# 330MHz, Gain of +1/Gain of +2 Closed-Loop Buffers 

## General Description

The MAX4178/MAX4278 are $\pm 5 \mathrm{~V}$, wide-bandwidth, fastsettling, closed-loop buffers featuring high slew rate, high precision, high output current, low noise, and low differential gain and phase errors. The MAX4178, with a -3dB bandwidth of 330 MHz , is preset for unity voltage gain (OdB). The MAX4278 is preset for a voltage gain of +2 ( 6 dB ) and has a $310 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth.
The MAX4178/MAX4278 feature the high slew rate and low power that are characteristic of current-mode feedback amplifiers. However, unlike conventional currentmode feedback amplifiers, these devices have a unique input stage that combines the benefits of cur-rent-feedback topology with those of the traditional volt-age-feedback topology. This combination results in low input offset voltage and bias current, low noise, and high gain precision and power-supply rejection.
The MAX4178/MAX4278 are ideally suited for driving $50 \Omega$ or $75 \Omega$ loads. They are the perfect choice for highspeed cable-driving applications, such as video routing. The MAX4178/MAX4278 are available in DIP, SO, space-saving $\mu \mathrm{MAX}$, and SOT23 packages.

## Applications

Broadcast and High-Definition TV Systems
Video Switching and Routing
High-Speed Cable Drivers
Communications
Medical Imaging
Precision High-Speed DAC/ADC Buffers

Typical Operating Circuit


- High Speed

330MHz -3dB Bandwidth (MAX4178)
310MHz -3dB Bandwidth (MAX4278)
250MHz Full-Power Bandwidth (VoUT = 2Vp-p)
150MHz 0.1dB Flatness Bandwidth
1300V/ $\mu \mathrm{s}$ Slew Rate (MAX4178)
1600V/ $\mu \mathrm{s}$ Slew Rate (MAX4278)

- Low Differential Phase/Gain Error: 0.01 $\%$ /0.04\%
- 8mA Supply Current
- $1 \mu \mathrm{~A}$ Input Bias Current
- 0.5mV Input Offset Voltage
- $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input-Referred Voltage Noise
- 2pA $/ \sqrt{\mathrm{Hz}}$ Input-Referred Current Noise
- $1.0 \%$ Max Gain Error with $100 \Omega$ Load
- Short-Circuit Protected
- 8000V ESD Protection
- Available in Space-Saving SOT23 Package

Ordering Information

| PART | TEMP. RANGE | PIN- <br> PACKAGE | SOT <br> TOP MARK |
| :--- | :--- | :--- | :---: |
| MAX4178EPA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 Plastic DIP | - |
| MAX4178ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4178EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ | - |
| MAX4178EUK-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $5 \mathrm{SOT} 23-5$ | ABYX |
| MAX4178MJA | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8 CERDIP | - |

Ordering Information continued at end of data sheet.
Pin Configurations


# 330 MHz , Gain of +1/Gain of +2 Closed-Loop Buffers 

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ ) ........................................................ 12 V
Input Voltage....................................(VCC +0.3 V ) to ( $\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}$ )
Output Short-Circuit Duration (to GND)
Continuous
Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )
SOT23 (derate $7.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ). $\qquad$ .571 mW
Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) ............. 727 mW
SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )....................... 471 mW
HMAX (derate $4.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) ................... 330 mW
CERDIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )................ 640 mW

| Operating Temperature Ranges (Note 1) |  |
| :---: | :---: |
| MAX4178E_A/MAX4278E_A.............. | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| MAX4178EUK/MAX4278EUK | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| MAX4178MJA/MAX4278MJA | . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | - $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ |
| Lead Temperature (soldering | 300 |

Note 1: Specifications for the MAX4_78EUK (SOT23 packages) are $100 \%$ tested at $T_{A}=+25^{\circ} \mathrm{C}$, and guaranteed by design over temperature.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0, R_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$


Note 2: Voltage Gain $=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{OS}}\right) / \mathrm{V}_{\mathrm{IN}}$ measured at $\mathrm{V}_{\mathbb{N}}= \pm 2.5 \mathrm{~V}$.
Note 3: Voltage Gain $=\left(V_{\text {OUT }}-\mathrm{V}_{\text {OS }}\right) / \mathrm{V}$ IN measured at $\mathrm{V}_{\mathrm{IN}}= \pm 1.25 \mathrm{~V}$.

