

Data Sheet

Rev. 3.0 / October 2011

A²SI-Light 14 / A²SI-Light 16

Low End Device AS-Interface IC

The Analog Mixed Signal Company

Brief Description

A2SI-Lite is a CMOS integrated circuit for AS-I (Actuator Sensor Interface) networks. The AS-I low-level field bus was designed for easy, safe and costeffective interconnection of sensors, actuators and switches. It transports both power and data over the same two-wire unshielded cable. A²SI-Lite works in bus nodes as interfaces between the application and the physical layer (cable). The devices realize power supply, physical data transfer and communication protocol handling. It provides extended address mode, which allows the interconnection of up to 62 slave modules. The low-cost A2SI-Lite can be used in slave units. Certified to AS-I specification V3.0 the device is perfect for interconnecting simple switches and LEDs.

Features

- Slave operation only
- Certified to AS-I specification V3.0
- 2I/2O data port
- PWM output option
- 2 diagnostic pins (A2SI-L16 only)

Benefits

- Suitable for Low-End-Devices, for instance pushbuttons and pilot-lights
- Very small package SOP 14 and SOP 16

Available Support

ZMDI AS-Interface Programmer Kit USB

Physical Characteristics

- Operational temperature range: -25 to +85°C
- SOP14 A²SI-L14 package
- SOP16 A²SI-L16 package

A²SI-Lite Basic Application Circuit

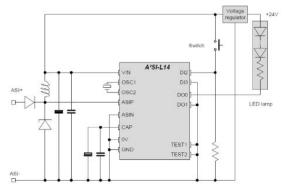


Figure 9-1: Typical application I.

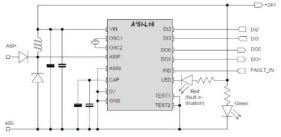
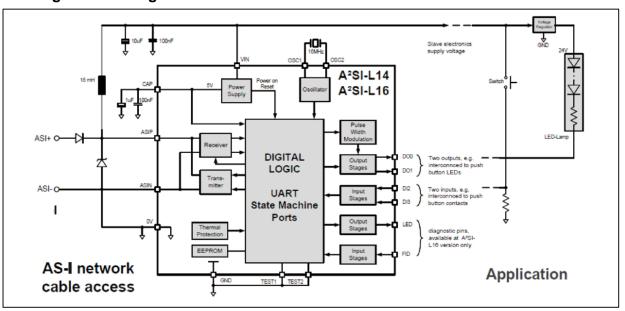



Figure 9-2: Typical application II

The Analog Mixed Signal Company

A²SI-Light Block Diagram

Ordering Information

Ordering Code	Product Description	Packaging
A2SI-L14-ST	A ² SI-Lite 14 pin SOP 150 mil package	Tube
A2SI-L14-SR	(without diagnostic pins)	Tape & Reel
A2SI-L16-ST	A ² SI-Lite 16 pin SOP 150 mil package	Tube
A2SI-L16-SR	(with diagnostic pins)	Tape & Reel

Sales and Further Information		www.zmdi.com	asi@zmdi.com	
Zentrum Mikroelektronik Dresden AG Grenzstrasse 28 01109 Dresden Germany	ZMD America, Inc. 8413 Excelsior Drive Suite 200 Madison, WI 53717 USA	Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan	ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan	
Phone +49 (0)351.8822.7274 Fax +49 (0)351.8822.87274	Phone +1 (608) 829-1987 Fax +1 (631) 549-2882	Phone +81.3.6895.7410 Fax +81.3.6895.7301	Phone +886 2 2377 8189 Fax +886 2 2377 8199	

DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are PRELIMINARY and subject to change without notice. Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

^{© 2011} Zentrum Mikroelektronik Dresden AG — Rev. 3.0

Contents

1	Pin	Description	7
2	Pin	Configuration	7
3	Ele	ctrical Specification	8
	3.1.	Absolute Maximum Ratings (Non Operating)	
	3.2.	Recommended Operating Conditions	
	3.3.	Quality Assurance	9
	3.4.	DC and AC Characteristic of all Pins and Functions	.10
	3.4.	1. Digital input and output Pins	.10
	3.4.	2. AS-i Bus Load (Pins ASIP/ASIN and Power Supply Input VIN)	.11
	3.4.	3. Pins OSC1, OSC2	.11
	3.5.	Information Data for Development	.12
4	Fur	nctional Description	.14
	4.1.	Functional Block Diagram	
	4.2.	Power Supply	.14
	4.3.	Receiver	.14
	4.4.	Transmitter	.14
	4.5.	Digital Logic	.15
	4.6.	Data I/O Ports	.16
	4.6.	1. Data Exchange Model	.16
	4.6.	2. PWM Function	.16
	4.7.	FID Input and LED Output Ports	.18
5	Тур	ical application circuit of A ² SI-L	.19
6	Pac	kage Outline and Device Marking	.20
7	Orc	lering Information	.23
A	ppend	ix A: Crystal Parameter	.24
	A.1 P	arameter data of Crystal	.24
	A.2 C	apacitance on PCB	.24
Αį	ppend	x B: External Coil	.25
	B.1	Target Coil	.25
	B.2	Coil Modeling	.25
	B.3	Electronic Inductor	.26
Aı	ppend	x C: FEPROM	.27

