

General Description

The MAX4289 micropower, operational amplifier is optimized for ultra-low supply voltage operation. The amplifier consumes only 9µA of quiescent supply current and is fully specified for operation from a single 1.0V to 5.5V power supply. This ultra-low voltage operation together with the low quiescent current consumption make the MAX4289 ideal for use in battery-powered systems operated from as little as a single alkaline cell. The MAX4289 also features a wide input common-mode range that includes the ground, and an output voltage swing that is virtually Rail-to-Rail®, allowing almost all of the power supply to be used for signal voltage.

The low input offset voltage and low input bias current specifications along with the high open-loop gain make the MAX4289 well-suited to applications requiring a high degree of precision.

The MAX4289 is available in a tiny 6-pin SOT23 package. All specifications are guaranteed over the extended temperature range of -40°C to +85°C.

Applications

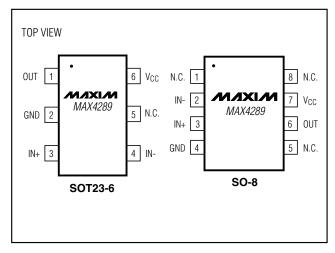
Single-Cell Systems Portable Electronic Equipment Battery-Powered Instrumentation Hearing Aids Using Zinc Air Batterv

Strain Gauges Cellular Phones **Notebook Computers** Sensor Amplifiers Portable Communication **Devices**

Features

- ♦ Ultra-Low Voltage Operation: Guaranteed Specifications from 1.0V to 5.5V
- ♦ Input Common-Mode Range: 0 to (V_{CC} 0.2V)
- ♦ Ultra-Low Power Consumption: 9µA Supply Current (typ)
- ♦ Optimized for Operation from Single-Cell **Battery-Powered Systems**
- ♦ Compatible with 3.0V and 5.0V Single-Supply **Systems**
- ♦ Low Offset Voltage: 0.2mV
- ♦ Low Input Bias Current: 5nA
- ♦ High Open-Loop Voltage Gain: 90dB
- ♦ Rail-to-Rail Output Stage Drives 5kΩ Load
- ♦ No Output Phase Reversal for Overdriven Inputs
- ♦ Available in a Tiny 6-Pin SOT23 (3mm × 3mm)

Ordering Information


PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4289EUT-T	-40°C to +85°C	6 SOT23-6	AARX
MAX4289ESA	-40°C to +85°C	8 SO	_

Typical Operating Characteristic

POWER-SUPPLY REJECTION RATIO vs. SUPPLY VOLTAGE 90 $\Delta = +85^{\circ}C$ 80 PSRR (dB) -40°C 70 +25°C 60 50 8.0 0.9 1.0 1.1 1.2 SUPPLY VOLTAGE (V)

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Pin Configurations

MIXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (V _{CC} to GND)	6V
Input Voltage (IN+ or IN-)	
Input Current (IN+ or IN-)	20mA
Output Short-Circuit Duration to VCC or GN	DContinuous
Continuous Power Dissipation (T _A = +70°C	
6-Pin SOT23 (derate 8.7mW/°C above +7	70°C)696mW
8-Pin SO (derate 5.88mW/°C above +70°	°C)471mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

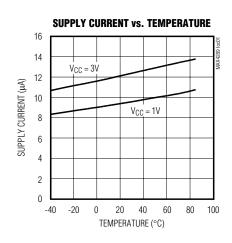
ELECTRICAL CHARACTERISTICS

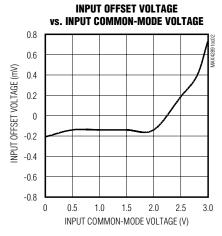
 $(V_{CC} = 3V, V_{CM} = 0, V_{OUT} = V_{CC}/2, R_L \text{ tied to } V_{CC}/2, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

