

Integrated Transceiver Modules for WLAN 802.11 b/g/n, Bluetooth, Bluetooth Low Energy (BLE), and ANT

FEATURES

- IEEE 802.11b,g,n,d,e,i compliant
- Typical WLAN Transmit Power:
 - o 20.0dBm, 11 Mbps,CCK (b)
 - o 14.5dBm, 54 Mbps,OFDM (g)
 - o 12.5dBm, 65 Mbps,OFDM (n)
- Typical WLAN Sensitivity:
 - o -89dBm, 8% PER, 11 Mbps
 - o -76dBm, 10% PER, 54 Mbps
 - -73dBm, 10% PER, 65 Mbps
- Bluetooth 2.1+EDR, Power Class 1.5
- Full support for BLE 4.0 and ANT
- Miniature footprint: 18 mm x 13 mm
- Low height profile: 1.9 mm
- U.FL connector for external antenna
- Terminal for PCB/Chip antenna feeds
- Integrated band-pass filter
- Worldwide acceptance: FCC (USA), IC (Canada), and ETSI (Europe)
- Modular certification allows reuse of LSR FCC ID and ETSI certification without repeating the expensive testing on your end product
- Compact design based on Texas Instruments WL1271L Transceiver
- Seamless integration with TI OMAP™ application processors
- SDIO Host data path interfaces
- Bluetooth Advanced Audio Interfaces
- Low power operation mode
- RoHS compliant

APPLICATIONS

- Security
- HVAC Control, Smart Energy
- Sensor Networks
- Medical

DESCRIPTION

The TiWi-BLE module is a high performance 2.4 GHz IEEE 802.11 b/g/n, Bluetooth 2.1+EDR, and Bluetooth Low Energy (BLE) 4.0 radio in a cost effective, pre-certified footprint.

The module realizes the necessary PHY/MAC layers to support WLAN applications in conjunction with a host processor over a SDIO interface.

The module also provides a Bluetooth platform through the HCl transport layer. Both WLAN and Bluetooth share the same antenna port.

Need to get to market quickly? Not an expert in 802.11 or Bluetooth? Need a custom antenna? Would you like to own the design? Would you like a custom design? Not quite sure what you need? Do you need help with your host board? LS Research Design Services will be happy to develop custom hardware or software, integrate the design, or license the design so you can manufacture yourself. Contact us at sales@lsr.com or call us at 262-375-4400.

ORDERING INFORMATION

Order Number	Description
450-0064	TiWi-BLE Module with U.FL connector for external antenna (Tray, SPQ = 100)
450-0064R	TiWi-BLE Module with U.FL connector for external antenna (Tape and Reel SPQ = 1000)

Table 1 Orderable TiWi-BLE Part Numbers

MODULE ACCESSORIES

Order Number	Description
001-0001	2.4GHz Dipole Antenna with Reverse Polarity SMA Connector
080-0001	U.FL to Reverse Polarity SMA Bulkhead Cable 105mm

Table 2 Module Accessories

BLOCK DIAGRAM

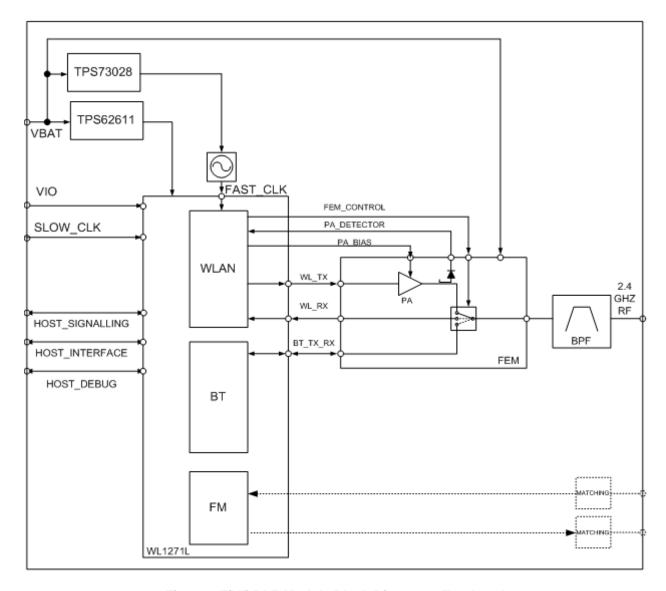


Figure 1 TiWi-BLE Module Block Diagram - Top-Level

TABLE OF CONTENTS

FEATURES 1
APPLICATIONS1
DESCRIPTION1
ORDERING INFORMATION
MODULE ACCESSORIES
BLOCK DIAGRAM
TIWI-BLE MODULE FOOTPRINT AND PIN DEFINITIONS 6
PIN DESCRIPTIONS7
INI FILE RADIO PARAMETERS9
Absolute Maximum Ratings
Bluetooth Low Energy RF Characteristics16
Bluetooth Low Energy RF Characteristics16 WLAN POWER-UP SEQUENCE17
•
WLAN POWER-UP SEQUENCE

