

#### **Features**

In

**General Description** 

The MAX7349 evaluation kit (EV kit) is an assembled and tested circuit board that demonstrates the MAX7349 2-wire-interfaced, low-EMI key switch and sounder controller. Windows<sup>®</sup> 98SE/2000/XP software provides a handy user interface to exercise the features of the MAX7349.

Windows is a registered trademark of Microsoft Corp.

- Proven PC Board Layout
- Complete Evaluation System
- ♦ 7 x 8 Key Matrix Included
- Sounder Included
- Fully Assembled and Tested

### **Ordering Information**

| PART         | TEMP RANGE   | INTERFACE TYPE   |
|--------------|--------------|------------------|
| MAX7349EVKIT | 0°C to +70°C | Windows software |

### **Component List**

| DESIGNATION              | QTY | DESCRIPTION                                                                                                                   |  |  |  |  |
|--------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| C1, C12–C16,<br>C23, C24 | 8   | 0.1µF, 10V min X7R ceramic<br>capacitors (0603)<br>TDK C1608X7R1E104K                                                         |  |  |  |  |
| C3                       | 1   | 22μF, 16V ceramic capacitor (1210)<br>TDK C3225X5R1C226K<br>TDK C3225X5R1C226M                                                |  |  |  |  |
| C5                       | 1   | 0.033µF, 6.3V min X7R ceramic<br>capacitor (0603)<br>TDK C1608X7R1E333K<br>Murata GRM188R71E333K<br>Taiyo Yuden EMK107BJ333KA |  |  |  |  |
| C6, C7                   | 2   | 22pF C0G ceramic capacitors (0603)<br>TDK C1608C0G1H220J<br>Murata GRM1885C1H220J                                             |  |  |  |  |
| C8, C9                   | 2   | 10pF C0G ceramic capacitors (0603)<br>Murata GRM1885C1H100J<br>TDK C1608C0G1H100J                                             |  |  |  |  |
| C18, C19                 | 2   | 1µF, 6.3V min X7R ceramic<br>capacitors (0603)<br>TDK C1608X5R0J105K<br>Murata GRM188R60J105K<br>Taiyo Yuden JMK107BJ105MA    |  |  |  |  |
| C31                      | 0   | 0.22µF ceramic capacitor (0603),<br>not installed<br>TDK C1608X7R1A224K                                                       |  |  |  |  |
| C32                      | 0   | 0.068µF ceramic capacitor (0603),<br>not installed<br>TDK C1608X7R1E683K                                                      |  |  |  |  |
| C33                      | 0   | 0.022µF ceramic capacitor (0603),<br>not installed<br>TDK C1608X7R1H223K                                                      |  |  |  |  |

| DESIGNATION            | QTY | DESCRIPTION                                                            |
|------------------------|-----|------------------------------------------------------------------------|
| C34                    | 0   | 220pF ceramic capacitor (0603),<br>not installed<br>TDK C1608X7R1H221K |
| C35                    | 0   | 0.1µF ceramic capacitor (0603),<br>not installed<br>TDK C1608X7R1C104K |
| H1, H2                 | 2   | 12-pin headers                                                         |
| JU1                    | 1   | 2 x 4 dual-row vertical header                                         |
| JU2, JU3, JU6          | 3   | 3-pin headers                                                          |
| JU4, JU5, JU9,<br>JU10 | 4   | 2-pin headers                                                          |
| JU7, JU8, JU11         | 0   | 2-pin headers, not installed                                           |
| KEY0-KEY55             | 56  | Momentary 6mm pushbutton switches<br>Omron B3F1000                     |
| LED1, LED2             | 2   | Red LEDs (T1-3/4)                                                      |
| P1                     | 1   | Pizeoelectric sounder<br>Murata PKM22EPPH-4001-B0                      |
| P2                     | 1   | USB series B right-angle PC mount receptacle                           |
| P5 (JTAG)              | 0   | Vertical header, 2 x 5 pins, keyed<br>pin 7                            |
| R1                     | 1   | 2.2k $\Omega$ ±5% resistor (1206)                                      |
| R2, R5, R6             | 3   | 1.5k $\Omega$ ±5% resistors (1206)                                     |
| R7, R8, R9             | 3   | 470Ω ±5% resistors (1206)                                              |
| R12, R13               | 2   | $27\Omega \pm 5\%$ resistors (1206)                                    |
| R14, R15               | 2   | $10k\Omega \pm 5\%$ resistors (1206)                                   |
| R21                    | 0   | 2.61k $\Omega$ ±1% resistor (1206), not installed                      |