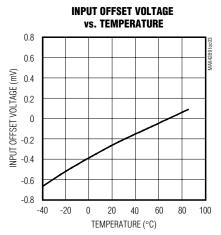
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS		
Supply Voltage Range	\/	Inferred from the	Т	A = +25°C	1.0		5.5	V	
	Vcc	PSRR tests	Т	A = -40°C to $+85$ °C	1.2		5.5		
		V _{CC} = 1.0V, T _A = +25°C			9	14			
Quiescent Supply Current	Icc	V _{CC} = 3.0V			12	25	μΑ		
		$V_{CC} = 5.5V$				18	40		
Input Offset Voltage	Vos	$T_A = +25^{\circ}C$			±0.2	±2.0	mV		
input onset voltage	VOS	$T_A = T_{MIN}$ to T_{MAX}				±6.0			
Input Bias Current	lΒ					±5	±15	nA	
Input Offset Current	los					±0.5	±2.0	nA	
Differential Input Resistance	RIN				50		MΩ		
Input Common-Mode Voltage Range	V _{CM}	Inferred from	Vcc	= 1.2V	0		V _C C - 0.2	2	
		CMRR test	Vcc	= 3.0V	0		V _C C - 0.8		
		$V_{CC} = 1.2V, 0 \le V_{CC} - 0.2V$			57				
Common-Mode Rejection Ratio	CMRR	$V_{CC} = 1.2V, 0 \le V_{CM} \le V_{CC} - 0.8V$		57	85		dB		
		$V_{CC} = 3.0V, 0 \le V_{CM} \le V_{CC} - 0.8V$		57	110				
Davis Oversky Daisatics Datis	PSRR	1.0V ≤ V _{CC} ≤ 5.5V, T _A = +25°C		54	75		dB		
Power-Supply Rejection Ratio		$1.2V \le V_{CC} \le 5.5V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$		58	75		ub ub		
Large-Signal Voltage Gain	Avol	$R_L = 100k\Omega (50mV \le V_{OUT} \le V_{CC} - 50mV)$			110		dB		
Large-Signal Voltage Gain	AVOL	$R_L = 5k\Omega (100mV \le V_{OUT} \le V_{CC} - 100mV)$		80	90		GD		
Output Voltage Swing High	Voh	Specified as		$R_L = 100k\Omega$		0.2	10	mV	
Output Voltage Owing Flight		IV _{CC} - V _{OH} I		$R_L = 5k\Omega$		7	40	1110	
Output Voltage Swing Low	VOL	Specified as V _{OL}		$R_L = 100k\Omega$		0.4	10	mV	
	VOL			$R_L = 5k\Omega$		7	40	111.4	

2 ______*NIXI/*M

ELECTRICAL CHARACTERISTICS (continued)

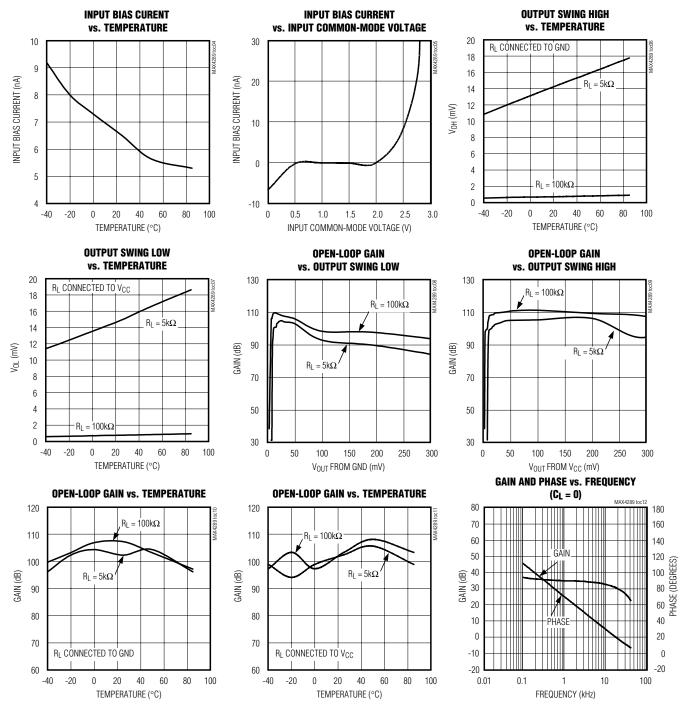

 $(V_{CC} = 3V, V_{CM} = 0, V_{OUT} = V_{CC}/2, R_L \text{ tied to } V_{CC}/2, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Short-Circuit Current	lout	Sourcing/sinking current	$V_{CC} = 1.0V$		0.6		mA
			$V_{CC} = 3.0V$		19] IIIA
Power-Up Time	tpU				300		μs
Input Capacitance	C _{IN}				3.0		рF
Gain-Bandwidth Product	GBW				17		kHz
Phase Margin	θМ				80		degrees
Gain Margin	GM				10		dB
Slew Rate	SR				6		V/ms
Capacitive-Load Stability		A _{VCL} = +1V/V, no sustained oscillations			200		рF
Settling Time to 0.1%	ts	A _{VCL} = +1V/V, no sustained oscillations 75				μs	

