | $V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 5.5 \text{ V}$ | - | 2 | - | 15 | μΑ | | | | $I_{CC(A)} + I_{CC(B)}$ | | | | | | | | | $V_{CC(A)} = 1.4 \text{ V to } 3.6 \text{ V};$
$V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | - | 8 | - | 40 | μΑ | ^[1] V_{CCI} is the supply voltage associated with the input. # 11. Dynamic characteristics Table 10. Typical dynamic characteristics for temperature 25 °C[1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6. | Symbol | Parameter | Conditions | | V _{CC(B)} | | | | Unit | |------------------|---------------------------------|---------------------------|-----|--------------------|-------|-------|-------|------| | | | | | 1.8 V | 2.5 V | 3.3 V | 5.0 V | | | $V_{CC(A)} = 1$ | 1.2 V; T _{amb} = 25 °C | | | | | | | | | t _{pd} | propagation delay | A to B | | 5.9 | 4.8 | 4.4 | 4.2 | ns | | | | B to A | | 5.6 | 4.8 | 4.5 | 4.4 | ns | | t _{en} | enable time | OE to A, B | | 0.5 | 0.5 | 0.5 | 0.5 | μS | | t _{dis} | disable time | OE to A; no external load | [2] | 6.9 | 6.9 | 6.9 | 6.9 | ns | | | | OE to B; no external load | [2] | 9.5 | 8.6 | 8.5 | 8.0 | ns | | | | OE to A | | 81 | 69 | 83 | 68 | ns | | | | OE to B | | 81 | 69 | 83 | 68 | ns | NTB0101 All information provided in this document is subject to legal disclaimers. ^[2] V_{CCO} is the supply voltage associated with the output. #### Dual supply translating transceiver; auto direction sensing; 3-state Table 10. Typical dynamic characteristics for temperature 25 °C[1] ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 7</u>; for waveforms see <u>Figure 5</u> and <u>Figure 6</u>. | Symbol | Parameter | Conditions | | Unit | | | | |-------------------|-----------------|-------------|-------|-------|-------|-------|------| | | | | 1.8 V | 2.5 V | 3.3 V | 5.0 V | | | t _t | transition time | A port | 4.0 | 4.0 | 4.1 | 4.1 | ns | | | | B port | 2.6 | 2.0 | 1.7 | 1.4 | ns | | t _W | pulse width | data inputs | 15 | 13 | 13 | 13 | ns | | f _{data} | data rate | | 70 | 80 | 80 | 80 | Mbps | ^[1] t_{pd} is the same as t_{PLH} and t_{PHL} . Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C[1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6. | Symbol | Parameter | Conditions | | V _{CC(B)} | | | | | | | | Unit | |---------------------------|----------------|---------------------------|-----|--------------------|--------|-------|---------|-------|---------|-------|---------|------| | | | | | 1.8 V ± | 0.15 V | 2.5 V | ± 0.2 V | 3.3 V | ± 0.3 V | 5.0 V | ± 0.5 V | Ī | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | Ī | | V _{CC(A)} = | 1.5 V ± 0.1 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | 1.4 | 12.9 | 1.2 | 10.1 | 1.1 | 10.0 | 8.0 | 9.9 | ns | | | delay | B to A | | 0.9 | 14.2 | 0.7 | 12.0 | 0.4 | 11.7 | 0.3 | 13.7 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μS | | t _{dis} | disable time | OE to A; no external load | [2] | 1.0 | 11.9 | 1.0 | 11.9 | 1.0 | 11.9 | 1.0 | 11.9 | ns | | | | OE to B; no external load | [2] | 1.0 | 16.9 | 1.0 | 15.2 | 1.0 | 14.1 | 1.0 | 13.8 | ns | | | | OE to A | | - | 320 | - | 260 | - | 260 | - | 280 | ns | | | | OE to B | | - | 200 | - | 200 | - | 200 | - | 200 | ns | | t _t transition | A port | | 0.9 | 5.1 | 0.9 | 5.1 | 0.9 | 5.1 | 0.9 | 5.1 | ns | | | | time | B port | | 0.9 | 4.7 | 0.6 | 3.2 | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t _W | pulse width | data inputs | | 25 | - | 25 | - | 25 | - | 25 | - | ns | | f _{data} | data rate | | | - | 40 | - | 40 | - | 40 | - | 40 | Mbps | | V _{CC(A)} = | 1.8 V ± 0.15 