### 

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

| DESIGNATION        | ΟΤΥ      | DESCRIPTION                                                |
|--------------------|----------|------------------------------------------------------------|
| R22                | 0        | $21.5k\Omega \pm 1\%$ resistor (1206),<br>not installed    |
| R23                | 0        | 32.4k $\Omega$ ±1% resistor (1206), not installed          |
| R24                | 0        | 21.5k $\Omega$ ±1% resistor (1206), not installed          |
| R25                | 0        | $10\Omega \pm 5\%$ resistor (1206), not installed          |
| U1                 | 1        | Maxim MAX7349AEG (24-pin QSOP)                             |
| U2                 | 1        | FTDI FT232BM<br>(32-pin TQFP, 7mm x 7mm)                   |
| U3                 | 1        | Maxim MAX8511EXK25-T<br>ADV top mark (5-pin SC70)          |
| U4                 | 1        | 93C46 type 3-wire EEPROM<br>16-bit architecture (8-pin SO) |
| U5                 | 1        | Maxim MAXQ2000-RAX (68-pin QFN)                            |
| U6                 | 0        | Maxim MAX4366EUA+ (8-pin µMAX)                             |
| MAXO is a register | rod trad | emark of Maxim Integrated Products Inc                     |

#### nark of Maxim Integrated Products, Inc.

### **Component Suppliers**

| SUPPLIER                    | PHONE        | WEBSITE               |
|-----------------------------|--------------|-----------------------|
| Murata                      | 770-436-1300 | www.murata.com        |
| Panasonic                   | 714-373-7366 | www.panasonic.com     |
| Suntsu Frequency<br>Control | 949-305-0220 | www.suntsuinc.com     |
| Taiyo Yuden                 | 800-348-2496 | www.t-yuden.com       |
| TDK                         | 847-803-6100 | www.component.tdk.com |

Note: Indicate that you are using the MAX7349 when contacting these component suppliers.

## **Quick Start**

#### **Required Equipment**

Before you begin, you need the following equipment:

- Maxim MAX7349 EV kit
- USB-type A-B cable (included with MAX7349EVKIT)
- Windows 98SE/2000/XP computer with a spare USB port
- ٠ Administrator privileges may be required when first installing the device on Windows 2000/XP

### Component List (continued)

| DESIGNATION | QTY | DESCRIPTION                                                                                                                           |
|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| VR1         | 1   | Volume control, 5k $\Omega$<br>Panasonic EVL-HFAA01A53                                                                                |
| Y1          | 1   | 16MHz crystal (HC49/US),<br>parallel resonant, 20pF load<br>Citizen HC49US16.000MABJ<br>ECS ECS-160-20-4<br>Suntsu SCS20B-16.000MHZ-I |
| Y2          | 1   | 6MHz crystal (HC49/US)<br>Citizen HC49US6.000MABJ<br>Suntsu SCS22B-6.000MHZ-I                                                         |
| Y3          | 1   | 32.768kHz watch crystal,<br>12.5pF cylindrical<br>Epson C-001R 32.7680K-A<br>Suntsu SCT3-32.768KHZ                                    |
|             | 8   | Shunts                                                                                                                                |
|             | 1   | MAX7349 EV kit PC board                                                                                                               |
| _           | 4   | Rubber bumpers, 0.100in (H) x<br>0.400in (W) square                                                                                   |
|             | 1   | USB high-speed A-to-B cable,<br>5ft (1.5m)                                                                                            |

#### Procedure

///XI/M

#### Do not turn on the power until all connections are made.

- 1) Ensure that the jumper settings are in the default positions. See Table 1.
- 2) Install the evaluation software on your computer by running the INSTALL.EXE program on the installation disk. The program files are copied and icons are created for them in the Windows Start menu.
- 3) Connect the USB cable between the MAX7349 EV kit and the computer. When you plug in the MAX7349 EV kit board for the first time, the Windows plug-and-play system detects the new hardware and automatically runs the Add New Hardware Wizard. (If the Add New Hardware Wizard does not appear after one minute, unplug the USB cable and plug it in again.) Be sure to specify the search location. This EV kit is based on the CMAXQUSB design, so the software includes a copy of the device driver in the installed software directory. Refer to Application Note 3601 Troubleshooting Windows Plug-and-Play and USB for Maxim Evaluation Kits for more details.
- 4) During device driver installation, Windows XP shows a warning message, indicating that the