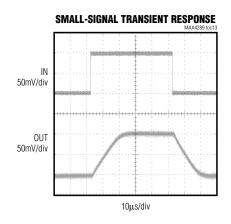

Note 1: All specifications are 100% production tested at $T_A = +25^{\circ}C$. Temperature specification limits are guaranteed by design.

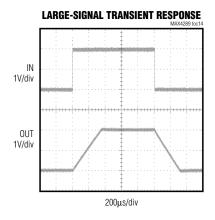
Typical Operating Characteristics

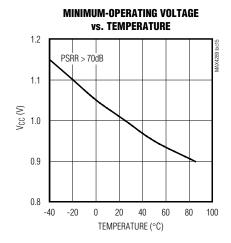
(V_{CC} = 3V, V_{CM} = 0, R_L to V_{CC}/2, T_A = +25°C, unless otherwise noted.)



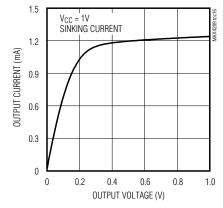
Typical Operating Characteristics (continued)

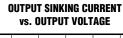

($V_{CC} = 3V$, $V_{CM} = 0$, R_L to $V_{CC}/2$, $T_A = +25$ °C, unless otherwise noted.)

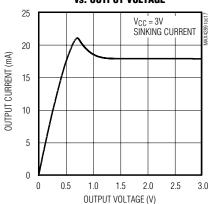


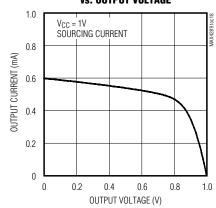

NIXIN

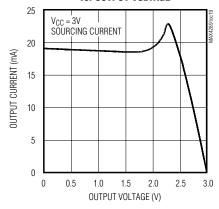
Typical Operating Characteristics (continued)


($V_{CC} = 3V$, $V_{CM} = 0$, R_L to $V_{CC}/2$, $T_A = +25$ °C, unless otherwise noted.)









OUTPUT SOURCING CURRENT vs. OUTPUT VOLTAGE

OUTPUT SOURCING CURRENT vs. OUTPUT VOLTAGE

Pin Description

PI	N	NAME	FUNCTION		
so	SOT23	NAME	FUNCTION		
1, 5, 8	5	N.C.	No Connection. Not internally connected.		
2	4	IN-	Inverting Input		
3	3	IN+	Noninverting Input		
4	2	GND	Ground		
6	1	OUT	Amplifier Output		
7	6	V _C C	Positive Supply. Bypass with a 0.1µF capacitor to GND.		

Detailed Description

The MAX4289 consumes ultra-low power (9µA supply current typically) and has a rail-to-rail output stage that is specifically designed for low-voltage operation. The input common-mode voltage range extends from V_{CC} -0.2V to ground, although full rail-to-rail input range is possible with degraded performance. The input offset voltage is typically 200µV. Low-operating supply voltage, low supply current, and rail-to-rail outputs make this operational amplifier an excellent choice for precision or general-purpose, low-voltage, battery-powered systems.

Rail-to-Rail Output Stage

The MAX4289 output stage can drive a $5k\Omega$ load and still swing to within 7mV of the rails. Figure 1 shows the output voltage swing of the MAX4289 configured as a unity-gain buffer, powered from a single 2V supply voltage. The output for this setup typically swings from +0.4mV to (VCC - 0.2mV) with a $100k\Omega$ load.

Applications Information

Power-Supply Considerations

The MAX4289 operates from a single 1.0V to 5.5V supply and consumes only $9\mu A$ of supply current. A high power-supply rejection ratio of 75dB allows the amplifier to be powered directly off a decaying battery voltage, simplifying design and extending battery life. The MAX4289 is ideally suited for single-cell battery-powered systems. Figures 2 and 3 show the supply current and PSRR as a function of supply voltage and temperature.