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | 1.6 | 11.0 | 1.4 | 7.7 | 1.3 | 6.8 | 1.2 | 6.5 | ns | | | delay | B to A | | 1.5 | 12.0 | 1.3 | 8.4 | 1.0 | 7.6 | 0.9 | 7.1 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μS | | t _{dis} | disable time | OE to A; no external load | [2] | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 | ns | | | | OE to B; no external load | [2] | 1.0 | 15.4 | 1.0 | 13.5 | 1.0 | 12.4 | 1.0 | 12.1 | ns | | | | OE to A | | - | 260 | - | 230 | - | 230 | - | 230 | ns | | | | OE to B | | - | 200 | - | 200 | - | 200 | - | 200 | ns | | t _t | transition | A port | | 0.8 | 4.1 | 8.0 | 4.1 | 0.8 | 4.1 | 8.0 | 4.1 | ns | | | time | B port | | 0.9 | 4.7 | 0.6 | 3.2 | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t _W | pulse width | data inputs | | 20 | - | 17 | - | 17 | - | 17 | - | ns | | f _{data} | data rate | | | - | 49 | - | 60 | - | 60 | - | 60 | Mbps | NTB0101 All information provided in this document is subject to legal disclaimers. t_{en} is the same as t_{PZL} and $t_{\text{PZH}}.$ t_{dis} is the same as t_{PLZ} and t_{PHZ} . t_{t} is the same as t_{THL} and t_{TLH} ^[2] Delay between OE going LOW and when the outputs are actually disabled. ### Dual supply translating transceiver; auto direction sensing; 3-state Table 11. Dynamic characteristics for temperature range –40 °C to +85 °C[1] ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 7</u>; for wave forms see <u>Figure 5</u> and <u>Figure 6</u>. | | | | V _{CC(B)} | | | | | | | | | | |---------------------------|-----------------------------------|---------------------------|--------------------|---------|--------|---------|---------|---------|---------|---------|---------|------| | | | | | 1.8 V ± | 0.15 V | 2.5 V ± | Ŀ 0.2 V | 3.3 V = | ± 0.3 V | 5.0 V = | ± 0.5 V | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | $V_{CC(A)} = 2$ | $2.5 \text{ V} \pm 0.2 \text{ V}$ | | | | | | | | | | | | | Pu | propagation | A to B | | - | - | 1.1 | 6.3 | 1.0 | 5.2 | 0.9 | 4.7 | ns | | | delay | B to A | | - | - | 1.2 | 6.6 | 1.1 | 5.1 | 0.9 | 4.4 | ns | | t _{en} | enable time | OE to A, B | | - | - | - | 1.0 | - | 1.0 | - | 1.0 | μS | | t _{dis} | disable time | OE to A; no external load | [2] | - | - | 1.0 | 9.2 | 1.0 | 9.2 | 1.0 | 9.2 | ns | | | | OE to B; no external load | [2] | - | - | 1.0 | 11.9 | 1.0 | 10.7 | 1.0 | 10.2 | ns | | | | OE to A | | - | - | - | 200 | - | 200 | - | 200 | ns | | | | OE to B | | - | - | - | 200 | - | 200 | - | 200 | ns | | t _t transition | A port | | - | - | 0.7 | 3.0 | 0.7 | 3.0 | 0.7 | 3.0 | ns | | | , | time | B port | | - | - | 0.7 | 3.2 | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t_{W} | pulse width | data inputs | | - | - | 12 | - | 10 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | 85 | - | 100 | - | 100 | Mbps | | $V_{CC(A)} = 3$ | 3.3 V ± 0.3 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | - | - | - | - | 0.9 | 4.7 | 8.0 | 4.0 | ns | | | delay | B to A | | - | - | - | - | 1.0 | 4.9 | 0.9 | 3.8 | ns | | t _{en} | enable time | OE to A, B | | - | - | - | - | - | 1.0 | - | 1.0 | μS | | t _{dis} | disable time | OE to A; no external load | [2] | - | - | - | - | 1.0 | 9.2 | 1.0 | 9.2 | ns | | | | OE to B; no external load | [2] | - | - | - | - | 1.0 | 10.1 | 1.0 | 9.6 | ns | | | | OE to A | | - | - | - | - | - | 260 | - | 260 | ns | | | | OE to B | | - | - | - | - | - | 200 | - | 200 | ns | | t _t | transition | A port | | - | - | - | - | 0.7 | 2.5 | 0.7 | 2.5 | ns | | | time | B port | | - | - | - | - | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t_{W} | pulse width | data