Data Sheet October 20, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

:-4	- £	— :.	 res
ICT	AT.	-11	rac

Figure 3-1: Data Output Schematic in Principle	10
Figure 3-2: Data Input Schematic in Principle	10
Figure 3-3: Receiver comparator threshold set-up in principle	12
Figure 3-4: Reset Behavior	13
Figure 4-1: Functional Block Diagram	14
Figure 4-2: A ² SI-L IC Data Exchange master call data model	16
Figure 4-3: PWM control	17
Figure 4-4: PWM Output Signal Timing	18
Figure 5-1: Typical application I	
Figure 5-2: Typical application II	19
Figure 6-1: SOP14	20
Figure 6-2: SOP16	21
Figure 6-3: Marking A ² SI-L14	22
Figure 6-4: Marking A ² SI-L16	22
Figure A-1: Crystal oscillator equivalent circuit	24
Figure B-1: External Coil equivalent circuits	25

October 20, 2011

List of Tables

Table 1.1: A ² SI-L14/ A ² SI-L16 Pin Description	7
Table 3.1: Absolute Maximum Ratings	8
Table 3.2: Recommended Operating Conditions	9
Table 3.3: Crystal Properties ¹	9
Table 3.4: Input Voltages and Currents: Pins DI2, DI3, FID, TEST1/2 1	
Table 3.5: Output Voltages and Currents: Pins DO0, DO1, LED	10
Table 3.6: AS-i Bus Interface Properties	11
Table 3.7: Oscillator Pins	
Table 3.8: Information Data	12
Table 4.1: A ² SI-L Master Calls and Related Slave Responses	15
Table 4.2: PWM specification of Outputs: Pins DO0, DO1	17
Table A.1: 16 MHz crystals	24
Table A.2: Crystal models	24
Table C.1: Contents of the A ² SI-L14 / A ² SI-L16 EEPROM	27

October 20, 2011

1 Pin Description

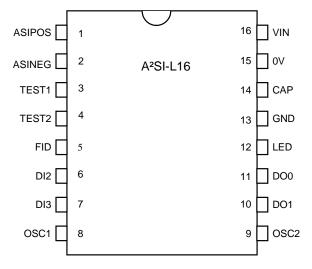
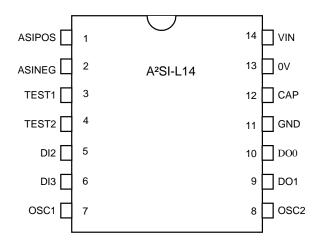

Table 1.1 shows the pin description for both the A²SI-L14 and the A²SI-L16 IC. The graphical representations (pin-out symbols) are shown in chapter 2.

Table 1.1: A2SI-L14/ A2SI-L16 Pin Description

Pin# SOIC16	Pin# SOIC14	Name	Description	
1	1	ASIPOS	positive ASI supply, high voltage supply	
2	2	ASINEG	negative ASI supply	
3	3	TEST1	test mode input/output	
4	4	TEST2	test mode input	
5		FID	digital input	
6	5	DI2	digital input	
7	6	DI3	digital input	
8	7	OSC1	crystal oscillator input	
9	8	OSC2	crystal oscillator output	
10	9	DO1	digital output	
11	10	DO0	digital output	
12		LED	digital output	
13	11	GND	digital ground	
14	12	CAP	regulator output	
15	13	0V	analog ground	
16	14	VIN	High voltage supply	

2 Pin Configuration

There is only one die used for both the 14- and 16-pin-version of the A²SI-L. In the 14-pin-version, the internal ports FID and LED are not bonded to external pins.


Data Sheet October 20, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

Low End Device AS-Interface

3 Electrical Specification

3.1. Absolute Maximum Ratings (Non Operating)

Table 3.1: Absolute Maximum Ratings

Symbol	Parameter	min	max.	Unit	Note
V0V,VGND	Voltage reference	0	0	V	
VASIP	Positive AS-i supply voltage	-0.3	40	V	
VASIN	Negative AS-i supply voltage	-0.3	20	V	1
VASIP- ASIN	Voltage difference from ASIP to ASIN (Vasip - Vasin)	-0.3	40	V	2
VASIPP	AS-i supply pulse voltage, voltage difference between pins ASIP and ASIN (from ASIP to ASIN)		50	V	3
VVIN	Power supply input voltage	-0.3	40	V	
Vinputs1	Voltage at pins DI2, DI3, DO0, DO1, LED, FID	-0.3	VVIN + 0.3	V	
Vinputs2	Voltage at pins OSC1, OSC2, CAP, TEST1, TEST2	-0.3	7	V	
lin	Input current into any pin except supply pins	-25	25	mA	
Н	Humidity non-condensing				4
VHBM1	Electrostatic discharge – human body model (HBM1)	3000		V	5
VHBM2	Electrostatic discharge – human body model (HBM2)	2000		V	6
VEDM	Electrostatic discharge – equipment discharge model (EDM)	400		V	7
T _{STG}	Storage temperature	-55	125	°C	
Ptot	Total power dissipation		500	mW	8

¹ASIN-pin shall be shorted to the 0V and GND pin on the PCB

⁸ at max. operating temperature, the allowed total power dissipation depends on the additional thermal resistance from case to ambient and on the operation ambient temperature.

Data Sheet October 20, 2011	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	8 of 27
--------------------------------	--	---------

² reverse polarity protection has to be performed externally

³ pulse with =< 50us, repetition rate =< 0.5 Hz

⁴ defined in DIN 40040 cond. F

 $^{^{5}}$ HBM1: C = 100pF charged to VHBM1 with resistor R = 1.5kOhm in series, valid for ASIP-ASIN only.