## 330 MHz , Gain of +1/Gain of +2 Closed-Loop Buffers

## AC ELECTRICAL CHARACTERISTICS

( $V_{C C}=+5 \mathrm{~V}, V_{E E}=-5 \mathrm{~V}, R_{L}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Small-Signal, -3dB Bandwidth | BW | Vout $\leq 0.1 \mathrm{Vp}$-p | MAX4178 | 330 |  | MHz |
|  |  |  | MAX4278 | 310 |  |  |
| Small-Signal, $\pm 0.1 \mathrm{~dB}$ Bandwidth | $B W_{(0.1 d B)}$ | Vout $\leq 0.1 \mathrm{Vp}-\mathrm{p}$ | MAX4178 | 150 |  | MHz |
|  |  |  | MAX4278 | 150 |  |  |
| Full-Power Bandwidth | FPBW | VOUT $=2 \mathrm{Vp}-\mathrm{p}$ | MAX4178 | 250 |  | MHz |
|  |  |  | MAX4278 | 250 |  |  |
| Slew Rate | SR | Vout $= \pm 2 \mathrm{Vp}-\mathrm{p}$ | MAX4178 | 1300 |  | V/us |
|  |  |  | MAX4278 | 1600 |  |  |
| Settling Time | ts | Vout $=2 \mathrm{~V}$ step | to 0.1\% | 10 |  | ns |
|  |  |  | to 0.01\% | 12 |  |  |
| Rise/Fall Times | $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ | VOUT $=2 \mathrm{~V}$ step |  | 2 |  | ns |
| Input Capacitance | CIN |  |  | 1 |  | pF |
| Input Voltage Noise Density | $\mathrm{e}_{\mathrm{n}}$ | $\mathrm{f}=10 \mathrm{MHz}$ |  | 5 |  | $\mathrm{nV} / \mathrm{VHz}$ |
| Input Current Noise Density | in | $f=10 \mathrm{MHz}$ |  | 2 |  | $\mathrm{pA} / \mathrm{VHz}$ |
| Differential Gain (Note 4) | DG | $\mathrm{f}=3.58 \mathrm{MHz}$ | MAX4178 | 0.04 |  | \% |
|  |  |  | MAX4278 | 0.04 |  |  |
| Differential Phase (Note 4) | DP | $\mathrm{f}=3.58 \mathrm{MHz}$ | MAX4178 | 0.01 |  | degrees |
|  |  |  | MAX4278 | 0.01 |  |  |
| Total Harmonic Distortion | THD | $\begin{aligned} & \mathrm{fC}=10 \mathrm{MHz}, \\ & \text { VOUT }=2 \mathrm{Vp}-\mathrm{p} \end{aligned}$ | MAX4178 | -58 |  | dB |
|  |  |  | MAX4278 | -59 |  |  |
| Spurious-Free Dynamic Range | SFDR | $\mathrm{f}=5 \mathrm{MHz}$, V $\mathrm{OUT}=2 \mathrm{Vp}-\mathrm{p}$ | MAX4178 | -81 |  | dBC |
|  |  |  | MAX4278 | -74 |  |  |
| Third-Order Intercept | IP3 | $\begin{aligned} & \mathrm{fC}=10 \mathrm{MHz}, \\ & \text { Vout }=2 \mathrm{Vp}-\mathrm{p} \end{aligned}$ | MAX4178 | 36 |  | dBm |
|  |  |  | MAX4278 | 31 |  |  |

Note 4: Tested with a 3.58 MHz video test signal with an amplitude of 40 IRE superimposed on a linear ramp ( 0 to 100IRE). An IRE is a unit of video signal amplitude developed by the Institute of Radio Engineers; 140IRE = 1V in color systems.

