

_General Description

The MAX3693 serializer is ideal for converting 4-bitwide, 155Mbps parallel data to 622Mbps serial data in ATM and SDH/SONET applications. Operating from a single +3.3V supply, this device accepts low-voltage differential-signal (LVDS) clock and data inputs for interfacing with high-speed digital circuitry, and delivers a 3.3V PECL serial-data output. A fully integrated PLL synthesizes an internal 622Mbps serial clock from a 155.52MHz, 77.76MHz, 51.84MHz, or 38.88MHz reference clock.

The MAX3693 is available in the extended temperature range (-40°C to +85°C), in a 32-pin TQFP package.

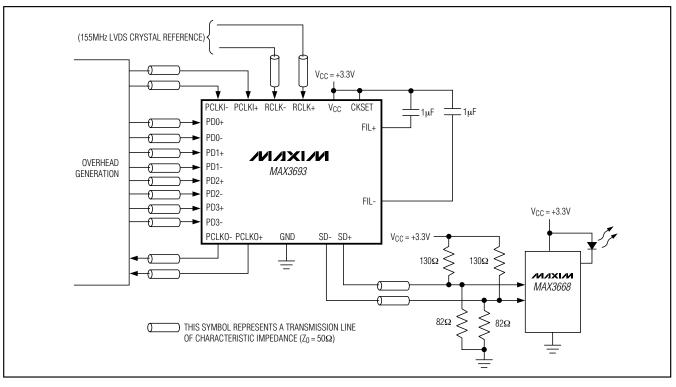
Applications

622Mbps SDH/SONET Transmission Systems 622Mbps ATM/SONET Access Nodes Add/Drop Multiplexers Digital Cross Connects

_Features

MAX3693

- Single +3.3V Supply
- 155Mbps (4-bit-wide) Parallel to 622Mbps Serial Conversion
- Clock Synthesis for 622Mbps
- 215mW Power
- Multiple Clock Reference Frequencies (155.52MHz, 77.76MHz, 51.84MHz, 38.88MHz)
- LVDS Parallel Clock and Data Inputs
- ♦ Differential 3.3V PECL Serial-Data Output


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3693ECJ	-40°C to +85°C	32 TQFP
MAX3693ECJ+	-40°C to +85°C	32 TQFP
a		

+Denotes lead-free package.

Pin Configuration appears at end of data sheet.

Typical Operating Circuit

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with respect to GND)

-0.5V to +5V
0.5V to (V _{CC} + 0.5V)
10mA
50mA

Continuous Power Dissipation ($T_A = +85^{\circ}C$)	
TQFP (derate 10.20mW/°C above +85°C)	663mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

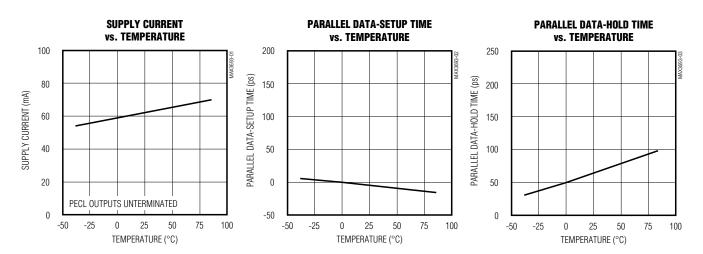
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3V \text{ to } +3.6V, \text{ differential LVDS loads} = 100\Omega \pm 1\%, \text{ PECL loads} = 50\Omega \pm 1\% \text{ to } (V_{CC} - 2V), T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at V_{CC} = +3.3V, T_A = +25^{\circ}\text{C}.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Supply Current	Icc	PECL outputs unterminated	38	65	100	mA	
PECL OUTPUTS (SD±)	•						
Output High Voltage	Voh	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$	Vcc - 1.02	25 V	CC - 0.88	V	
Output High voltage	VOH	$T_A = -40^{\circ}C$	V _{CC} - 1.08	35 V	′CC - 0.88		
Output Low Voltage	VOL	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$	Vcc - 1.8	1 V	'CC - 1.62	V	
Sulput Low Voltage	VOL	$T_A = -40^{\circ}C$	V _{CC} -1.83	V	CC - 1.555] v	
LVDS INPUTS AND OUTPUTS (PCLKI±, RCLK	±, PCLKO±,	PD_±)					
Input Voltage Range	VI	Differential input voltage = 100mV	0		2.4	V	
Differential Input Threshold	Vidth	Common-mode voltage = 50mV	-100		100	mV	
Threshold Hysteresis	VHYST			60		mV	
Differential Input Resistance	RIN		85	100	115	Ω	
Output High Voltage	VOH				1.475	V	
Output Low Voltage	Vol		0.925			V	
Differential Output Voltage	Vod		250		400	mV	
Change in Magnitude of Differential Output Voltage for Complementary States					±25	mV	
Output Offset Voltage	Vos		1.125		1.275	V	
Change in Magnitude of Output Offset Voltage for Complementary States	ΔVos				±25	mV	
Single-Ended Output Resistance	Ro		40	95	140	Ω	
Change in Magnitude of Single-Ended Output Resistance for Complementary Outputs	ΔR _O			±2.5	±10	%	
PROGRAMMING INPUT (CKSET)					1		
CKSET Input Current	ICKSET	CKSET = 0 or VCC			±500	μA	