The information in this document is subject to change without notice.

TiWi-BLE TRANSCEIVER MODULE DATASHEET

SOLDERING RECOMMENDATIONS	27
Recommended Reflow Profile for Lead Free Solder	27
CLEANING	28
OPTICAL INSPECTION	28
REWORK	28
SHIPPING, HANDLING, AND STORAGE	28
Shipping	28
Handling	28
Moisture Sensitivity Level (MSL)	28
Storage	28
Repeating Reflow Soldering	
AGENCY CERTIFICATIONS	30
MECHANICAL DATA	31
TAPE AND REEL SPECIFICATION	33
DEVICE MARKINGS	34
Rev 1 Devices	34
Rev 2 Devices	34
Rev 3 Devices	35
CONTACTING I S RESEARCH	36

TIWI-BLE MODULE FOOTPRINT AND PIN DEFINITIONS

To apply the TiWi-BLE module, it is important to use the module pins in your application as they are designated in below and in the corresponding pin definition table found on pages 7 and 8. Not all the pins on the TiWi-BLE module may be used, as some are reserved for future functionality.

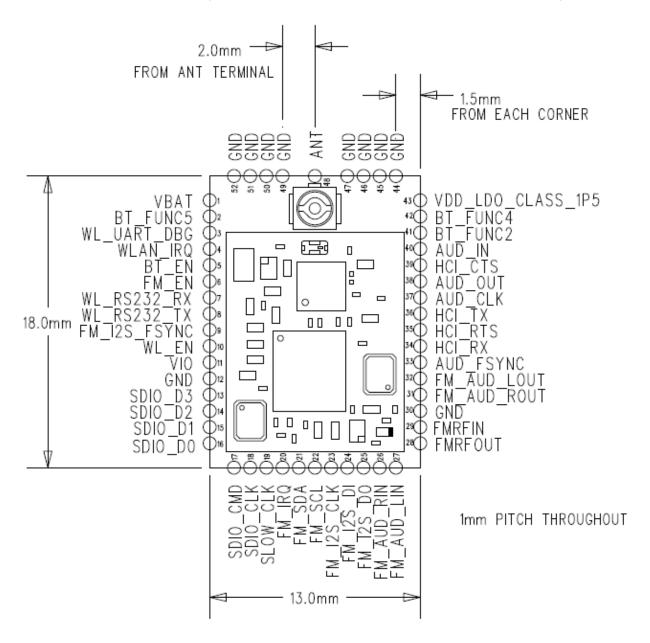


Figure 2 TiWi-BLE Pinout (Top View)

