# Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs 


#### Abstract

General Description The MAX4414-MAX4419 operational amplifiers combine high-speed performance, low distortion, and ultralow supply current. Consuming just 1.6 mA of supply current per amplifier, these devices operate from a single +2.7 V to +5.5 V supply, have Rail-to-Rail ${ }^{\circledR}$ outputs, and exhibit a common-mode input voltage range that extends from 100 mV below ground to within 1.5 V of the positive supply rail. The MAX4414/MAX4416/MAX4418 single/dual/quad op amps are unity-gain stable and achieve a $400 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth with a 200V/ $\mu$ s slew rate. The MAX4415/ MAX4417/MAX4419 single/dual/quad op amps are compensated for closed-loop gains of $+5 \mathrm{~V} / \mathrm{V}$ or greater and achieve a $150 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth with a $470 \mathrm{~V} / \mathrm{\mu s}$ slew rate. The combination of high-speed, ultra-low power, and low-distortion makes the MAX4414MAX4419 ideal for low-power/low-voltage, high-speed portable systems such as video, communications, and instrumentation.

The MAX4414/MAX4415 single and MAX4416/ MAX4417 dual amplifiers are available in space-saving 8 -pin $\mu$ MAX and SO packages, while the MAX4418/ MAX4419 quad amplifiers are available in a 14-pin TSSOP package.


Applications
Battery-Powered Instruments
Portable Communications
Keyless Entry Systems
Cellular Telephones
Video Line Drivers
Baseband Applications
Selector Guide

| PART | NO. OF <br> AMPS | MINIMUM <br> GAIN <br> $\mathbf{( V / V )}$ | -3dB <br> BANDWIDTH <br> $\mathbf{( M H z )}$ | SLEW RATE <br> $\mathbf{( V / \mu s )}$ |
| :---: | :---: | :---: | :---: | :---: |
| MAX4414 | 1 | 1 | 400 | 200 |
| MAX4415 | 1 | 5 | 150 | 470 |
| MAX4416 | 2 | 1 | 400 | 200 |
| MAX4417 | 2 | 5 | 150 | 470 |
| MAX4418 | 4 | 1 | 400 | 200 |
| MAX4419 | 4 | 5 | 150 | 470 |

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. Pin Configurations appear at end of data sheet.

- Ultra-Low 1.6mA Supply Current
- Single +3V/+5V Operation
- High Speed

400MHz -3dB Bandwidth
(MAX4414/MAX4416/MAX4418)
200V/ $\mu$ s Slew Rate
(MAX4414/MAX4416/MAX4418)
150MHz -3dB Bandwidth
(MAX4415/MAX4417/MAX4419) 470V/ $\mu \mathrm{s}$ Slew Rate
(MAX4415/MAX4417/MAX4419)

- Rail-to-Rail Outputs
- Input Common-Mode Range Extends Beyond VEE
- Low Differential Gain/Phase: 0.03\%/0.15
- Low Distortion at 5MHz (MAX4414/MAX4416/MAX4418) -93dBc SFDR 0.003\% Total Harmonic Distortion
- Low Cost

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX4414EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ |
| MAX4414ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO |
| MAX4415EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ |
| MAX4415ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO |

Ordering information continued at end of data sheet.

## Typical Operating Characteristic



For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

ABSOLUTE MAXIMUM RATINGS<br>Supply Voltage (VCC to $\mathrm{V}_{\mathrm{EE}}$ ).<br>$+6 \mathrm{~V}$<br>Differential Input Voltage ........................................................................5V<br>IN_-, IN_+, OUT_............................... (VCC +0.3 V ) to (VEE -0.3 V )<br>Current into Input Pins ..................................................... $\pm 20 \mathrm{~mA}$<br>Output Short-Circuit Duration to $V_{C C}$ or $V_{E E}$.<br>Continuous<br>Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )<br>8 -Pin $\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) ............. 362 mW<br>8-Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ).................. 471 mW<br>14-Pin TSSOP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) ......... 727 mW

Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .......................................................... $150^{\circ} \mathrm{C}$
Storage Temperature Range ............................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) ................................. $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}_{C C} / 2-0.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{R}_{\mathrm{L}}=\infty$ to $\mathrm{V}_{C C} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) $($ Note 1)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Supply Voltage Range | VS | Guaranteed by PSRR test |  | 2.7 |  | 5.5 | V |
| Quiescent Supply Current (per Amplifier) | Is | - $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ |  |  | 1.6 | 3 | mA |
|  |  |  | $V_{C C}=+3 \mathrm{~V}$ |  | 1.4 | 2.6 |  |
| Input Common-Mode Voltage Range | $V_{\text {CM }}$ | Guaranteed by CMRR test |  | $\begin{gathered} V_{E E}- \\ 0.1 \end{gathered}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.5 \end{gathered}$ | V |
| Input Offset Voltage | Vos |  |  |  | 0.5 | 6 | mV |
| Input Offset Voltage Temperature | TCVos |  |  |  | 3 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Offset Voltage Matching |  | MAX4416-MAX4419 |  |  | $\pm 1$ |  | mV |
| Input Bias Current | IB |  |  |  | 1.3 | 4 | $\mu \mathrm{A}$ |
| Input Offset Current | Ios |  |  |  | 0.1 | 0.7 | $\mu \mathrm{A}$ |
| Input Resistance | Rin | Differential mode,$-0.04 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{IN}}+-\mathrm{V}_{I N}-\right) \leq+0.04 \mathrm{~V}$ |  |  | 60 |  | k $\Omega$ |
|  |  | Common mode,$V_{E E}-0.1 V<V_{C M}<V_{C C}-1.5 V$ |  |  | 16 |  | $\mathrm{M} \Omega$ |
| Common-Mode Rejection Ratio | CMRR | $V_{E E}-0.1 \mathrm{~V}<\mathrm{V}_{\text {CM }}<\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$ |  | 65 | 94 |  | dB |
| Open-Loop Gain | Avol | $V_{C C}=+5 \mathrm{~V}$ | $+0.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ | 78 | 93 |  | dB |
|  |  |  | $+0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 68 | 80 |  |  |
|  |  |  | $\begin{aligned} & +0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq+4.4 \mathrm{~V}, \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | 66 | 80 |  |  |
|  |  |  | $+1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 65 |  |  |
|  |  | $V_{C C}=+3 \mathrm{~V}$ | $+0.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+2.8 \mathrm{~V}, \mathrm{RL}=10 \mathrm{k} \Omega$ | 75 | 90 |  |  |
|  |  |  | $+0.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+2.75 \mathrm{~V}, \mathrm{RLL}=1 \mathrm{k} \Omega$ | 65 | 78 |  |  |
|  |  |  | $\begin{aligned} & +0.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+2.5 \mathrm{~V}, \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | 63 | 75 |  |  |
|  |  |  | $+0.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 62 |  |  |

## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

## DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2-0.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{R}_{\mathrm{L}}=\infty$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS |  |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Voltage Swing | Vout | $V_{C C}=+5 \mathrm{~V}$ | $R \mathrm{~L}=10 \mathrm{k} \Omega$ | $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$ |  | 0.085 | 0.375 | V |
|  |  |  |  | VOL - VEE |  | 0.015 | 0.100 |  |
|  |  |  | $R \mathrm{~L}=1 \mathrm{k} \Omega$ | $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$ |  | 0.105 | 0.400 |  |
|  |  |  |  | VOL - Vee |  | 0.035 | 0.125 |  |
|  |  |  | $R \mathrm{~L}=150 \Omega$ | $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {OH }}$ |  | 0.385 |  |  |
|  |  |  |  | VOL - Vee |  | 0.150 |  |  |
|  |  | $V_{C C}=+3 \mathrm{~V}$ | $R \mathrm{~L}=10 \mathrm{k} \Omega$ | $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {OH }}$ |  | 0.060 | 0.365 |  |
|  |  |  |  | VOL - Vee |  | 0.010 | 0.090 |  |
|  |  |  | $R \mathrm{~L}=1 \mathrm{k} \Omega$ | VCC - VOH |  | 0.075 | 0.390 |  |
|  |  |  |  | VOL - Vee |  | 0.025 | 0.115 |  |
|  |  |  | $R \mathrm{~L}=150 \Omega$ | VCC - VOH |  | 0.275 |  |  |
|  |  |  |  | VOL - VEE |  | 0.070 |  |  |
| Output Current | Iout | $\begin{aligned} & R_{L}=20 \Omega \text { connected to } V_{C C} \text { or } V_{E E}, \\ & V_{C C}=+5 \mathrm{~V} \end{aligned}$ |  |  | $\pm 25$ | $\pm 75$ |  | mA |
| Output Short-Circuit Current | ISC | Sinking or sourcing |  |  |  | $\pm 85$ |  | mA |
| Power-Supply Rejection Ratio | PSRR | $\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}$ OUT $=2 \mathrm{~V}$ |  |  | 60 | 77 |  | dB |

## AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ connected to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Small Signal -3dB Bandwidth | BWSS | Vout $=100 \mathrm{mVp}-\mathrm{p}$ | MAX4414/MAX4416/ <br> MAX4418, $\mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}$ |  | 400 |  | MHz |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}$ |  | 150 |  |  |
| Large Signal -3dB Bandwidth | BWLS | VOUT $=2 \mathrm{Vp}-\mathrm{p}$ | MAX4414/MAX4416/ <br> MAX4418, $\mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}$ |  | 32 |  | MHz |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}$ |  | 75 |  |  |
| Bandwidth for 0.1dB Flatness | BW0.1dB | VOUT $=100 \mathrm{mVp}$-p | MAX4414/MAX4416/ <br> MAX4418, $\mathrm{Av}=+1 \mathrm{~V} / \mathrm{V}$ |  | 43 |  | MHz |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, $A V=+5 V / V$ |  | 16 |  |  |
|  |  | VOUT $=2 \mathrm{Vp}-\mathrm{p}$ | MAX4414/MAX4416/ <br> MAX4418, $\mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}$ |  | 22 |  |  |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}$ |  | 28 |  |  |

## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

AC ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ connected to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{AvCL}^{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | UNITS

## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

## AC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ connected to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{CL}=5 \mathrm{pF}, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

| PARAMETER | SYMBOL |  | NDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{\text {nd }}$ Harmonic Distortion | SFDR | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz} \end{aligned}$ | MAX4414/MAX4416/ MAX4418, Av $=+1 \mathrm{~V} / \mathrm{V}$, Vout $=1 \mathrm{Vp}$-p |  | -84 |  | dBc |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, AV $=+5 \mathrm{~V} / \mathrm{V}$, <br> Vout $=2 \mathrm{Vp}-\mathrm{p}$ |  | -76 |  |  |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+3 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz} \end{aligned}$ | MAX4414/MAX4416/ <br> MAX4418, Av $=+1 \mathrm{~V} / \mathrm{V}$, <br> Vout $=1 \mathrm{Vp}$-p |  | -93 |  |  |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}$, <br> Vout $=2 \mathrm{Vp}$-p |  | -65 |  |  |
| $3{ }^{\text {rd }}$ Harmonic Distortion | SFDR | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \\ & \mathrm{fC}_{\mathrm{C}}=5 \mathrm{MHzz} \end{aligned}$ | MAX4414/MAX4416/ MAX4418, AV $=+1 \mathrm{~V} / \mathrm{V}$, Vout $=1 \mathrm{Vp}$-p |  | -95 |  | dBc |
|  |  |  | $\begin{aligned} & \text { MAX4415/MAX4417/ } \\ & \text { MAX4419, } A v=+5 V / \mathrm{V}, \\ & \text { VOUT }=2 V p-p \end{aligned}$ |  | -80 |  |  |
|  |  | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=+3 \mathrm{~V}, \\ & \mathrm{fC}=5 \mathrm{MHz} \end{aligned}$ | MAX4414/MAX4416/ MAX4418, $\mathrm{Av}=+1 \mathrm{~V} / \mathrm{V}$, Vout $=1 \mathrm{Vp}$-p |  | -95 |  |  |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, $A v=+5 V / V$, <br> Vout $=2 \mathrm{Vp}-\mathrm{p}$ | -67 |  |  |  |

Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

## AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ connected to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Harmonic Distortion | SFDR | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \\ & \mathrm{fC}=5 \mathrm{MHz} \end{aligned}$ | MAX4414/MAX4416/ <br> MAX4418, $\mathrm{Av}=+1 \mathrm{~V} / \mathrm{V}$, <br> VOUT $=1 \mathrm{Vp}$-p |  | 0.007 |  | \% |
|  |  |  | MAX4415/MAX4417/ MAX4419, $\mathrm{Av}=+5 \mathrm{~V} / \mathrm{V}$, Vout $=2 \mathrm{Vp}$-p |  | 0.02 |  |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \\ & \mathrm{fC}_{\mathrm{C}}=5 \mathrm{MHz} \end{aligned}$ | MAX4414/MAX4416/ <br> MAX4418, $\mathrm{A} v=+1 \mathrm{~V} / \mathrm{V}$, <br> VOUT $=1 \mathrm{Vp}$-p |  | 0.003 |  |  |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}$, <br> VOUT $=2 \mathrm{Vp}$-p |  | 0.01 |  |  |
| Two-Tone, Third-Order Intermodulation Distortion | IP3 | $\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, \mathrm{f}_{2}=9.9 \mathrm{MHZ}$ |  |  | -67 |  | dBc |
| Differential Gain Error | DG | $R \mathrm{~L}=150 \Omega, \mathrm{NTSC}$ | MAX4414/MAX4416/ <br> MAX4418, AV $=+1 \mathrm{~V} / \mathrm{V}$ |  | 0.03 |  | \% |
|  |  |  | MAX4414/MAX4416/ <br> MAX4418, AV $=+2 \mathrm{~V} / \mathrm{V}$ |  | 0.04 |  |  |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, AV $=+5 \mathrm{~V} / \mathrm{V}$ |  | 0.05 |  |  |
| Differential Phase Error | DP | $R_{L}=150 \Omega$, NTSC | MAX4414/MAX4416/ <br> MAX4418, $\mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}$ |  | 0.15 |  | degrees |
|  |  |  | MAX4414/MAX4416/ <br> MAX4418, AV $=+2 \mathrm{~V} / \mathrm{V}$ |  | 0.25 |  |  |
|  |  |  | MAX4415/MAX4417/ <br> MAX4419, AV $=+5 \mathrm{~V} / \mathrm{V}$ |  | 0.35 |  |  |

## Low－Power，＋3V／＋5V，400MHz Single－Supply Op Amps with Rail－to－Rail Outputs

## AC ELECTRICAL CHARACTERISTICS（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right.$ connected to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{AvCL}^{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．$)$

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP |
| :--- | :---: | :--- | :---: | :---: |
| Gain Matching |  | MAX4416－MAX4419， <br> VOUT $=100 \mathrm{mVp}-\mathrm{p}, \mathrm{f} \leq 10 \mathrm{MHz}$ | 0.1 | UNITS |
| Phase Matching |  | MAX4416－MAX4419， <br> VoUT $=100 \mathrm{mVp}-\mathrm{p}, \mathrm{f} \leq 10 \mathrm{MHz}$ | dB |  |
| Input Noise－Voltage Density | $\mathrm{e}_{\mathrm{n}}$ | $\mathrm{f}=10 \mathrm{kHz}$ | 0.1 | degrees |
| Input Noise－Current Density | In | $\mathrm{f}=10 \mathrm{kHz}$ | 10 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| Input Capacitance | CIN |  | 0.6 | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| Output Impedance | ZOUT | $\mathrm{f}=1 \mathrm{MHz}$ | 1.8 | pF |
| Capacitive Load Drive |  | No sustained oscillations | 0.5 | $\Omega$ |
| Power－Up 1\％Settling Time <br> （Note 2） |  |  | 120 | pF |
| Crosstalk | XTALK | MAX4416－MAX4419， $\mathrm{f}=10 \mathrm{MHz}$, <br> VOUT $=2 \mathrm{Vp}-\mathrm{p}$ | 1.2 | 100 |

Note 1：All devices are $100 \%$ production tested at $T_{A}=+25^{\circ} \mathrm{C}$ ．Specifications over temperature are guaranteed by design．
Note 2：Guaranteed by design

## Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4414 / \mathrm{MAX} 4416 / \mathrm{MAX} 4418)\right.$ ， $\mathrm{AVCL}=+5 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4415 / \mathrm{MAX} 4417 / \mathrm{MAX} 4419)$ ， $R_{L}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{C}} / 2, C_{L}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）


Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4414 / \mathrm{MAX} 4416 / \mathrm{MAX} 4418)\right.$, $\mathrm{AVCL}=+5 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4415 / \mathrm{MAX} 4417 / \mathrm{MAX} 4419)$, $R_{L}=1 \mathrm{k} \Omega$ to $V_{C C} / 2, C_{L}=5 p F, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



LARGE-SIGNAL GAIN vs. FREQUENCY
(VOUT = 2Vp-p)


MAX4414/MAX4416/MAX4418 SMALL-SIGNAL GAIN WITH CAPACITIVE LOAD AND $22 \Omega$ ISOLATION RESISTOR vs. FREQUENCY


LARGE-SIGNAL GAIN vs. FREQUENCY
(VOUT = 1Vp-p)


MAX4414/MAX4416/MAX4418
GAIN AND PHASE vs. FREQUENCY


## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4414 / \mathrm{MAX} 4416 / \mathrm{MAX} 4418), \mathrm{AVCL}=+5 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4415 / \mathrm{MAX} 4417 / \mathrm{MAX} 4419)\right.$, $R_{L}=1 \mathrm{k} \Omega$ to $V_{C C} / 2, C_{L}=5 p F, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)






Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{N}(\mathrm{MAX} 4414 / \mathrm{MAX} 4416 / \mathrm{MAX} 4418), \mathrm{AVCL}=+5 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4415 / \mathrm{MAX} 4417 / \mathrm{MAX} 4419)\right.$, $R_{L}=1 \mathrm{k} \Omega$ to $V_{C C} / 2, C_{L}=5 p F, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



MAX4415/MAX4417/MAX4419 SMALL-SIGNAL PULSE RESPONSE


## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4414 / \mathrm{MAX} 4416 / \mathrm{MAX} 4418), \mathrm{AVCL}=+5 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4415 / \mathrm{MAX} 4417 / \mathrm{MAX} 4419)\right.$ $R_{L}=1 \mathrm{k} \Omega$ to $V_{C C} / 2, C_{L}=5 p F, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


MAX4415/MAX4417/MAX4419
SMALL-SIGNAL PULSE RESPONSE
(CLOAD = 15pF)



MAX4416-MAX4419 CROSSTALK vs. FREQUENCY


Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs


POWER SUPPLY REJECTION
vs. FREQUENCY


VOLTAGE NOISE DENSITY
vs. FREQUENCY


OUTPUT VOLTAGE SWING
vs. LOAD RESISTANCE


COMMON MODE REJECTION
vs. FREQUENCY


CURRENT NOISE DENSITY
vs. FREQUENCY


## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{N}(\mathrm{MAX} 4414 / \mathrm{MAX} 4416 / \mathrm{MAX} 4418), \mathrm{AVCL}=+5 \mathrm{~V} / \mathrm{N}(\mathrm{MAX} 4415 / \mathrm{MAX} 4417 / \mathrm{MAX} 4419)\right.$, $R_{L}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


MAX4414/MAX4416/MAX4418 DISTORTION vs. OUTPUT VOLTAGE


MAX4414/MAX4416/MAX4418 DISTORTION vs. LOAD RESISTANCE


MAX4415/MAX4417/MAX4419 DISTORTION vs. FREQUENCY



MAX4415/MAX4417/MAX4419 DISTORTION vs. LOAD RESISTANCE


## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+1.75 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}(\mathrm{MAX} 4414 / \mathrm{MAX} 4416 / \mathrm{MAX} 4418), \mathrm{AVCL}=+5 \mathrm{~V} / \mathrm{N}(\mathrm{MAX} 4415 / \mathrm{MAX} 4417 / \mathrm{MAX} 4419)\right.$, $R_{L}=1 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, C_{L}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