| JUMPER | SHUNT<br>LOCATION          | FUNCTION                                                                                                      |
|--------|----------------------------|---------------------------------------------------------------------------------------------------------------|
|        | Pins 1 and 2*              | AD0 = GND; I <sup>2</sup> C address 0x70 / 0x72                                                               |
| JU1    | Pins 3 and 4               | AD0 = SCL; $I^2C$ address 0x7C / 0x7E                                                                         |
|        | Pins 5 and 6               | AD0 = VDD; I <sup>2</sup> C address 0x74 / 0x76                                                               |
|        | Pins 7 and 8               | AD0 = SDA; I <sup>2</sup> C address 0x78 / 0x7A                                                               |
| 11.10  | Pins 1 and 2*              | Pizeo Sounder. P1 driven directly by SOUNDER output.                                                          |
| JU2    | Pins 2 and 3               | Pizeo Sounder. P1 driven through optional active filter circuit. Requires installing U6 and other components. |
|        | Pins 1 and 2*              | ALERT Input. Connected to VDD.                                                                                |
| JU3    | Pins 2 and 3               | ALERT Input. Connected to GND.                                                                                |
|        | No shunt                   | ALERT Input. Must be connected to an external drive signal.                                                   |
|        | Pins 1 and 2*              | SDA. Connected to on-board I <sup>2</sup> C bus                                                               |
| JU4    | No shunt                   | SDA. Must be connected to an external I <sup>2</sup> C bus.                                                   |
|        | Pins 1 and 2*              | SCL. Connected to on-board I <sup>2</sup> C bus.                                                              |
| JU5    | No shunt                   | SCL. Must be connected to an external I <sup>2</sup> C bus                                                    |
|        | Pins 1 and 2*              | INT. Pulled up to on-board VDD supply.                                                                        |
| JU6    | Pins 2 and 3               | INT. Pulled up to external INTVDD supply.                                                                     |
|        | No shunt                   | Invalid Configuration. Do not use.                                                                            |
|        | Not installed*             | V <sub>DDIO</sub> = 2.5V from U3                                                                              |
| JU7    | PC board trace cut open    | $V_{DDIO}$ . Must be provided externally. 2.5V < $V_{DDIO}$ < 3.6V.                                           |
|        | Not installed*             | V <sub>DD</sub> = V <sub>DDIO</sub>                                                                           |
| JU8    | PC board<br>trace cut open | $V_{DD}$ Power to MAX7349. Must be provided externally. $V_{DD} \leq V_{DDIO}$ .                              |
| 11.10  | Pins 1 and 2*              | SDA. Connected to on-board pullup resistor.                                                                   |
| 109    | No shunt                   | SDA. Pullup resistor must be provided externally.                                                             |
| 1110   | Pins 1 and 2*              | SCL. Connected to on-board pullup resistor.                                                                   |
| 3010   | No shunt                   | SCL. Pullup resistor must be provided externally.                                                             |
|        | Not installed*             | JTAG Power. Not connected to USB power.                                                                       |
| JU11   | Pins 1 and 2               | JTAG Power. Connected to USB power.                                                                           |

#### **Table 1. Jumper Functions**

\*Default configuration.

device driver Maxim uses does not contain a digital signature. This is not an error condition. It is safe to proceed with the installation.

- 5) Verify that the EV kit's LED1 is lit, indicating that the USB is connected and providing power.
- 6) Start the EV kit software by clicking its icon in the Windows **Start** menu.
- 7) The software automatically connects to the board after a few seconds.
- Click the Initialize EV kit button to write the powerup command and configure default settings for demonstration. This button writes to three registers: Write(0x04 configuration) = 0xF8; Write(0x01 debounce) = 0x3F; and Write(0x03 interrupt) = 0x10.
- 9) On the EV kit board, press the buttons in the KEY0-KEY55 matrix. Verify that the key scan codes are reported in the software's history window after 5 to 6 keypress events are queued, depending on the debounce time and interrupt register settings. The

#### 

most recent scan code is identified in the **Key Grid**. Click the **0x04 Configuration** group's **Read** button and verify reported status **sound from keypress**.

- 10) In the **0x05 Ports** group, uncheck the **GP07** box and click **Write**. Verify LED2 lights up.
- 11) In the **0x05 Ports** group, check the **GP07** box and click **Write**. Verify LED2 no longer lights.
- 12) Move shunt JU3 and observe the sounder beep in response to the ALERT pin. Verify register 0x03 Interrupt shows ALERT as the source of interrupt. Click the 0x04 Configuration group's Read button and verify reported status sound from keypress.
- 13) In the Sounder group, select the sounder commands 125ms and C5 from the drop-down menus, check the BUF = 0 box, and click Write. Verify the sounder beeps. Click the 0x04 Configuration group's Read button and verify reported status sound from keypress.