inputs | | - | - | - | - | 10 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | - | - | 100 | - | 100 | Mbps | $[\]begin{array}{ll} [1] & t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}. \\ & t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}. \\ & t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}. \end{array}$ t_t is the same as t_{THL} and t_{TLH} . ^[2] Delay between OE going LOW and when the outputs are actually disabled. ### Dual supply translating transceiver; auto direction sensing; 3-state Table 12. Dynamic characteristics for temperature range –40 °C to +125 °C[1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6. | Symbol | Parameter | Conditions | | | | | Vcc | C(B) | | | | Unit | |------------------------|-----------------|---------------------------|-----|---------|--------|---------|---------|---------|---------|---------|-------|------| | | | | | 1.8 V ± | 0.15 V | 2.5 V : | ± 0.2 V | 3.3 V : | ± 0.3 V | 5.0 V ± | 0.5 V | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | V _{CC(A)} = | 1.5 V ± 0.1 V | | | | | | | | | | | • | | t _{pd} | propagation | A to B | | 1.4 | 15.9 | 1.2 | 13.1 | 1.1 | 13.0 | 8.0 | 12.9 | ns | | | delay | B to A | | 0.9 | 17.2 | 0.7 | 15.0 | 0.4 | 14.7 | 0.3 | 16.7 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μS | | t _{dis} | disable time | OE to A; no external load | [2] | 1.0 | 12.5 | 1.0 | 12.5 | 1.0 | 12.5 | 1.0 | 12.5 | ns | | | | OE to B; no external load | [2] | 1.0 | 18.1 | 1.0 | 16.2 | 1.0 | 14.9 | 1.0 | 14.6 | ns | | | | OE to A | | - | 340 | - | 280 | - | 280 | - | 300 | ns | | | | OE to B | | - | 220 | - | 220 | - | 220 | - | 220 | ns | | t _t | transition | A port | | 0.9 | 7.1 | 0.9 | 7.1 | 0.9 | 7.1 | 0.9 | 7.1 | ns | | | time | B port | | 0.9 | 6.5 | 0.6 | 5.2 | 0.5 | 4.8 | 0.4 | 4.7 | ns | | t _W | pulse width | data inputs | | 25 | - | 25 | - | 25 | - | 25 | - | ns | | f _{data} | data rate | | | - | 40 | - | 40 | - | 40 | - | 40 | Mbps | | V _{CC(A)} = | 1.8 V ± 0.15 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | 1.6 | 14.0 | 1.4 | 10.7 | 1.3 | 9.8 | 1.2 | 9.5 | ns | | | delay | B to A | | 1.5 | 15.0 | 1.3 | 11.4 | 1.0 | 10.6 | 0.9 | 10.1 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μS | | t _{dis} disab | disable time | OE to A; no external load | [2] | 1.0 | 11.5 | 1.0 | 11.5 | 1.0 | 11.5 | 1.0 | 11.5 | ns | | | | OE to B; no external load | [2] | 1.0 | 16.5 | 1.0 | 14.5 | 1.0 | 13.3 | 1.0 | 12.7 | ns | | | | OE to A | | - | 280 | - | 250 | - | 250 | - | 250 | ns | | | | OE to B | | - | 220 | - | 220 | - | 220 | - | 220 | ns | | t _t | transition | A port | | 8.0 | 6.2 | 8.0 | 6.1 | 8.0 | 6.1 | 8.0 | 6.1 | ns | | | time | B port | | 0.9 | 5.8 | 0.6 | 5.2 | 0.5 | 4.8 | 0.4 | 4.7 | ns | | t_{W} | pulse width | data inputs | | 22 | - | 19 | - | 19 | - | 19 | - | ns | | f _{data} | data rate | | | - | 45 | - | 55 | - | 55 | - | 55 | Mbps | | $V_{CC(A)} =$ | $2.5~V\pm0.2~V$ | | | | | | | | | | | | | t _{pd} | propagation | A to B | | - | - | 1.1 | 9.3 | 1.0 | 8.2 | 0.9 | 7.7 | ns | | | delay | B to A | | - | - | 1.2 | 9.6 | 1.1 | 8.1 | 0.9 | 7.4 | ns | | t _{en} | enable time | OE to A, B | | - | - | - | 1.0 | - | 1.0 | - | 1.0 | μS | | t _{dis} | disable time | OE to A; no external load | [2] | - | - | 1.0 | 9.6 | 1.0 | 9.6 | 1.0 | 9.6 | ns | | | | OE to B; no external load | [2] | - | - | 1.0 | 12.6 | 1.0 | 11.4 | 1.0 | 10.8 | ns | | | | OE to A | | - | - | - | 220 | - | 220 | - | 220 | ns | | | | OE to B | | - | - | - | 220 | - | 220 | - | 220 | ns | | t _t | transition | A port | | - | - | 0.7 | 5.0 | 0.7 | 