⁶HBM2: C = 100pF charged to VHBM2 with resistor R = 1.5kOhm in series, valid for all pins except ASIP-ASIN

⁷ EDM: C = 200pF charged to VEDM with no resistor in series, valid for ASIP-ASIN only

3.2. Recommended Operating Conditions

Table 3.2: Recommended Operating Conditions

Symbol	Parameter	min	max.	Unit	Note
VVIN,1	Positive supply voltage	12	31.6	V	1
VVIN,2	Positive supply voltage		31.6	V	2
VASIN	Negative AS-i supply voltage	0	0	V	3
Vov, VGND	Negative supply voltage	0	0	V	
IVIN	Supply current at VVIN = 30V		8.5	mA	4
ICL1	max. output sink current at pins DO0, DO1		15	mA	
T _{amb}	Ambient temperature range, operating range	-25	85	°C	

¹ all operations without EEPROM-write access are allowed

Table 3.3 describes the crystal parameter that shall be satisfied by the x-tal that is interconnected to the pins OSC1 and OSC2. Due to the fact that the crystal parameter do not represent the entire internal and external oscillator circuit at all practical tests must indicate whether a crystal may work in a certain application circuit (PCB) or not. Appendix A list certain types of crystals that are going to be used as reference devices.

Table 3.3: Crystal Properties¹

Symbol	Parameter	Nom.	Min.	Max.	Unit	Note
Fc	Crystal frequency	16000	Fc – 60 ppm	Fc + 60 ppm	kHz	
Cs	Series capacitor		5	13	fF	
Rs	Series resistor			65	Ohm	
Ср	Parasitic parallel capacitor			5	pF	
Cload	Crystal dedicated parallel load	15 ²			pF	

¹ Crystal properties according to the crystal manufacturer data sheet

3.3. Quality Assurance

The quality of the IC will be ensured accordingly to the ZMDI quality standards.

Data Sheet October 20, 2011	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	9 of 27
--------------------------------	---	---------

² necessary for operations with EEPROM-write access only (processing of ADRA and WID1 master calls,

refer to Table 4.1 $^{\circ}$ 3 ASIN shall be shorted with 0V and GND in order to ensure proper functionality of transmitter circuit.

⁴ fc = 16.000 MHz, no load at any pin, without reaction of the circuit, ASIN is short-circuit to 0V, VIN = 30V

² In order to keep the influence of the crystal to the network error rate low as possible it is recommended to keep the crystal dedicated load between 8 pF and 32 pF. The IC provides approximately a load capacity of about 10 pF to 15 pF (correct by design).

3.4. DC and AC Characteristic of all Pins and Functions

All parameters are valid for the recommended range of Vasip - Vasin and Tamb. The devices are tested within the recommended range of Vasip - Vasin, Tamb = +25°C (+ 85°C and - 25°C on sample base only) unless otherwise stated. Unused input pins shall be connected to a suitable potential within the application circuit because there are no internal pull-up/down resistors. It is recommended to connect these pins either to 0V or via resistor to VIN.

In order to ensure a normal operation of the IC the pins TEST1 and TEST2 must be connected to ground potential (GND).

3.4.1. Digital input and output Pins

Controlled by a configuration flag that is stored inside the EEPROM the data output signals can be pulse width modulated (PWM, for information refer to chapter 4.6.2).

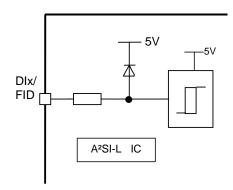

The functionality of the FID output port is described in chapter 4.7.

Table 3.4: Input Voltages and Currents: Pins DI2, DI3, FID, TEST1/2 1

Symbol	Parameter	Min	Max.	Unit	Note
VIL	Voltage range for input "low" level	0	2.5	V	
VIH	Voltage range for input "high" level	3.5	V_{VIN}	V	3
V _{HYST}	Hysteresis for switching level	0.25		V	2
lı∟	Current range for input "low" level	-20	-5	μΑ	
Іін	Current range for input "high" level	-10	10	μΑ	Vo = 5V
I _{IHV}	Current range for high voltage input		2	mA	Vo = 30V

¹ TEST1/2 are inputs for test purposes only.

³ Valid for high voltage input pins DI2, DI3 and FID. The regular logic swing is 0 .. 5V although higher input voltages might be applied (refer to parameter Vinputs1 in Table 3.1). In the case of input voltages that exceed 5V a significant higher input current will flow into the input that is caused by the input protection circuitry (refer to parameter IIHV of Table 3.4 and Figure 3-2).

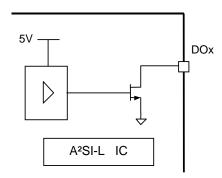


Figure 3-2: Data Input Schematic in Principle

Figure 3-1: Data Output Schematic in Principle

Table 3.5: Output Voltages and Currents: Pins DO0, DO1, LED

Symbol	Parameter	Min	Max.	Unit	Note
Vol	Voltage range for output "low" level		1	٧	I _{OL1} = 15mA
Іон	Output leakage current	-10	5	μΑ	Vон = 30V

Data Sheet October 20, 2011	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	10 of 27
--------------------------------	---	----------

² switching level approx. 3V, i.e. 3V +/- VHYST; the maximum hysteresis is determined by (min.) VIH – (max) VIL

3.4.2. AS-i Bus Load (Pins ASIP/ASIN and Power Supply Input VIN)

The following parameters are determined with short-cut between the pins ASIN, GND, and 0V (GROUND). The pin VIN is connected to ASIP via an external coil. A decoupling capacitor has to be interconnected between VIN and GROUND as shown in Figure 4-1.