## \_Detailed Description of Software

#### **Connecting to Hardware**

The software automatically searches for the MAX7349 EV kit hardware when launched. Once the hardware is found and connected, the I<sup>2</sup>C device address is shown in the upper-left corner.

#### **Autoread**

The software automatically reads registers every 2 to 3 seconds if **Auto Read 1-7** is checked. This option should be left unchecked when preparing to write new values.

#### Registers

Each of the MAX7349 registers is represented on the software's main window. See Figure 1. Each register has its own **Read** and **Write** buttons. Clicking **Read entire FIFO now** reads register 0x00 repeatedly, until the FIFO indicates that all keypress events have been read.

#### **Key Grid**

Whenever a keypress event is received, the key location is shown on the **Key Grid**. This grid shows eight rows and up to eight columns. Register **0x01 Debounce / Port Enable** determines how many of the column pins are taken away from the **Key Grid** and used for general-purpose outputs.

#### **Interrupt Response**

Although the PC software cannot respond to interrupts with the speed of a true low-level hardware interrupt, the software does offer flexibility for evaluation. The software polls the status of the INT output pin every 2 seconds.

The **Interrupt Handler Actions** checkboxes determine what action the software takes when INT is active.

#### **History Window**

Each register read or write event is recorded in a scrollable text window underneath the interrupt handler actions.

#### **Keyboard Navigation**

When you type on the PC keyboard, the system must know which control should receive the keys. Press the Tab key to move the keyboard's focus from one control to the next. The focused control is indicated by a dotted outline. Shift+Tab moves the focus to the previously focused control. Buttons respond to the keyboard's spacebar. Some controls respond to the keyboard's Up and Down arrow keys. Activate the program's menu bar by pressing the F10 key, then press the letter of the menu item you want. Most menu items have one letter underlined, indicating their shortcut key.

### **Detailed Description of Hardware**

The MAX7349 (U1) scans a matrix of keys (KEY0–KEY55). The evaluation kit provides a 7  $\times$  8 matrix of keys, although the MAX7349 is capable of scanning an 8  $\times$  8 matrix. To demonstrate general-purpose output capability, one of the scanning columns (COL7/PORT7) is connected to an indicator (LED2).

The FTDI FT232BM (U2) provides the USB engine. The USB 5V power is regulated down to 2.5V by U3. LED1 indicates that USB 5V power is present.

Jumpers JU4 and JU5 optionally disconnect the MAX7349 SCL/SDA, allowing the use of an external user-provided I<sup>2</sup>C bus. Jumpers JU9 and JU10 optionally disable the on-board  $1.5k\Omega$  termination resistors R5 and R6, allowing the use of external user-provided I<sup>2</sup>C pullup resistors.

To optionally improve the sounder output waveform, space is provided to mount a MAX4366 (U6) and associated passive components C31–C35 and R21–R25 to form a lowpass third-order Chebyshev filter and output stage, as shown in Figure 12 of the MAX7347/MAX7348/MAX7349 data sheet. If these filter components are installed, move JU2 shunt to position 2-3 to use the filter to drive the on-board pizeo transducer.

The low-voltage RISC microcontroller, MAXQ2000-RAX (U5), processes commands sent by a program running on the PC. Each particular EV kit has its own custom software specific to that kit. Connector P5 is used during factory tests to program the MAXQ2000 in-circuit using the JTAG interface. The connector pin configuration is compatible with the MAXQ2000 evaluation kit's