5.0 | 0.7 | 5.0 | ns | | | time | B port | | - | - | 0.7 | 4.6 | 0.5 | 4.8 | 0.4 | 4.7 | ns | | t _W | pulse width | data inputs; | | - | - | 14 | - | 13 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | 75 | - | 80 | - | 100 | Mbps | NTB0101 All information provided in this document is subject to legal disclaimers. ### Dual supply translating transceiver; auto direction sensing; 3-state Table 12. Dynamic characteristics for temperature range -40 °C to +125 °C[1] ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 7</u>; for wave forms see <u>Figure 5</u> and <u>Figure 6</u>. | _ | | | | | | | | | | | | | |-------------------------------|-----------------|---------------------------|-----|---------|--------|---------|---------|-------|---------|---------|---------|------| | Symbol | Parameter | Conditions | | | | | Vcc | (B) | | | | Unit | | | | | | 1.8 V ± | 0.15 V | 2.5 V : | ± 0.2 V | 3.3 V | ± 0.3 V | 5.0 V = | Ŀ 0.5 V | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | $V_{CC(A)} =$ | $3.3~V\pm0.3~V$ | | | | | | | | | | | | | t _{pd} | propagation | A to B | | - | - | - | - | 0.9 | 7.7 | 8.0 | 7.0 | ns | | delay | B to A | | - | - | - | - | 1.0 | 7.9 | 0.9 | 6.8 | ns | | | t _{en} | enable time | OE to A, B | | - | - | - | - | - | 1.0 | - | 1.0 | μS | | t _{dis} disable time | disable time | OE to A; no external load | [2] | - | - | - | - | 1.0 | 9.5 | 1.0 | 9.5 | ns | | | | OE to B; no external load | [2] | - | - | - | - | 1.0 | 10.7 | 1.0 | 9.6 | ns | | | | OE to A | | - | - | - | - | - | 280 | - | 280 | ns | | | | OE to B | | - | - | - | - | - | 220 | - | 220 | ns | | t _t | transition | A port | | - | - | - | - | 0.7 | 4.5 | 0.7 | 4.5 | ns | | | time | B port | | - | - | - | - | 0.5 | 4.1 | 0.4 | 4.7 | ns | | t _W | pulse width | data inputs | | - | - | - | - | 10 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | - | - | 100 | - | 100 | Mbps | $[\]begin{aligned} [1] \quad & t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}. \\ & t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}. \\ & t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}. \\ & t_{t} \text{ is the same as } t_{THL} \text{ and } t_{TLH}. \end{aligned}$ 11 of 26 Downloaded from Elcodis.com electronic components distributor ^[2] Delay between OE going LOW and when the outputs are actually disabled. #### Dual supply translating transceiver; auto direction sensing; 3-state Table 13. Typical power dissipation capacitance Voltages are referenced to GND (ground = 0 V).[1][2] | | | , , , | | | | | | | | | |--------|-----------|------------|-------|-------|-------|--------------------|-------|-------|-------|------| | Symbol | Parameter | Conditions | | | | $V_{CC(A)}$ | | | | Unit | | | | | 1.2 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 2.5 V | 3.3 V | | | | | | | | | V _{CC(B)} | | | | | | | | | 1.8 V | 5.0 V | 1.8 V | 1.8 V | 2.5 V | 5.0 V | 3.3 V | | | | | | | | | | | | to | | | | | | | | | | | | 5.U V | | |--------------------|-------------------------|-----------------------------------|------|------|------|------|------|------|-------|----| | T _{amb} = | : 25 °C | | | | | | | | | | | C_{PD} | power | outputs enabled; $OE = V_{CC(A)}$ | | | | | | | | | | | dissipation capacitance | A port: (direction A to B) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | pF | | | capacitarice | A port: (direction B to A) | 8 | 8 | 8 | 8 | 8 | 8 | 8 | pF | | | | B port: (direction A to B) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | pF | | | | B port: (direction B to A) | 13 | 16 | 12 | 12 | 12 | 12 | 13 | pF | | | | outputs disabled; OE = GND | | | | | | | | | | | | A port: (direction A to B) | 0.12 | 0.12 | 0.04 | 0.05 | 0.08 | 0.08 | 0.07 | pF | | | | A port: (direction B to A) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | pF | | | | B port: (direction A to B) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | pF | | | | B port: (direction B to A) | 0.07 | 0.09 | 0.07 | 0.07 | 0.05 | 0.09 | 0.09 | рF | [1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; $f_o = output frequency in MHz;$ C_L = load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs. [2] f_i = 10 MHz; V_I = GND to V_{CC} ; t_r = t_f = 1 ns; C_L = 0 pF; R_L = ∞ Ω . ### 12. Waveforms Measurement points are given in Table 14. V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. Fig 5. Data input (A, B) to data output (B, A) propagation delay times NTR0101 All information provided in this document is subject to legal disclaimers. ### Dual supply translating transceiver; auto direction sensing; 3-state Table 14. Measurement points[1] | Supply voltage | Input | Output | | | |--------------------|---------------------|---------------------|--------------------------|--------------------------| | V _{CCO} | V _M | V _M | V _X | V _Y | | 1.2 V | 0.5V _{CCI} | 0.5V _{CCO} | V_{OL} + 0.1 V | $V_{OH} - 0.1 V$ | | 1.5 V ± 0.1 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.1 V | V _{OH} – 0.1 V | | $1.8~V \pm 0.15~V$ | 0.5V _{CCI} | 0.5V _{CCO} | $V_{OL} + 0.15 V$ | $V_{OH} - 0.15 V$ | | 2.5 V ± 0.2 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.15 V | V _{OH} – 0.15 V | | 3.3 V ± 0.3 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.3 V | $V_{OH} - 0.3 V$ | | 5.0 V ± 0.5 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.3 V | $V_{OH} - 0.3 V$ | ^[1] V_{CCI} is the supply voltage associated with the input and V_{CCO} is the supply voltage associated with the output. ### Dual supply translating transceiver; auto direction sensing; 3-state Test data is given in Table 15. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50~\Omega$; $dV/dt \geq 1.0~V/ns$. R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. V_{EXT} = External voltage for measuring switching times. Fig 7. Test circuit for measuring switching times Table 15. Test data | Supply voltage | | Input | | Load | | V _{EXT} | | | | |--------------------|--------------------|--------------------|-----------------|-------|--------------------|--------------------|--------------------|-----------------------------------------|--| | V _{CC(A)} | V _{CC(B)} | ۷ _ا [1] | Δt/ΔV | CL | R _L [2] | t_{PLH}, t_{PHL} | t_{PZH}, t_{PHZ} | t _{PZL} , t _{PLZ} [3] | | | 1.2 V to 3.6 V | 1.65 V to 5.5 V | V_{CCI} | \leq 1.0 ns/V | 15 pF | 50 kΩ, 1 MΩ | open | open | 2V _{CCO} | | ^[1] V_{CCI} is the supply voltage associated with the input. [3] V_{CCO} is the supply voltage associated with the output. ^[2] For measuring data rate, pulse width, propagation delay and output rise and fall measurements, $R_L = 1 \text{ M}\Omega$; for measuring enable and disable times, $R_L = 50 \text{ k}\Omega$. Dual supply translating transceiver; auto direction sensing; 3-state # 13. Application information # 13.1 Applications Voltage level-translation applications. The NTB0101 can be used to interface between devices or systems operating at different supply voltages. See <u>Figure 8</u> for a typical operating circuit using the NTB0101. Dual supply translating transceiver; auto direction sensing; 3-state #### 13.2 Architecture The architecture of the NTB0101 is shown in Figure 9. The device does not require an