Table 3.6: AS-i Bus Interface Properties

Symbol	Parameter	min	max.	Unit	Note
ILIN	Input current limit at V _{IN}		25	mA	
VSIG	Input signal voltage difference between ASIP and ASIN	3	8	VPP	
ISIG	Modulated output peak current from ASIP to ASIN	55	68	mA₽	
C _{zener}	Parasitic capacitance of the external over-voltage protection diode (Zener diode)		20	pF	1
RIN	Equivalent resistor of the ASIC	50		kOhm	1
CIN	Equivalent capacitor of the ASIC		15	pF	1

¹ The equivalent circuit of a slave has to satisfy the Complete AS-i Specification v.2.11 concerning the requirements for the extended address range. The input impedance as function of frequency is considered as correct by design.

3.4.3. Pins OSC1, OSC2

The on chip x-tal oscillator requires a 16 MHz crystal that must be interconnected to the pins OSC1 and OSC2. Internal capacitors make sure that no external capacitors from OSC1/OSC2 to ground are required. Furthermore no external capacitors shall be added to OSC1 and OSC2, respectively. Due to this parasitic capacitors shall be limited to C_{OSC} (Table 3.7). Appendix A shows the parameter of the crystal that is supposed to be used in A²SI-L IC application circuits.

Table 3.7: Oscillator Pins

Symbol	Parameter	Min	max.	Unit	Note
COSC	External parasitic capacitor at oscillator pins OSC1, OSC2	0	7	pF	
VIL	Input "low" voltage	0	1.5	V	1
VIH	Input "high" voltage	3.5	5	V	2

for external clock applied to OSC1 only

² for external clock applied to OSC1 only

3.5. Information Data for Development

Table 3.8: Information Data

Symbol	Parameter	min	max.	Unit	Note
V _{PORIF}	Falling edge of the internal 5V supply voltage that activates the internal power-on-reset signal	3	4	V	1
V _{PORIR}	Rising edge of the internal voltage 5V supply voltage that causes the deactivation of the internal power-on-reset signal what will cause the start of the INIT procedure	2.5	3.5	V	1
T_{shut}	Chip temperature that causes an overtemp shut down	125	160	°C	
V _{LSIGon}	Receiver comparator threshold level (refer to Figure 3-3)	45	50	%	related to amplitude of 1 st pulse
t _{reset1}	Reset time - either after the end bit of the sent out slave response that is related to a received master Call Reset AS-i-Slave - or after the IC has deactivated its power-on-reset signal		2	ms	1
T _{Low}	Power-on reset pulse width	4	6	us	1

¹ guaranteed by design only

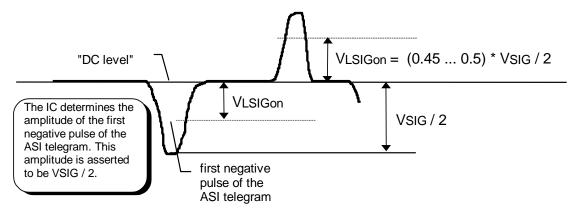


Figure 3-3: Receiver comparator threshold set-up in principle

Data Chast	© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0	
Data Sheet October 20, 2011	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without notice.	12 of 27

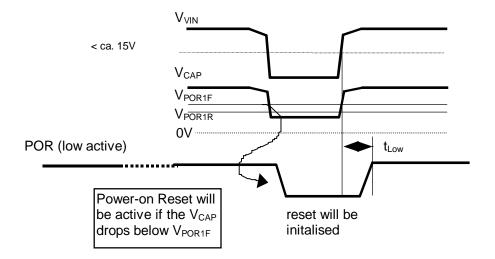


Figure 3-4: Reset Behavior

Note: The power-on reset circuit has a threshold voltage reference. This reference matches the process tolerance of the logic levels and is not required to be very accurate. All values depend slightly on the raise and fall time of the supply voltage.

The Analog Mixed Signal Company

4 Functional Description

4.1. Functional Block Diagram

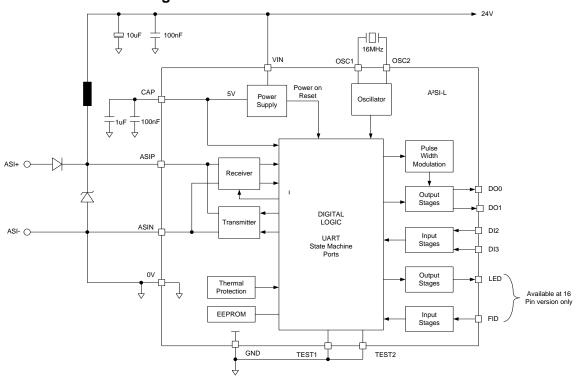


Figure 4-1: Functional Block Diagram

4.2. Power Supply

The power supply is derived from the AS-i line through an external reverse polarity protection diode and coil, and provided at pin V_{IN} . An on-chip voltage regulator regulates the voltage at approximately 5V.

4.3. Receiver

The receiver detects the signals on the AS-i line and delivers the appropriate pulses to the digital logic. The DC value of the input signal is removed and the AC signal is band-pass filtered. This circuit is operating on both ASI+ and ASI- lines to take the differential nature of the signals into account. The digital output signals are extracted from the sin²-shaped input pulses by a set of comparators. The maximum voltage of the first pulse determines the threshold level for all following pulses. This maximum value is digitally filtered to guarantee stable conditions (burst spikes have no effect). This approach combines a fast adaptation to changing signal amplitudes with a high detection safety. The receiver delivers the positive and negative pulses to the ASIC's logic. The logic resets the comparators after receiving with the REC_RESET signal. When the receiver is turned on the transmitter is turned off to reduce the power consumption.