|                                                                   | Key   | Grid               |                    |                    |                 |               |             |    |
|-------------------------------------------------------------------|-------|--------------------|--------------------|--------------------|-----------------|---------------|-------------|----|
| Device Address: 0x70 💌 🗖 Auto Read 1-7 Initialize EV kit          |       | CO                 | C1 (               | 2 03               | C4              | C5            | C6          |    |
| -0x00 FIFO                                                        | RO    | КО                 | K8   K             | (16 K2             | 24 K32          | 2 K40         | K48         | K  |
| Read (no overflow) (no more) Key29 Read entire FIFO now           | B1    | К1                 | к9 к               | (17 K2             | 5 K33           | K41           | K49         | K  |
| -0x01 Debounce / Port Enable                                      | R2    | К2                 | K10 K              | (18 K2             | 6 K34           | K42           | K50         | K  |
| Read Output Port GP07 / Scan COL6 - COL0 🔹 40 msec deboun 💌 Write | R3    | КЗ                 | K11 K              | (19 K2             | 27 K35          | i K43         | K51         | K  |
| 0x02 Auto Repeat                                                  | - B4  | К4                 | K12 K              | :20 K2             | '8 K3E          | K44           | K52         | к  |
| Read Enable Rate: 4 x debounce 🔽 Delay: 8 x debounce 💌 Write      |       | <br>K5             | K12 k              | 21 22              | III K 27        | K 45          | K52         | ĸ  |
| Ox03 Interrupt                                                    |       | K0<br>K0           | KIJ N              | (21) (2<br>(20) KG |                 | N40           | K03         |    |
| Head INT-ACTIVE (not alert) KEYSCAN 15 x debounce                 |       | КБ                 | K14 K              | C22 K3             | IU K38          | 5 K46         | K54         | ĸ  |
| -0x04 Configuration                                               | B7    | K7                 | K15   K            | (23 K3             | 11 K39          | K47           | K55         | K  |
| Key sound enable Alert INT enable sound from keypress             |       | errunt             | Handl              | ər Aletik          |                 |               |             | Ľ  |
| - Ox05 Ports                                                      | =     | hen IN             | T is ac            | stive:             | лта<br>         | ТЪШ           | aat         |    |
| Read 🔽 GP07 🔽 GP06 🔽 GP05 🔽 GP04 🔽 GP03 🔽 GP02 🔽 INT 🛛 Write      | ]∥ ₪  | Read               | l 0x03             | Interru            | pt              | TMI           | acc         | Ť  |
| alert inactive                                                    |       | 티민                 | KEYS<br>L Bear     | ican e<br>Fifo     | VENT            |               |             |    |
| -Ox06 Key Sound                                                   |       | IF IF              | ALER               | IT EVE             | NT              |               |             |    |
| Read 31.25ms B5 Write                                             | ╝_    | <u> </u>           | Rea                | ± 0x05             | Ports           |               |             |    |
| - Ox07 Alert Sound                                                | 궤브    | Read               | IFIFU              | on time            | er tick         |               |             |    |
|                                                                   |       | sd(0x0)<br>sd(0x0) | 3 Inter<br>D Eifo) | rupt) =<br>= 0v54  | 0xAF1           | NT-A<br>F Kei | CTIVE<br>26 | ΞI |
|                                                                   | - Rea | ad(0x0)            | D Fifo)            | = 0x5E             | MOR             | E Key         | 27          |    |
| Sounder                                                           |       | adiOxOl<br>adiOxOl | u Fito)<br>D Fifo) | = 0x50<br>= 0x10   | . мон<br>) Кеу2 | ькеу<br>9     | 28          |    |
| Sounder Read 31.25ms  SOUNDER = logic low  BUF = 0  Write         | ne    |                    |                    |                    |                 |               |             |    |

Figure 1. The MAX7349 Evaluation Software's Main Window Provides Direct Access to All Registers and Controls the Interrupt Response

MAXQ-JTAG-001 board. The firmware loaded on this board is identical to the CMAXQUSB interface module.

#### Using an External I<sup>2</sup>C Bus Instead of USB

To disconnect from the on-board I<sup>2</sup>C bus, remove the shunts from jumpers JU4 and JU5. Leave the USB connector, P2, unconnected. Provide 2.5V to 3.6V power to the GND and V+ test points on header H2. Connect the external I<sup>2</sup>C bus to the SCL and SDA test points. If the external I<sup>2</sup>C bus already has appropriate pullup resistors, remove shunts from JU9 and JU10.

#### **Emulating the MAX7348**

The MAX7348 behaves just like the MAX7349, except it has fewer columns (COL0–COL4) and no ALERT input. Although a MAX7348 could be fitted to the PC board (aligning pin 1 with ROW0), the MAX7348 can be emu-



lated by using a subset of the MAX7349 pins and register bits. See Tables 2 and 3.