extra input signal to control the direction of data flow from A to B or from B to A. In a static state, the output drivers of the NTB0101 can maintain a defined output level, but the output architecture is designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing in the opposite direction. The output of one-shot circuits detect rising or falling edges on the A or B ports. During a rising edge, the one-shot circuits turn on the PMOS transistors (T1, T3) for a short duration, accelerating the LOW-to-HIGH transition. Similarly, during a falling edge, the one-shot circuits turn on the NMOS transistors (T2, T4) for a short duration, accelerating the HIGH-to-LOW transition. During output transitions the typical output impedance is 70 Ω at $V_{CCO} = 1.2 \text{ V}$ to 1.8 V, 50 Ω at $V_{CCO} = 1.8 \text{ V}$ to 3.3 V and 40 Ω at $V_{CCO} = 3.3 \text{ V}$ to 5.0 V. NTB0101 **NXP Semiconductors** Dual supply translating transceiver; auto direction sensing; 3-state ### 13.3 Input driver requirements For correct operation, the device driving the data I/Os of the NTB0101 must have a minimum drive capability of ±2 mA See Figure 10 for a plot of typical input current versus input voltage. #### 13.4 Power-up During operation V_{CC(A)} must never be higher than V_{CC(B)}, however during power-up $V_{CC(A)} \ge V_{CC(B)}$ does not damage the device, so either power supply can be ramped up first. There is no special power-up sequencing required. The NTB0101 includes circuitry that disables all output ports when either $V_{CC(A)}$ or $V_{CC(B)}$ is switched off. #### 13.5 Enable and disable An output enable input (OE) is used to disable the device. Setting OE = LOW causes all I/Os to assume the high-impedance OFF-state. The disable time (t_{dis} with no external load) indicates the delay between when OE goes LOW and when outputs actually become disabled. The enable time (ten) indicates the amount of time the user must allow for one one-shot circuitry to become operational after OE is taken HIGH. To ensure the high-impedance OFF-state during power-up or power-down, pin OE should be tied to GND through a pull-down resistor, the minimum value of the resistor is determined by the current-sourcing capability of the driver. ### 13.6 Pull-up or pull-down resistors on I/O lines As mentioned previously the NTB0101 is designed with low static drive strength to drive capacitive loads of up to 70 pF. To avoid output contention issues, any pull-up or pull-down resistors used must be above 50 k Ω . For this reason the NTB0101 is not recommended for use in open drain driver applications such as 1-Wire or I2C-bus. For these applications, the NTS0101 level translator is recommended. 17 of 26 Dual supply translating transceiver; auto direction sensing; 3-state # 14. Package outline ### **SOT363** Plastic surface-mounted package; 6 leads H_{E} = v M A е detail X scale **DIMENSIONS** (mm are the original dimensions) Α1 e₁ UNIT D Е Q bp ${\rm H}_{\rm E}$ $L_{\mathbf{p}}$ у max 0.30 0.25 2.2 1.35 0.45 0.25 2.2 1.3 0.65 0.2 0.1 0.8 0.20 0.10 1.15 REFERENCES **EUROPEAN** OUTLINE ISSUE DATE VERSION **PROJECTION** IEC **JEDEC** JEITA 04-11-08 SC-88 SOT363 06-03-16 Fig 11. Package outline SOT363 (SC-88) ITB0101 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. Product data sheet Dual supply translating transceiver; auto direction sensing; 3-state Fig 12. Package outline SOT457 (TSOP6) NTB0101 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. Product data sheet Rev. 4 — 6 August 2012 ### Dual supply translating transceiver; auto direction sensing; 3-state