4.4. Transmitter

The transmitter draws a modulated current between the ASI+ and ASI- pins to generate the communication signals. The shape of the current corresponds to the integral of a sin²-function. The transmitter uses a current DAC and a high current driver. This driver must be activated before the transmission to achieve operating

Data Sheet October 20, 2011 @ 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

conditions. A small current is required which will be ramped up slowly to avoid any false voltage pulses on the AS-i line. The amount of circuitry between the ASI+ and ASI- pins is minimized to allow high impedance values. When the transmitter is turned on the receiver is turned off to reduce the power consumption.

4.5. Digital Logic

The digital logic block analyses the received signal, controls the reaction of the slave, transmits the slave response and switches the output ports.

Essential parts of the digital logic are as follows:

- The UART performs a syntactical analysis of the incoming master signal and executes the Manchestercoding of the outgoing slave answer.
- The STATE MACHINE controls the overall behavior of the slave. Depending on the configuration data
 provided by the EEPROM and the logic levels at the digital input ports it computes the contents of the
 slave answer where required. Table 4.1 lists all master calls that will be decoded by the A2SI-L IC.
 Moreover, the logic state of the digital output ports is controlled by the STATE MACHINE Chapters 4.6 as
 well as 4.7 contain more detailed descriptions of the digital I/O-ports.
- The EEPROM stores the non-volatile data of the A2SI-L circuit. A specification of the EEPROM contents is given in Table C.1 on page 27. The meanings of some configuration flags are explained below and in Chapter 4.6, respectively.

By setting the *Program_Mode_Disable* flag (refer to **Table C.1**), the manufacturers of AS-i slave components may protect the entire firmware area – addresses 0x8 up to 0xC – against accidental overwriting.

The Watchdog_Active flag enables the internal communication watchdog. Once the communication was activated, it will trigger an unconditional reset as soon as it detects a data communication pause longer than 40ms. It should be noted that only the reception of a Write Parameter (WPAR) or Data Exchange (DEXG) master call can reset the watchdog.

Table 4.1: A2SI-L Master Calls and Related Slave Responses

						Mast	er Re	quest										Slave	Resp	onse		
Instruction	MNE	ST	СВ	A4	А3	A2	A1	A0	14	13	12	11	10	PB	EB	SB	13	12	11	10	PB	EB
Data Exchange	DEXG	0	0	A4	АЗ	A2	A1	A0	0	D3 ~Sel	D2	D1	D0	РВ	1	0	0 E3	0 E2	D1 E1	D0 E0	РВ	1
Write Parameter	WPAR	0	0	A4	А3	A2	A1	A0	1	P3 ~Sel	P2	P1	P0	РВ	1	0	P3 I3	P2 I2	P1 I1	P0 I0	РВ	1
Address Assignment	ADRA	0	0	0	0	0	0	0	A4	АЗ	A2	A1	A0	РВ	1	0	0	1	1	0	РВ	1
Write Extented ID Code_1	WID1	0	1	0	0	0	0	0	0	ID3	ID2	ID1	ID0	РВ	1	0	0	0	0	0	РВ	1
Delete Address	DELA	0	1	A4	АЗ	A2	A1	A0	0	0 Sel	0	0	0	РВ	1	0	0	0	0	0	РВ	1
Reset Slave	RES	0	1	A4	АЗ	A2	A1	A0	1	1 ~Sel	1	0	0	РВ	1	0	0	1	1	0	РВ	1
Read IO Configuration	RDIO	0	1	A4	А3	A2	A1	A0	1	0 Sel	0	0	0	РВ	1	0	103	102	IO1	IO0	РВ	1
Read ID Code	RDID	0	1	A4	АЗ	A2	A1	Α0	1	0 Sel	0	0	1	РВ	1	0	ID3	ID2	ID1	ID0	РВ	1
Read ID Code_1	RID1	0	1	A4	АЗ	A2	A1	A0	1	0 Sel	0	1	0	РВ	1	0	ID3	ID2	ID1	ID0	РВ	1
Read ID Code_2	RID2	0	1	A4	АЗ	A2	A1	A0	1	0 Sel	0	1	1	РВ	1	0	ID3	ID2	ID1	ID0	РВ	1
Read Status	RDST	0	1	A4	А3	A2	A1	A0	1	1 ~Sel	1	1	0	РВ	1	0	S3	S2	S1	S0	РВ	1
Broadcast (Reset)	BR01	0	1	1	1	1	1	1	1	0	1	0	1	РВ	1		- no s	lave re	espons	se		
Enter Program Mode	PRGM	0	1	0	0	0	0	0	1	1	1	0	1	РВ	1		- no s	lave re	espons	se		

Notes:

Data Sheet October 20, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

- In extended address mode the "Select Bit" defines whether the A- Slave or B- Slave is being addressed.
- The Enter Program Mode master call is intended for factory programming of the IC only. In order to achieve EEPROM firmware protection and in order to satisfy the AS-interface Complete Specification the call Enter Program Mode must be deactivated by setting the Program_Mode_Disable flag before shipment of the slave.

4.6. Data I/O Ports

4.6.1. Data Exchange Model

All Data_Out and Data_In signals are directly connected to the respective port (refer to Figure 4-2). The **A²SI-L** IC has only two data output pins (DO0 and DO1). Therefore the information bits I3 and I2 of the master call are not transferred to the **A²SI-L** data outputs. Since the **A²SI-L** IC has only two data input pins (DI2 and DI3) both lower order information bit (I1 and I0) of the slave response are set to "0" if the IC answers a *Data Exchange* master telegram.