PIN DESCRIPTIONS

Module Pin	Name	I/O Type	Buffer Type	Logic Level	Description
1	VBAT	PI	-	-	Battery Voltage 3.6 VDC Nominal (3.0-4.8 VDC)
2	BT_FUNC5	DO	4 mA	1.8 VDC	HOST_WU (*)
3	WL_UART_DBG	DIO	4 mA	1.8 VDC	WL_UART_DBG
4	WLAN_IRQ	DO	4 mA	1.8 VDC	WLAN Interrupt Request
5	BT_EN	DI		1.8 VDC	Bluetooth Enable
6	FM_EN	DI		1.8 VDC	NOT SUPPORTED, CONNECT TO GND
7	WL_RS232_RX	DI	ı	1.8 VDC	WLAN TEST UART RX (*)
8	WL_RS232_TX	DO	4 mA	1.8 VDC	WLAN TEST UART TX (*)
9	FM_I2S_FSYNC	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
10	WL_EN	DI	ı	1.8 VDC	WLAN Enable
11	VIO	PI	ı	-	POWER SUPPLY FOR 1.8 VDC DIGITAL DOMAIN
12	GND	GND	ı	-	Ground
13	SDIO_D3	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
14	SDIO_D2	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
15	SDIO_D1	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
16	SDIO_D0	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
17	SDIO_CMD	DIO	8 mA	1.8 VDC	HOST PULL UP
18	SDIO_CLK	DI	ı	1.8 VDC	HOST PULL UP
19	SLOW_CLK	DI	-	1.8 VDC	SLEEP CLOCK (32 kHz)
20	FM_IRQ	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
21	FM_SDA	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
22	FM_SCL	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
23	FM_I2S_CLK	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
24	FM_I2S_DI	DI	4 mA	1.8 VDC	NOT SUPPORTED, CONNECT TO GND
25	FM_I2S_DO	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
26	FM_AUD_RIN	Al	ı	-	NOT SUPPORTED, CONNECT TO GND
27	FM_AUD_LIN	Al	-	-	NOT SUPPORTED, CONNECT TO GND
28	FMRFOUT	AO	-	-	NOT SUPPORTED, NO CONNECT
29	FMRFIN	Al	-	-	NOT SUPPORTED, CONNECT TO GND
30	GND	GND	-	-	Ground
31	FM_AUD_ROUT	AO	-	-	NOT SUPPORTED, NO CONNECT

TiWi-BLE TRANSCEIVER MODULE DATASHEET

Module Pin	Name	I/O Type	Buffer Type	Logic Level	Description
32	FM_AUD_LOUT	AO	-	-	NOT SUPPORTED, NO CONNECT
33	AUD_FSYNC	DIO	4 mA	1.8 VDC	PCM I/F
34	HCI_RX	DI	8 mA	1.8 VDC	Bluetooth HCI UART RX (*)
35	HCI_RTS	DO	4 mA	1.8 VDC	Bluetooth HCI UART RTS (*)
36	HCI_TX	DIO	8 mA	1.8 VDC	Bluetooth HCI UART TX
37	AUD_CLK	DO	4 mA	1.8 VDC	PCM I/F (*)
38	AUD_OUT	DO	4 mA	1.8 VDC	PCM I/F (*)
39	HCI_CTS	DI	4 mA	1.8 VDC	Bluetooth HCI UART CTS (*)
40	AUD_IN	DI	4 mA	1.8 VDC	PCM I/F (*)
41	BT_FUNC2	DO	4 mA	1.8 VDC	Bluetooth Wakeup / DC2DC Mode (*)
42	BT_FUNC4	DO	4 mA	1.8 VDC	BT_UARTD (DEBUG) (*)
43	VDD_LDO_CLASS_1P5	NC	ı	-	VBAT VOLTAGE PRESENT, NO CONNECT
44	GND	GND	•	-	Ground
45	GND	GND	ı	ı	Ground
46	GND	GND	ı	ı	Ground
47	GND	GND	ı	1	Ground
48	ANT	RF		1	Antenna terminal for WLAN and Bluetooth (Note [1])
49	GND	GND	-	-	Ground
50	GND	GND	-	-	Ground
51	GND	GND	-	-	Ground
52	GND	GND	-	1	Ground

PI = Power Input PO =

PO = Power Output

DI = Digital Input (1.8 VDC Logic Level)

DO=Digital Output (1.8 VDC Logic Level)

AI = Analog Input

AO = Analog Output

AIO = Analog Input/Output

RF = RF Port GND = Ground

Note[1]: Antenna terminal presents d.c. short circuit to ground.

 $(\mbox{\ensuremath{^{\star}}})$ indicates that pin is capable of bidirectional operation, but is used as the type shown.

Table 3 TiWi-BLE Module Pin Descriptions

All digital I/O signals use 1.8V logic. If the host microcontroller does not support 1.8V logic, then level shifters MUST be used.

TiWi-BLE TRANSCEIVER MODULE DATASHEET

INI FILE RADIO PARAMETERS

There is an ini file that contains WLAN radio parameters which are critical to both the RF performance and EMC compliance of the module.

The ini file available on the LSR website is only intended to be used with the LSR WLAN Eval Tool. Note that this ini file will not work when using the TiWi-BLE module in normal operation which typically involves an operating system. To use the TiWi-BLE module in normal operation, refer to specifics contained in the TiWi Family INI File Radio Parameter User Guide which is also available for download on the LSR website.

The settings specified in the appropriate ini file must be used to operate the module in compliance with the modular certification for FCC or ETSI. There is a unique ini file for operating the module in compliance with FCC regulations, and a different ini file for operating the module in compliance with the ETSI regulations.