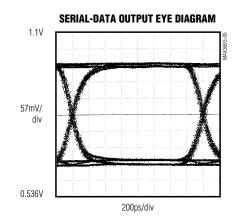
AC ELECTRICAL CHARACTERISTICS

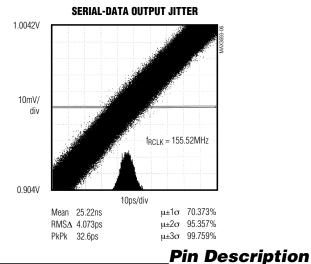

 $(V_{CC} = +3V \text{ to } +3.6V, \text{ differential LVDS load} = 100\Omega \pm 1\%, \text{ PECL loads} = 50\Omega \pm 1\% \text{ to } (V_{CC} - 2V), T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ wise noted. Typical values are at $V_{CC} = +3.3V, T_A = +25^{\circ}\text{C}.$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS
Serial Clock Rate	f SCLK			622.08		MHz
Parallel Data-Setup Time	tsu	$T_A = +25^{\circ}C$	200			ps
Parallel Data-Hold Time	tH		600			ps
PCLKO to PCLKI Skew	tSKEW		0		+4.0	ns
Output Random Jitter	Φ0				11	ps _{RMS}
PECL Differential Output Rise/Fall Time	t _{R,} t _F			200		ps

Note 1:	AC characteristics	quaranteed by	/ design and	characterization
11010 11	10 0101000101000	guarantooa by	acoignanc	onalaotonzation.

Typical Operating Characteristics


 $(V_{CC} = +3.3V)$, differential LVDS loads = $100\Omega \pm 1\%$, PECL loads = $50\Omega \pm 1\%$ to $(V_{CC} - 2V)$, T_A = +25°C, unless otherwise noted.)



///XI///

Typical Operating Characteristics (continued)

(V_{CC} = +3.3V, differential LVDS loads = $100\Omega \pm 1\%$, PECL loads = $50\Omega \pm 1\%$ to (V_{CC} - 2V), T_A = +25°C, unless otherwise noted.)