## 330 MHz , Gain of +1/Gain of +2 Closed-Loop Buffers

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$


## 330 MHz , Gain of +1/Gain of +2 Closed-Loop Buffers

## Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, R_{L}=100 \Omega, C_{L}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$


## 330 MHz , Gain of +1/Gain of +2 Closed-Loop Buffers

## Typical Operating Characteristics (continued)

$\overline{\left(V_{C C}=+5 \mathrm{~V}, V_{E E}=-5 \mathrm{~V}, R_{L}=100 \Omega, C_{L}=0 p F, T_{A}\right.}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$



INPUT OFFSET VOLTAGE (Vos)
vs. TEMPERATURE



POWER-SUPPLY REJECTION
vs. FREQUENCY


QUIESCENT SUPPLY CURRENT (ISY)
vs. TEMPERATURE


MAX4178
HARMONIC DISTORTION
vs. FREQUENCY


OUTPUT IMPEDANCE vs. FREQUENCY


INPUT BIAS CURRENT (IB)
vs. TEMPERATURE


6

# 330MHz, Gain of +1/Gain of +2 Closed-Loop Buffers 

## Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, R_{L}=100 \Omega, C_{L}=0 p F, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)


Pin Description

| PIN |  | NAME | FUNCTION |
| :---: | :---: | :---: | :--- |
| SO/ $\boldsymbol{\mu M A X / D I P ~}$ | SOT23 |  | $1,5,8$ - N.C. No Connection |
| 2 | 4 | GND | Ground |
| 3 | 3 | IN | Input |
| 4 | 2 | VEE | Negative Power Supply. <br> Connect to -5V. |
| 6 | 1 | OUT | Output |
| 7 | 5 | VCC | Positive Power Supply. <br> Connect to +5V. |



Detailed Description
The MAX4178/MAX4278 are $\pm 5 \mathrm{~V}$, wide-bandwidth, fast-settling, closed-loop buffers featuring high slew rate, high precision, high output current, low noise, and low differential gain and phase errors. The MAX4178, with a -3 dB bandwidth of 330 MHz , is preset for unity voltage gain (0dB). The MAX4278 is preset for a voltage gain of $+2(6 \mathrm{~dB})$ and has a $310 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth.
These devices have a unique input stage that combines the benefits of a current-mode-feedback topology (high slew rate and low power) with those of a traditional voltage-feedback topology. This combination of architectures results in low input offset voltage and bias current, and high gain precision and power-supply rejection.
Under short-circuit conditions, the output current is typically limited to 150 mA . This is low enough that a short to ground of any duration will not cause permanent damage to the chip. However, a short to either supply will create double the allowable power dissipation and may cause permanent damage if allowed to exist for longer than approximately 10 seconds. The high out-put-current capability is an advantage in systems that transmit a signal to several loads. See the HighPerformance Video Distribution Amplifier section.

# 330MHz, Gain of +1/Gain of +2 Closed-Loop Buffers 

## Applications Information <br> Grounding, Bypassing, and PC Board Layout

In order to obtain the MAX4178/MAX4278s' full $330 \mathrm{MHz} /$ 310 MHz bandwidths, microstrip and stripline techniques are recommended in most cases. To ensure that the PC board does not degrade the amplifier's performance, it's a good idea to design the board for a frequency greater than 1 GHz . Even with very short traces, it's good practice to use these techniques at critical points, such as inputs and outputs. Whether you use a constant-impedance board or not, observe the following guidelines when designing the board:

- Do not use wire-wrap boards. They are too inductive.
- Do not use IC sockets. They increase parasitic capacitance and inductance.
- In general, surface-mount components have shorter leads and lower parasitic reactance, giving better high-frequency performance than through-hole components.
- The PC board should have at least two layers, with one side a signal layer and the other a ground plane.
- Keep signal lines as short and straight as possible. Do not make $90^{\circ}$ turns; round all corners.
- The ground plane should be as free from voids as possible.
On Maxim's evaluation kit, the ground plane has been removed from areas where keeping the trace capacitance to a minimum is more important than maintaining ground continuity.