# Low－Power，＋3V／＋5V，400MHz Single－Supply Op Amps with Rail－to－Rail Outputs 

Pin Description

| PIN |  |  | NAME |  |
| :---: | :---: | :---: | :---: | :--- |
| MAX4414 <br> MAX4415 | MAX4416 <br> MAX4417 | MAX4418 <br> MAX4419 |  |  |
| $1,5,8$ | - | - |  | No Connection．Not internally connected． |
| 3 | - | - | IN＋ | Amplifier Noninverting Input |
| - | 3 | 3 | INA＋ | Amplifier A Noninverting Input |
| - | 5 | 5 | INB＋ | Amplifier B Noninverting Input |
| - | - | 10 | INC＋ | Amplifier C Noninverting Input |
| - | - | 12 | IND＋ | Amplifier D Noninverting Input |
| 2 | - | - | IN－ | Amplifier Inverting Input |
| - | 2 | 2 | INA－ | Amplifier A Inverting Input |
| - | 6 | 6 | INB－ | Amplifier B Inverting Input |
| - | - | 9 | INC－ | Amplifier C Inverting Input |
| - | - | 13 | IND－ | Amplifier D Inverting Input |
| 4 | 4 | 11 | VEE | Negative Power Supply |
| 6 | - | - | OUT | Amplifier Output |
| - | 1 | 1 | OUTA | Amplifier A Output |
| - | 7 | 7 | OUTB | Amplifier B Output |
| - | - | 8 | OUTC | Amplifier C Output |
| - | - | 14 | OUTD | Amplifier D Output |
| 7 | 8 | 4 | VCC | Positive Power Supply |

Detailed Description
The MAX4414－MAX4419 single－supply，rail－to－rail，volt－ age－feedback amplifiers achieve high slew rates and bandwidths，while consuming only 1.6 mA of supply current per amplifier．Excellent harmonic distortion and differential gain／phase performance make these ampli－ fiers an ideal choice for a wide variety of video and RF signal－processing applications．
Internal feedback around the output stage ensures low open－loop output impedance，reducing gain sensitivity to load variations．This feedback also produces demand－driven current bias to the output transistors．

Rail－to－Rail Outputs，Ground－Sensing Input The MAX4414－MAX4419 input common－mode range extends from（VEE－ 0.1 V ）to（ $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$ ）with excellent common－mode rejection．Beyond this range，the ampli－ fier output is a nonlinear function of the input，but does not undergo phase reversal or latchup．
The output swings to within 105mV of either power－sup－ ply rail with a $1 \mathrm{k} \Omega$ load．Input ground sensing and rail－ to－rail output substantially increase the dynamic range． With a symmetric input in a single +5 V application，the
input can swing $3.6 \mathrm{Vp}-\mathrm{p}$ ，and the output can swing $4.6 \mathrm{Vp}-\mathrm{p}$ with minimal distortion．

Output Capacitive Loading and Stability The MAX4414－MAX4419 are optimized for AC perfor－ mance．They are not designed to drive highly reactive loads．Such loads decrease phase margin and may produce excessive ringing and oscillation．The use of an isolation resistor eliminates this problem（Figure 1）． Figure 2 is a graph of the Optimal Isolation Resistor （RISO）vs．Capacitive Load．
The Small－Signal Gain vs．Frequency with Capacitive Load and No Isolation Resistor graph in the Typical Operating Characteristics shows how a capacitive load causes excessive peaking of the amplifier＇s frequency response if the capacitor is not isolated from the ampli－ fier by a resistor．A small isolation resistor（usually $20 \Omega$ to $30 \Omega$ ）placed before the reactive load prevents ring－ ing and oscillation．At higher capacitive loads，AC per－ formance is controlled by the interaction of the load capacitance and the isolation resistor．The Small－Signal Gain vs．Frequency with Capacitive Load and $22 \Omega$ Isolation Resistor graph shows the effect of a $22 \Omega$ isola－ tion resistor on closed－loop response．

# Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs 

Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.

## Applications Information

## Choosing Resistor Values

Unity-Gain Configuration
The MAX4414/MAX4416/MAX4418 are internally compensated for unity gain. When configured for unity gain, the devices require a $24 \Omega$ feedback resistor ( $\mathrm{RF}_{\mathrm{F}}$ ). This resistor improves $A C$ response by reducing the $Q$ of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.