#### **Emulating the MAX7347**

The MAX7347 behaves just like the MAX7349, except it has fewer columns (COL0–COL2), no ALERT input, and no SOUNDER output. The MAX7347 cannot be fitted to the PC board due to differences in pin count and pin configuration, but the MAX7347 can be emulated by using a subset of the MAX7349 pins and register bits. MAX7347 has a fixed I<sup>2</sup>C address, so connect AD0 to GND by placing JU1 in position 1-2. Because there is no ALERT, place JU3 in position 2-3. See Tables 2 and 3.

| PIN | MAX7349 EV KIT SIGNAL | PIN | MAX7348 FUNCTION | PIN | MAX7347 FUNCTION |
|-----|-----------------------|-----|------------------|-----|------------------|
| 1   | COL7/PORT7            | —   | —                | —   | _                |
| 2   | ROW0                  | 1   | ROW0             | 1   | ROW0             |
| 3   | ROW1                  | 2   | ROW1             | 2   | ROW1             |
| 4   | ROW2                  | 3   | ROW2             | 3   | ROW2             |
| 5   | ROW3                  | 4   | ROW3             | 4   | ROW3             |
| 6   | COL3/PORT3            | 5   | COL3/PORT3       | —   | _                |
| 7   | COL4/PORT4            | 6   | COL4/PORT4       | —   |                  |
| 8   | ROW4                  | 7   | ROW4             | 5   | ROW4             |
| 9   | ROW5                  | 8   | ROW5             | 6   | ROW5             |
| 10  | ROW6                  | 9   | ROW6             | 7   | ROW6             |
| 11  | ROW7                  | 10  | ROW7             | 8   | ROW7             |
| 12  | COL6/PORT6            | —   |                  | —   | _                |
| 24  | ALERT                 | —   |                  | —   | _                |
| 23  | V+                    | 20  | V+               | 16  | V+               |
| 22  | ĪNT                   | 19  | INT              | 15  | ĪNT              |
| 21  | SCL                   | 18  | SCL              | 14  | SCL              |
| 20  | SDA                   | 17  | SDA              | 13  | SDA              |
| 19  | AD0                   | 16  | AD0              | —   | _                |
| 18  | GND                   | 15  | GND              | 12  | GND              |
| 17  | SOUNDER               | 14  | SOUNDER          | —   |                  |
| 16  | COLO                  | 13  | COLO             | 11  | COLO             |
| 15  | COL1                  | 12  | COL1             | 10  | COL1             |
| 14  | COL2/PORT2            | 11  | COL2/PORT2       | 9   | COL2/PORT2       |
| 13  | COL5/PORT5            |     | _                | —   | _                |

### Table 2. Pin Configuration when Emulating Other Devices

| I <sup>2</sup> C ADDRESS | REGISTER                 | MAX7348                                         | MAX7347                                                                           |
|--------------------------|--------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|
| 0111 xx0 R/W             | 0 FIFO                   | _                                               |                                                                                   |
| 0111 xx0 R/W             | 1 Debounce / Port Enable | No COL7/PORT7<br>No COL6/PORT6<br>No COL5/PORT5 | No COL7/PORT7<br>No COL6/PORT6<br>No COL5/PORT5<br>No COL4/PORT4<br>No COL3/PORT3 |
| 0111 xx0 R/W             | 2 Auto Repeat            | _                                               | —                                                                                 |
| 0111 xx0 R/W             | 3 Interrupt              | —                                               | —                                                                                 |
| 0111 xx0 R/W             | 4 Configuration          | No ALERT                                        | No ALERT                                                                          |
| 0111 xx0 R/W             | 5 Ports                  | No GPO7<br>No GPO6<br>No GOP5                   | No GPO7<br>No GPO6<br>No GPO5<br>No GPO4<br>No GPO3                               |
| 0111 xx0 R/W             | 6 Key Sound              |                                                 | No SOUNDER                                                                        |
| 0111 xx0 R/W             | 7 Alert Sound            | _                                               | No SOUNDER                                                                        |
| 0111 xx1 R/W             | Sounder command          | _                                               | No SOUNDER                                                                        |

### Table 3. Registers Affected when Emulating Other Devices





Figure 2. MAX7349 EV Kit Schematic (Sheet 1 of 4)

M/IXI/M



Figure 2. MAX7349 EV Kit Schematic (Sheet 2 of 4)





M/IXI/M

Evaluates: MAX7349/Emulates: MAX7347/MAX7348









Figure 4. MAX7349 EV Kit PC Board Layout—Component Side





Figure 5. MAX7349 EV Kit PC Board Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

| 14 | Maxim Integrated Products | , 120 San | Gabriel Drive, | Sunnyvale, ( | CA 9 | 94086 408- | 737-7600 |
|----|---------------------------|-----------|----------------|--------------|------|------------|----------|
|    |                           | ,         | ,              |              |      |            |          |

Printed USA

© 2006 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.