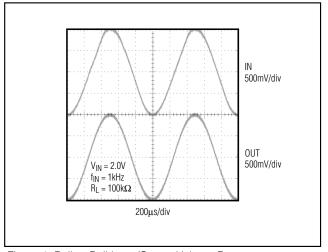


Figure 1. Rail-to-Rail Input/Output Voltage Range

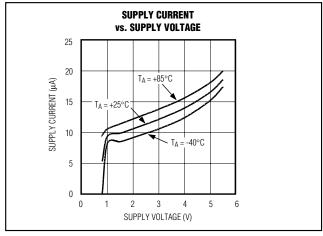


Figure 2. ICC vs. VCC Over the Temperature Range

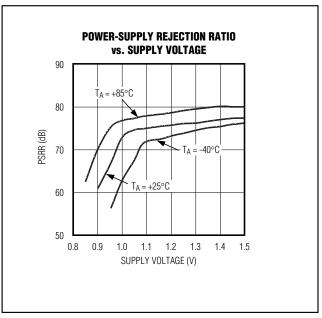


Figure 3. PSRR vs. VCC Over the Temperature Range

Power-Up Settling Time

The MAX4289 typically requires 300 μ s to power-up after V_{CC} is stable. During this startup time, the output is indeterminate. The application circuit should allow for this initial delay.

Driving Capacitive Loads

The MAX4289 is unity-gain stable for loads up to 200pF. Applications that require greater capacitive-drive capability should use an isolation resistor between the output and the capacitive load (Figure 4). Note that this solution results in a loss of gain accuracy because RISO forms a voltage-divider with the load resistor.

Using the MAX4289 as a Comparator

Although optimized for use as an operational amplifier, the MAX4289 can also be used as a rail-to-rail I/O comparator (Figure 5). External hysteresis can be used to minimize the risk of output oscillation. The positive feedback circuit, shown in Figure 5, causes the input threshold to change when the output voltage changes state.

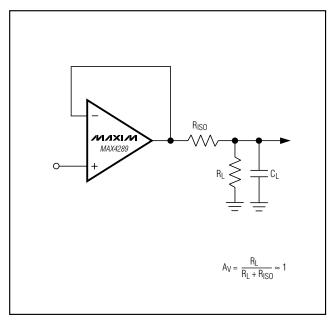


Figure 4. Using a Resistor to Isolate a Capacitive Load from the Op Amp

Power Supplies and Layout

The MAX4289 operates from a single 1V to 5.5V power supply. Bypass the power with a $0.1\mu F$ capacitor to ground.

Good layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

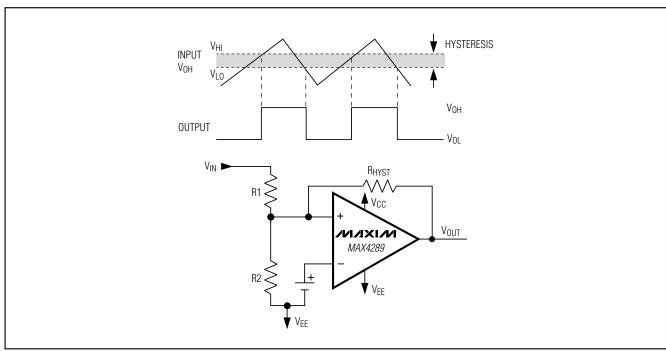
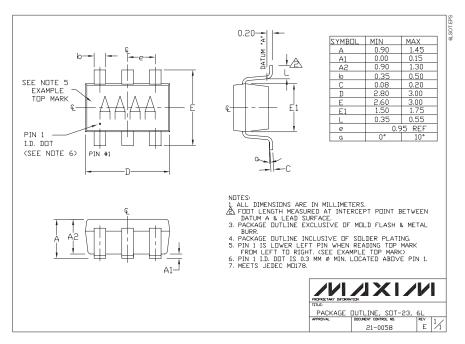
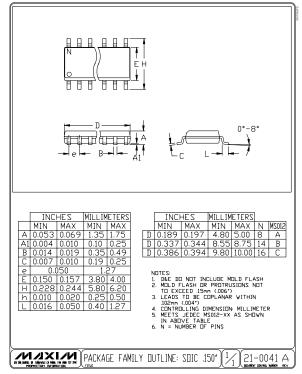




Figure 5. Hysteresis Comparator Circuit

____Chip Information
TRANSISTOR COUNT: 557

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

-7600 _____

© 2002 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.