Fig 13. Package outline SOT886 (XSON6) NTB0101 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. Product data sheet Dual supply translating transceiver; auto direction sensing; 3-state Fig 14. Package outline SOT891 (XSON6) NTB0101 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. Product data sheet Dual supply translating transceiver; auto direction sensing; 3-state Fig 15. Package outline SOT1202 (XSON6) NTB0101 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. Dual supply translating transceiver; auto direction sensing; 3-state ### 15. Abbreviations ### Table 16. Abbreviations | Acronym | Description | |---------|----------------------------------| | CDM | Charged Device Model | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | HBM | Human Body Model | | MM | Machine Model | | NMOS | N-type Metal Oxide Semiconductor | | PMOS | P-type Metal Oxide Semiconductor | | PRR | Pulse Repetition Rate | # 16. Revision history ### Table 17. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |----------------|---------------------------------|---------------------------------------|-----------------|-------------| | NTB0101 v.4 | 20120806 | Product data sheet | - | NTB0101 v.3 | | Modifications: | Package out | line drawing of SOT886 (<u>Figur</u> | e 13) modified. | | | NTB0101 v.3 | 20111110 | Product data sheet | - | NTB0101 v.2 | | Modifications: | Legal pages | updated. | | | | NTB0101 v.2 | 20110505 | Product data sheet | - | NTB0101 v.1 | | NTB0101 v.1 | 20101230 | Product data sheet | - | - | #### Dual supply translating transceiver; auto direction sensing; 3-state ### 17. Legal information #### 17.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---------------------------------------------------------------------------------------| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 17.2 Definitions **Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 17.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. NTB0101 All information provided in this document is subject to legal disclaimers. #### Dual supply translating transceiver; auto direction sensing; 3-state **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### 17.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 18. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com NTB010 All information provided in this document is subject to legal disclaimers. **NTB0101 NXP Semiconductors** ### Dual supply translating transceiver; auto direction sensing; 3-state # 19. Contents | 1 | General description | |------|------------------------------------------------| | 2 | Features and benefits | | 3 | Ordering information | | 4 | Marking | | 5 | Functional diagram | | 6 | Pinning information 3 | | 6.1 | Pinning | | 6.2 | Pin description | | 7 | Functional description 3 | | 8 | Limiting values4 | | 9 | Recommended operating conditions 4 | | 10 | Static characteristics 5 | | 11 | Dynamic characteristics | | 12 | Waveforms | | 13 | Application information 15 | | 13.1 | Applications | | 13.2 | Architecture | | 13.3 | Input driver requirements | | 13.4 | Power-up | | 13.5 | Enable and disable | | 13.6 | Pull-up or pull-down resistors on I/O lines 17 | | 14 | Package outline | | 15 | Abbreviations | | 16 | Revision history | | 17 | Legal information 24 | | 17.1 | Data sheet status 24 | | 17.2 | Definitions | | 17.3 | Disclaimers | | 17.4 | Trademarks25 | | 18 | Contact information 25 | | 19 | Contents | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2012. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 6 August 2012 Document identifier: NTB0101