If the EEPROM flag *Invert_Data_In* (refer to **Table C.1**) is set, all input data is inverted. This feature will simplify the circuitry for NPN-inputs.

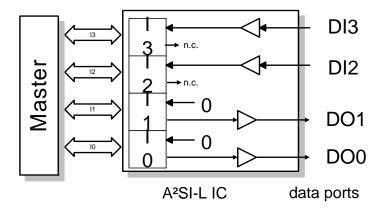


Figure 4-2: A2SI-L IC Data Exchange master call data model

The data input pins (DI2 and DI3) are sampled in a time frame that starts not earlier as the point in time of the end bit of the related *Data Exchange* master call and ends at least at the end of the start bit of the corresponding slave response. In the same time frame the data output pins will change their state if appropriated.

4.6.2. PWM Function

The regular function of the data pins DO0 and DO1 is to send out the corresponding master telegram data of the call *Data Exchange* (DEXG, refer to Table 3.5). DO0 corresponds to I0 and DO1 corresponds to I1. In addition to that the **A**²SI-L IC performs a PWM function which is dedicated for the brightness control of LEDs that are interconnected to DO0 and/or DO1, respectively. The PWM function may be enabled by the EEPROM flag *PWM_enable* (refer to **Table C.1**).

Data Sheet October 20, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

Table 4.2: PWM specification of Outputs: Pins DO0, DO1

Intensity of	"Write Parameter	" command fr	om Master ¹	PWM	Pulse duty ratio		
LED	P2	P1	P0	Frequency ² 1 / tpwm	³ ton / tPWM		
100.00%	Select DO0 or DO1	1	1	DC (default)	16/16		
50.00%	Select DO0 or DO1	0	1	125Hz	8/16		
25.00%	Select DO0 or DO1	1	0	125Hz	4/16		
12.50%	Select DO0 or DO1	0	0	125Hz	2/16		

¹ The write parameter call is used to control the intensity of LEDs that are interconnect to the data output pins.

Provided that a lit LED is caused by a logic low level output signal of the related data pin brightness of the LED can be controlled by the master call *Write Parameter* (WPAR, refer to Table 4.1) as shown in Figure 4-3. After a *Write Parameter* call has been received the pulse duty ratio will be effective after the slave response has been sent. The default duty pause ration is 100% which is set after the initialization phase of the IC automatically. Figure 4-3 shows the telegram structure of the *Write Parameter* call. and the related slave response data.

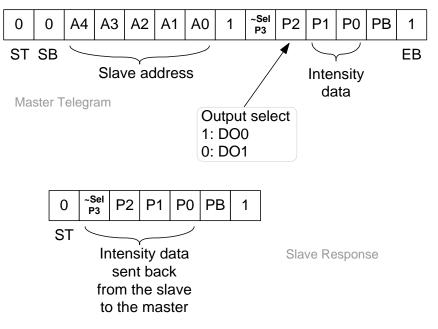


Figure 4-3: PWM control

Data Sheet October 20, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

² Correct by design

³ Pulse/duty ratio is defined as the quotient ton / tPWM (refer to Table 4.1)

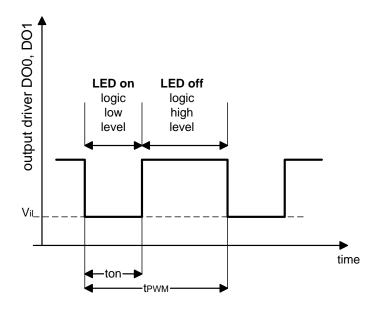


Figure 4-4: PWM Output Signal Timing

4.7. FID Input and LED Output Ports

The fault indication input FID is a digital input that is dedicated for a periphery fault messaging signal (for electrical properties refer to Table 3.4 on page 10). The S1 status bit is equivalent to the FID input signal. An FID transition will occur at S1 with a certain delay due to a synchronizer circuit which is put in between. In case of the 14 pin IC version the FID input is not available. The manufacturer (ZMDI) will disable this function by setting the EEPROM flag *FID_Disable* (refer to **Table C.1**). A disabled FID pin function is equivalent to a logic low input signal at an enabled FID pin. Therefore the status bit S1 is always cleared if an IC is having a disabled FID pin.

The LED output port is used as a status indicator. An active FID (logic high) signal causes a flashing status LED (frequency approx. 2Hz). Otherwise, if FID is not active (logic low) the status LED operation depends on the communication status of the **A²SI-L** device. If the internal *Data_Exchange_Disable* flag is set (no data exchange allowed), a steady-on LED shall indicate that the communication is off. Notes:

- An active FID has priority and will cause a flashing LED even if the Data_Exchange_Disable flag is set.
- If the FID pin is disabled (EEPROM flag FID_Disable set), the LED output is always set to logic high state.

5 Typical application circuit of A2SI-L

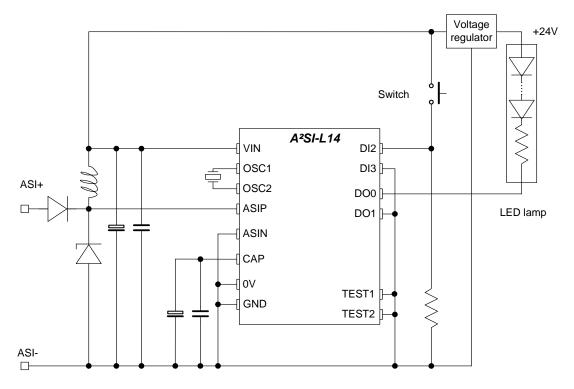


Figure 5-1: Typical application I

The pins ASIN, 0V and GND must be connected on the PCB.