PIN	NAME	FUNCTION
1, 3, 5, 7	PD0+ to PD3+	Noninverting LVDS Parallel Data Inputs. Data is clocked in on the PCLKI signal's positive transition.
2, 4, 6, 8	PD0- to PD3-	Inverting LVDS Parallel Data Inputs. Data is clocked in on the PCLKI signal's positive transition.
9, 17, 18, 19, 24, 25, 32	GND	Ground
10	PCLKO-	Inverting LVDS Parallel-Clock Output. Use positive transition of PCLKO to clock the overhead man- agement circuit.
11	PCLKO+	Noninverting LVDS Parallel-Clock Output. Use positive transition of PCLKO to clock the overhead management circuit.
12, 13, 16, 21, 28, 29	Vcc	+3.3V Supply Voltage
14	SD-	Inverting PECL Serial-Data Output
15	SD+	Noninverting PECL Serial-Data Output
20	CKSET	Reference Clock Rate Programming Pin. CKSET = V _{CC} : Reference Clock Rate = 155.52MHz CKSET = Open: Reference Clock Rate = 77.76MHz CKSET = $20k\Omega$ to GND: Reference Clock Rate = 51.84MHz CKSET = GND Reference Clock Rate = 38.88MHz
22	FIL-	Filter Capacitor Input. See Typical Operating Circuit for external-component connections.
23	FIL+	Filter Capacitor Input. See Typical Operating Circuit for external-component connections.
26	RCLK+	Noninverting LVDS Reference Clock Input. Connect an LVDS-compatible crystal reference clock to the RCLK inputs.
27	RCLK-	Inverting LVDS Reference Clock Input. Connect an LVDS-compatible crystal reference clock to the RCLK inputs.
30	PCLKI+	Noninverting LVDS Parallel Clock Input. Connect the incoming parallel-data-clock signal to the PCLKI inputs. Note that data is updated on the positive transition of the PCLKI signal.
31	PCLKI-	Inverting LVDS Parallel Clock Input. Connect the incoming parallel-data-clock signal to the PCLKI inputs. Note that data is updated on the positive transition of the PCLKI signal.

4

Detailed Description

The MAX3693 serializer comprises a 4-bit parallel input register, a 4-bit shift register, control and timing logic, a PECL output buffer, LVDS input/output buffers, and a frequency-synthesizing PLL (consisting of a phase/ frequency detector, loop filter/amplifier, voltagecontrolled oscillator, and prescaler). This device converts 4-bit-wide, 155Mbps data to 622Mbps serial data (Figure 1).

The PLL synthesizes an internal 622Mbps reference used to clock the output shift register. This clock is generated by locking onto the external 155.52MHz, 77.76MHz, 51.84MHz, or 38.88MHz reference-clock signal (RCLK). The incoming parallel data is clocked into the MAX3693 on the rising transition of the parallel-clockinput signal (PCLKI). The control and timing logic ensure proper operation if the parallel-input register is latched within a window of time that is defined with respect to the parallel-clock-output signal (PCLKO). PCLKO is the synthesized 622Mbps internal serialclock signal divided by four. The allowable PCLKO-to-PCLKI skew is 0 to +4ns. This defines a timing window at about the PCLKO rising edge, during which a PCLKI rising edge may occur (Figure 2).