Figure 1. Driving a Capacitive Load Through an Isolation Resistor


Figure 2. Capacitive Load vs. Isolation Resistance

## Inverting and Noninverting Configurations

Select the gain-setting feedback ( $\mathrm{R}_{\mathrm{F}}$ ) and input ( $\mathrm{R}_{\mathrm{G}}$ ) resistor values that best fit the application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration $\left(R_{F}=R_{G}\right)$ using $1 \mathrm{k} \Omega$ resistors, combined with 1.8 pF of amplifier input capacitance and 1 pF of PC board capacitance, causes a pole at 114 MHz . Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1 \mathrm{k} \Omega$ resistors to $100 \Omega$ extends the pole frequency to 1.14 GHz , but could limit output swing by adding $200 \Omega$ in parallel with the amplifier's load resistor.
Note: For high gain applications where output offset voltage is a consideration, choose Rs to be equal to the parallel combination of $R_{F}$ and $R_{G}$ (Figures 3a and 3b):

$$
R_{S}=\frac{R_{F} \times R_{G}}{R_{F}+R_{G}}
$$



Figure 3a. Noninverting Gain Configuration


Figure 3b. Inverting Gain Configuration

# Low－Power，＋3V／＋5V，400MHz Single－Supply Op Amps with Rail－to－Rail Outputs 

## Video Line Driver

The MAX4414－MAX4419 are designed to minimize dif－ ferential gain error and differential phase error to 0．03\％／ $0.15^{\circ}$ respectively，making them ideal for driving video loads．See Figure 4.

Active Filters
The low distortion and high bandwidth of the MAX4414－MAX4419 make them ideal for use in active filter circuits．Figure 5 is a 15 MHz lowpass，multiple－ feedback active filter using the MAX4414．

$$
\begin{gathered}
\mathrm{GAIN}=\frac{\mathrm{R} 2}{\mathrm{R} 1} \\
\mathrm{f}_{0}=\frac{1}{2 \pi} \times \sqrt{\frac{1}{\mathrm{R} 2 \times \mathrm{R} 3 \times \mathrm{C} 1 \times \mathrm{C} 2}} \\
\mathrm{Q}=\frac{\frac{\mathrm{C} 2}{\sqrt{\mathrm{C} 1 \times \mathrm{C} 2 \times \mathrm{R} 2 \times \mathrm{R} 3}}}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}}
\end{gathered}
$$

ADC Input Buffer errors in high－speed ADC applications．The input buffer is usually required to rapidly charge and discharge the ADC＇s input，which is often capacitive（see Output Capacitive Loading and Stability）．In addition，since a high－speed ADC＇s input impedance often changes very rapidly during the conversion cycle，measurement accuracy must be maintained using an amplifier with very low output impedance at high frequencies．The combination of high speed，fast slew rate，low noise， and a low and stable distortion over load make the MAX4414－MAX4419 ideally suited for use as buffer amplifiers in high－speed ADC applications．

## Layout and Power－Supply Bypassing

These amplifiers operate from a single +2.7 V to +5.5 V power supply．Bypass $V_{C C}$ to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close to the pin as possible．


Figure 4．Video Line Driver

Maxim recommends using microstrip and stripline tech－ niques to obtain full bandwidth．Design the PC board for a frequency greater than 1 GHz to prevent amplifier performance degradation due to board parasitics． Avoid large parasitic capacitances at inputs and out－ puts．Whether or not a constant－impedance board is used，observe the following guidelines：
－Do not use wire－wrap boards due to their high induc－ tance．
－Do not use IC sockets because of the increased par－ asitic capacitance and inductance．
－Use surface－mount instead of through－hole compo－ nents for better high－frequency performance．
－Use a PC board with at least two layers；it should be as free from voids as possible．
－Keep signal lines as short and as straight as possible． Do not make $90^{\circ}$ turns；round all corners．

Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs


Figure 5. Multiple-Feedback Lowpass Filter

## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Pin Configurations


## Ordering Information

 (continued)| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX4416EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ |
| MAX4416ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO |
| MAX4417EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ |
| MAX4417ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO |
| MAX4418EUD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 TSSOP |
| MAX4419EUD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 TSSOP |

## Chip Information

MAX4414/MAX4415 TRANSISTOR COUNT: 95
MAX4416/MAX4417 TRANSISTOR COUNT: 184
MAX4418/MAX4419 TRANSISTOR COUNT: 268
PROCESS: Bipolar

Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Package Information


## Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs



# Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs 



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time

22 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products