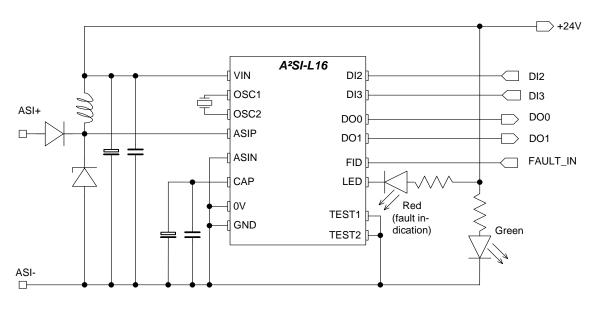
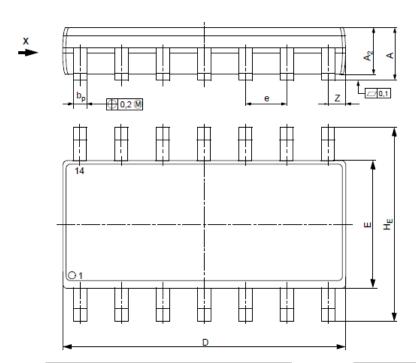
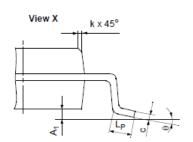


Figure 5-2: Typical application II

Data Sheet October 20, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0


All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.



6 Package Outline and Device Marking

The IC is available in a 14 or 16 pin SOIC-package. Dimensions are shown in Figure 6-1 and Figure 6-2. Figure 6-3 and Figure 6-4 indicate the device marking.

Dimensions of Sub-Group B1						
A _{max}	1,73					
b _{Pmin}	0,35					
b _{Pmax}	0,49					
e _{nom}	1,27					
H _{Emin}	5,80					
H _{Emax}	6,30					
L _{Pmin}	0,40					
Z _{max}	0,56					

2	Weight	≤ 0,5 g
---	--------	---------

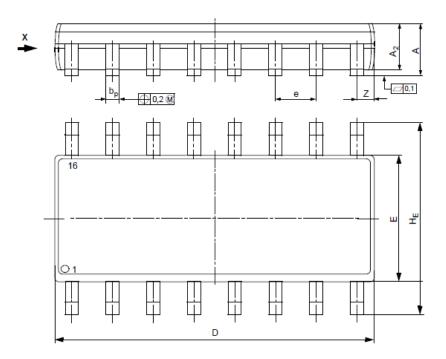
3 Package Body Material Low Stress Epoxy
 4 Lead Material FeNi-Alloy or Cu-Alloy

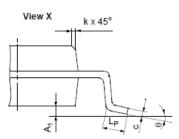
5 Lead Finish solder plating 6 Lead Form Z-bends

Dimensions of Sub-Group C1							
1,55							
0,127							
0,25							
1,40							
1,55							
0,19							
0,25							
8,58							
8,74							
3,80							
4,00							
0,25							
0°							
8°							

* without mold-flash

Figure 6-1: SOP14


Data Sheet
October 20, 2011


@ 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is **PRELIMINARY** and subject to changes without notice.

Dimensions of Sub-Group B1					
A _{max}	1,73				
b _{Pmin}	0,35				
b _{Pmax}	0,49				
e _{nom}	1,27				
H _{Emin}	5,80				
H _{Emax}	6,30				
L _{Pmin}	0,40				
Z _{max}	0,55				

2 Weight ≤ 0,5 g

3 Package Body Material Low Stress Epoxy
 4 Lead Material FeNi-Alloy or Cu-Alloy

5 Lead Finish solder plating 6 Lead Form Z-bends

Dimensions of Sub-Group C1						
A _{min}	1,55					
A _{1min}	0,127					
A _{1max}	0,25					
A _{2min}	1,40					
A _{2max}	1,55					
c _{min}	0,19					
C _{max}	0,25					
D _{min} *	9,80					
D _{max} *	9,98					
E _{min} *	3,80					
E _{max} *	4,00					
k _{min}	0,25					
θ _{min}	0°					
θ _{max}	8°					

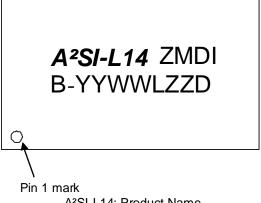

* without mold-flash

Figure 6-2: SOP16

Data Sheet October 20, 2011 © 2011 Zentrum Mikroelektronik Dresden AG — Rev. 3.0 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to changes without potice.

A²SI-L14: Product Name ZMDI: Manufacturer **B:** Revision Code

YYWW: Year / Workweek (Datecode)

L: Assembly Location

ZZD: Traceability and Status Code

Figure 6-3: Marking A2SI-L14

ZZD: Traceability and Status Code

Figure 6-4: Marking A2SI-L16

7 Ordering Information

Ordering Code	Product Description	Packaging
A2SI-L14-ST	A ² SI-Lite 14 pin SOP 150 mil package	Tube
A2SI-L14-SR	(without diagnostic pins)	Tape & Reel
A2SI-L16-ST	A ² SI-Lite 16 pin SOP 150 mil package	Tube
A2SI-L16-SR	(with diagnostic pins)	Tape & Reel

Appendix A: Crystal Parameter

A.1 Parameter data of Crystal

Different crystals types are described in Table A.1. The models of those crystals are described in Table A.2.