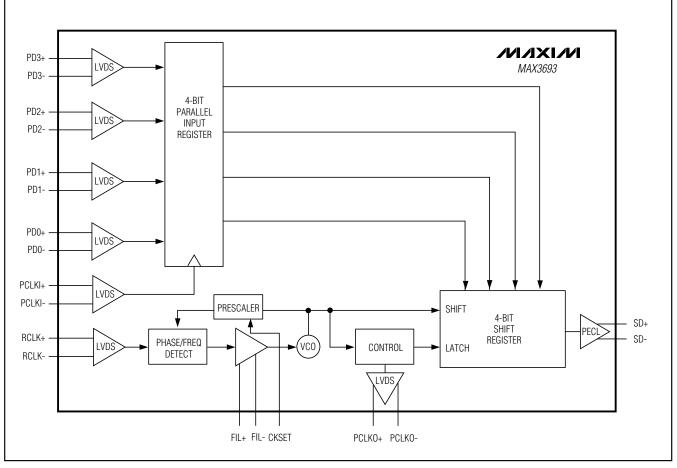


Figure 1. Functional Diagram

///XI///

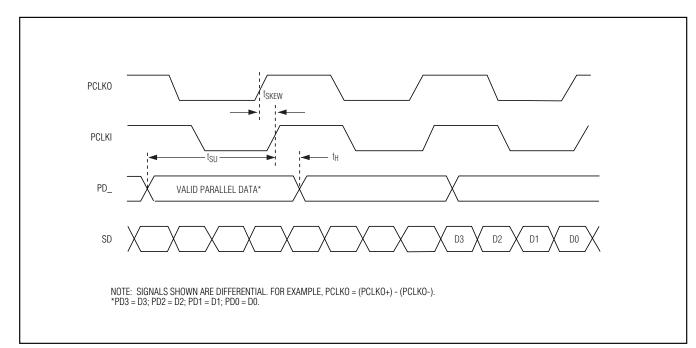


Figure 2. Timing Diagram

MAX3693

Low-Voltage Differential-Signal (LVDS) Inputs and Outputs

The MAX3693 features LVDS inputs and outputs for interfacing with high-speed digital circuitry. The LVDS standard is based on the IEEE 1596.3 LVDS specification. This technology uses 250mV to 400mV differential low-voltage swings to achieve fast transition times, minimized power dissipation, and noise immunity.

For proper operation, the parallel-clock LVDS outputs (PCLKO+, PCLKO-) require 100Ω differential DC termi-

nation between the inverting and noninverting outputs. Do not terminate these outputs to ground.

The parallel data and parallel clock LVDS inputs (PD_+, PD_-, PCLKI+, PCLKI-, RCLK+, RCLK-) are internally terminated with 100Ω differential input resistance, and therefore do not require external termination.

PECL Outputs

The serial-data PECL outputs (SD+, SD-) require 50Ω DC termination to (VCC - 2V) (see the *Alternative PECL-Output Termination* section).

_Applications Information

Alternative PECL-Output Termination

Figure 3 shows alternative PECL output-termination methods. Use Thevenin-equivalent termination when a (V_{CC} - 2V) termination voltage is not available. If AC coupling is necessary, be sure that the coupling capacitor is placed following the 50 Ω or Thevenin-equivalent DC termination.

Layout Techniques

For best performance, use good high-frequency layout techniques. Filter voltage supplies and keep ground connections short. Use multiple vias where possible. Also, use controlled-impedance transmission lines to interface with the MAX3693 clock and data inputs and outputs.

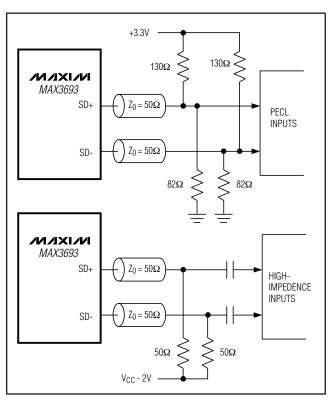
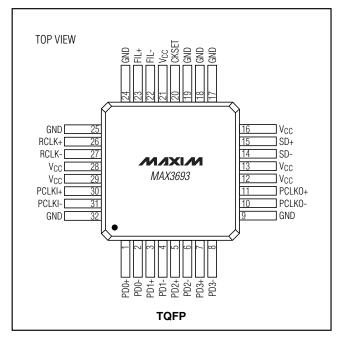
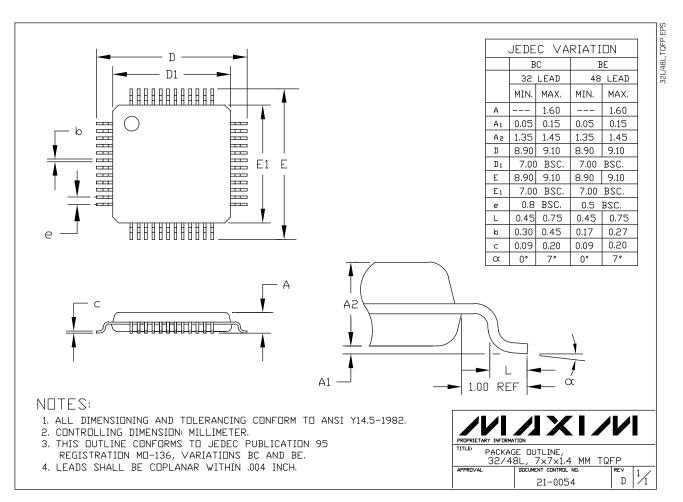



Figure 3. Alternative PECL-Output Termination

_Pin Configuration


_Chip Information

TRANSISTOR COUNT: 2925

MAX3693

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Printed USA

© 2004 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products.