Driving Capacitive Loads The MAX4178/MAX4278 provide maximum AC performance with no output load capacitance. This is the case when the MAX4178/MAX4278 are driving a correctly terminated transmission line (e.g., a back-terminated $75 \Omega$ cable). However, the MAX4178/MAX4278 are capable of driving capacitive loads up to 100 pF without oscillations, but with reduced AC performance.
Driving large capacitive loads increases the chance of oscillations in most amplifier circuits. This is especially true for circuits with high loop gains, such as voltage followers. The amplifier's output resistance and the load
capacitor combine to add a pole and excess phase to the loop response. If the frequency of this pole is low enough and if phase margin is degraded sufficiently, oscillations may occur.
A second problem when driving capacitive loads results from the amplifier's output impedance, which looks inductive at high frequency. This inductance forms an L-C resonant circuit with the capacitive load, which causes peaking in the frequency response and degrades the amplifier's gain margin.
The MAX4178/MAX4278 drive capacitive loads up to 100 pF without oscillation. However, some peaking (in the frequency domain) or ringing (in the time domain) may occur. This is shown in Figures 2 a and 2 b and the in the Small- and Large-Signal Pulse Response graphs in the Typical Operating Characteristics.
To drive larger-capacitance loads or to reduce ringing, add an isolation resistor between the amplifier's output and the load, as shown in Figure 1.
The value of RISO depends on the circuit's gain and the capacitive load. Figures 3a and 3b show the Bode plots that result when a $20 \Omega$ isolation resistor is used with a voltage follower driving a range of capacitive loads. At the higher capacitor values, the bandwidth is dominated by the RC network, formed by RISO and CL; the bandwidth of the amplifier itself is much higher. Note that adding an isolation resistor degrades gain accuracy. The load and isolation resistor form a divider that decreases the voltage delivered to the load.


Figure 1. Capacitive-Load Driving Circuit

## 330 MHz , Gain of +1/Gain of +2 Closed-Loop Buffers



Figure 2a. MAX4178 Small-Signal Gain vs. Frequency with Capacitive Load


Figure 3a. MAX4178 Small-Signal Gain vs. Frequency with Capacitive Load and Isolation Resistor ( $R_{I S O}$ )


Figure 2b. MAX4278 Small-Signal Gain vs. Frequency with Capacitive Load


Figure 3b. MAX4278 Small-Signal Gain vs. Frequency with Capacitive Load and Isolation Resistor ( $R_{I S O}$ )

# 330MHz, Gain of +1/Gain of +2 Closed-Loop Buffers 

Flash ADC Preamp
The MAX4178/MAX4278s' high current-drive capability makes them well suited for buffering the low-impedance input of a high-speed flash ADC. With their low output impedance, these buffers can drive the inputs of the ADC with no loss of accuracy. Figure 4 shows a preamp for digitizing video, using the 250Msps MAX100 and the 500Msps MAX101 flash ADCs. Both of these ADCs have a $50 \Omega$ input resistance and a 1.2 GHz input bandwidth.


Figure 4. Preamp for Video Digitizer


Figure 5. High-Performance Video Distribution Amplifier

## High-Performance <br> Video Distribution Amplifier

The MAX4278 (AV = +2) makes an excellent driver for multiple back-terminated $75 \Omega$ video coaxial cables (Figure 5). The high current-output capability allows the attachment of up to six $\pm 2 \mathrm{Vp}-\mathrm{p}, 150 \Omega$ loads to the MAX4278 at $+25^{\circ} \mathrm{C}$. With the output limited to $\pm 1 \mathrm{Vp}-\mathrm{p}$, the number of loads may double. For multiple gain-of-2 video line drivers in a single package, refer to the MAX496/MAX497data sheet.

## Ordering Information (continued)

| PART | TEMP. RANGE | PIN- <br> PACKAGE | SOT <br> TOP MARK |
| :--- | :--- | :--- | :---: |
| MAX4278EPA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 Plastic DIP | - |
| MAX4278ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4278EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ | - |
| MAX4278EUK-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5 SOT23-5 | ABYY |
| MAX4278MJA | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8 CERDIP | - |

Chip Information
TRANSISTOR COUNT: 175
SUBSTRATE CONNECTED TO Vee

# 330MHz, Gain of +1/Gain of +2 Closed-Loop Buffers 

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)



FRONT VIEW


SIDE VIEW

NOTES:
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006")
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").

CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $\mathrm{N}=$ NUMBER OF PINS.


## 330 MHz , Gain of +1/Gain of +2 Closed-Loop Buffers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)


Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products
Printed USA
MスXINI is a registered trademark of Maxim Integrated Products.