Table A.1: 16 MHz crystals

Symbol	Model	Maker	Size W* D* H (mm)	Operating Temperature Range (°C)
Α	LIM-T-16.000	Kyusyu Dentsu Co.	7.5*5.0*1.2	-25 + 85
В	LAP-16.000	Kyusyu Dentsu Co.	6.0*3.5*1.2	-25 + 85
С	SXN-A 16 MHz	Nippon Industries	6.0*3.5*1.2	-40 + 85
D	SXH-A 16 MHz	Nippon Industries	7.5*5.0*1.0	-40 +85
E	DSX630G	Daishinku corp.	6.0*3.5*1.2	-25 + 85

Table A.2: Crystal models

Symbol	L1 (mH) C1 (fF)		R1 (Ohm)			C0 (pF)			CL (pF)						
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	6.7	7.9	9.1	9.0	10.6	12.2	-	-	60.0	2.4	2.9	3.3	12.0	16.0	20.0
В	7.9	9.3	10.7	9.0	10.6	12.2	-	-	60.0	2.4	2.9	3.3	12.0	16.0	20.0
С	7.9	9.3	10.7	9.0	10.6	12.2	-	10.0	60.0	2.4	2.9	3.3	8.0	-	32.0
D	6.7	7.9	9.1	9.0	10.6	12.2	-	10.0	60.0	2.4	2.9	3.3	8.0	-	32.0
Е	14.1	16.6	19.1	5.1	6.0	6.9	10.0	50.0	-	1.8	2.1	2.4	12.0	-	20.0

Note: A crystal is fabricated for a dedicated load capacitor. This load capacitor CL is equivalent to the sum of CL' (internal oscillator circuit capacitor) and the parasitic capacitor CP (capacity that is caused by the PCB, e.g. by copper areas and wires on the PCB).

Figure A-1 shows an equivalent circuit of the crystal oscillator that should illustrate the modeling method.

A.2 Capacitance on PCB

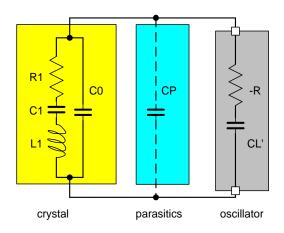


Figure A-1: Crystal oscillator equivalent circuit

The Analog Mixed Signal Company

Appendix B: External Coil

B.1 Target Coil

In order to satisfy the Complete Specification AS-interface an application circuit has to achieve a certain input impedance. Besides the A²SI-L IC properties the applied external coil will have an significant influence. Therefore a suitable coil shall be recommended. During the product development period recommended data of this coil have to be worked out. The following coil is considered as target component and shall be applied (between ASIP and VIN, refer to Figure 5-1 and Figure 5-2, respectively) as long no other recommendation has been made:

Coil No, SD75-183k

Core No, M5D DR7.8*5.0 DIM

Maker EASY MAGNET Corp. http://www.easymagnet.com.tw

Inductance: 18mH +-10% (f=1kHz Ambient Temperature : 20'C DC Bias 0A) DC resistance : Max 72.0 ohm (Ambient Temperature :20'C DC Bias 0A)

B.2 Coil Modeling

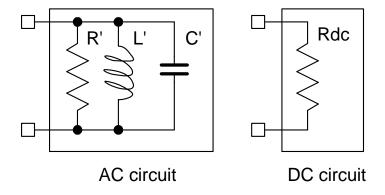


Figure B-1: External Coil equivalent circuits

Figure B-1 shows the model parameters that will be used in order to recommend suitable external coils. Until the end of the development process the following parameters have shall be recommended by ZMDI:

L' : Real value of Inductance C' : Parasitic capacitor R' : AC Resistance Rdc : DC Resistance

Measurement frequency : 50k...300kHz C' R' L'

B.3 Electronic Inductor

ZMDI provides an optional application (see separate application note) for a bipolar (GND free) electronic inductor* to replace a mechanical coil with some inexpensive electronic parts. This solution save costs, board space and will be more resistant against mechanical vibrations. This inductor provides a supply current up to 90mA to Vin and the connected circuit, respectively.

Zentrum Mikroelektronik Dresden AG provides a license to ZMDI AS-Interface IC customers free of charge.

* patent pending

For further information, please contact:

ZMD AG
BL Standard Components
Grenzstrasse 28
01109 Dresden,Germany
asi@ZMDI.com

Appendix C: EEPROM

Table C.1: Contents of the A2SI-L14 / A2SI-L16 EEPROM

EEPROM Address	Bit Position	EEPROM Cell Content	EEPROM Register Content				
0x0	0 3	A0 A3	Slave Address low nibble				
0x1	0	A4	Slave Address high nibble				
0x1	1 3	(not useable)	none				
0x2	0 3	ID1_0 ID1_3	ID code extension 1				
0x3	0 3	Not implemented - do not access					
0x4 0x7	0 3	Not implemented - do not access					
0x8	0 3	ID_0 ID_3	ID code				
0x9	0 3	ID2_0 ID2_3	ID code extension 2				
0xA	0 3	IO_0 IO_3	IO code				
0xB	0	PWM_enable	Configuration Flags				
0xB	1	PWM_32k_mode					
0xB	2	Reserved					
0xB	3	Reserved					
0xC	0	FID_Disable	Configuration Flags				
0xC	1	Program_Mode_Disable					
0xC	2	Watchdog_Active					
0xC	3	Invert_Data_In					
0xD	0 3	Not implemented - do not access					
0xE	0 3	Trimm Information, do not access					
0xF	0 3	Trimm Information, do not access					

Data Sheet	
October 20, 2011	