ELECTRICAL SPECIFICATIONS

The majority of these characteristics are based on controlling and conditioning the tests using the TiWi-BLE control software application. Other control conditions may require these values to be recharacterized by the customer.

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Power supply voltage (VBAT) ⁽⁴⁾⁽⁵⁾	-0.5	+5.5	V
Digital supply voltage (VIO)	-0.5	2.1	V
Voltage on any GPIO	-0.5	VIO + 0.5	V
Voltage on any Analog Pins ⁽³⁾	-0.5	2.1	V
RF input power, antenna port		+10	dBm
Operating temperature ⁽⁶⁾	-40	+85	°C
Storage temperature	-55	+125	∘C

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device and are not
 covered by the warranty. These are stress ratings only and functional operation of the device at these or any other
 conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.
- All parameters are measured as follows unless stated otherwise: VDD_IN=1.8V, VDDIO_1.8V=1.8V, VDD_LDO_CLASS1P5=3.6V
- 3. Analog pins: XTALP, XTALM, RFIOBT, DRPWRXBM, DRPWRXBP, DRPWTXB, and also FMRFINP, FMRFINM, FMRFINM, FMAUDLIN, FMAUDRIN, FMAUDLOUT, FMAUDROUT
- The following signals are from the VBAT group, PMS_VBAT and VDD_LDO_CLASS1P5 (if BT class 1.5 direct VBAT is used).
- 5. Maximum allowed depends on accumulated time at that voltage; 4.8V for 7 years lifetime, 5.5V for 6 hours cumulative.
- 6. The device can be reliably operated for 5,000 active-WLAN cumulative hours at T_A of 85°C.

Table 4 Absolute Maximum Ratings

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
V _{BAT}	3.0	3.6	4.8	V
VIO	1.62	1.8	1.92	V
V _{IH}	0.65 x VIO	-	VIO	V
V _{IL}	0	-	0.35 x VIO	V
V _{OH} @ 4, 8 mA	VIO - 0.45	-	VIO	V
V _{OL} @ 4, 8 mA	0	-	0.45	V
Ambient temperature range	-40	25	85	۰C

Table 5 Recommended Operating Conditions

General Characteristics

Parameter	Min	Тур	Max	Unit
WLAN RF frequency range	2412		2472	MHz
WLAN RF data rate	1	802.11 b/g/n rates supported	65	Mbps
BT RF frequency Range	2402		2480	MHz

Table 6 General Characteristics

Power Consumption - WLAN

Parameter	Test Conditions	Min	Тур	Max	Unit
CCK (802.11b) TX Current	2437 MHz, V_{BAT} =3.6V, T_{amb} =+25°C Po=20dBm, 11 Mbps CCK L=1200 bytes, t_{delay} (idle)=4 μ S	-	280	-	mA
OFDM (802.11g) TX Current	2437 MHz, V_{BAT} =3.6V, T_{amb} =+25°C Po=14.5 dBm, 54 Mbps OFDM L=1200 bytes, t_{delay} (idle)=4 μ S	-	185	-	mA
OFDM (802.11n) TX Current	2437 MHz, V_{BAT} =3.6V, T_{amb} =+25°C Po=12.5dBm, 65 Mbps OFDM L=1200 bytes, t_{delay} (idle)=4 μ S	-	165	-	mA
CCK (802.11b) RX Current		-	100	-	mA
OFDM (802.11g) RX Current		-	100	-	mA
OFDM (802.11n) RX Current		-	100	-	mA
Dynamic Mode [1]		-	<1.2	-	mA

^[1] Total Current from V_{BAT} for reception of Beacons with DTIM=1 TBTT=100 mS, Beacon duration 1.6ms, 1 Mbps beacon reception in Listen Mode.

Table 7 WLAN Power Consumption

Power Consumption - Bluetooth

Parameter	Test Conditions	Min	Тур	Max	Unit
GFSK TX Current	Constant Transmit, DH5, PRBS9	-	45	-	mA
EDR TX Current	Constant Transmit, 2DH5,3DH5, PRBS9	-	43	-	mA
GFSK RX Current	Constant Receive, DH1	-	35	-	mA
EDR RX Current	Constant Receive, 2DH5, 3DH5	-	41	-	mA
Deep Sleep Current	Deep Sleep Mode	-	70	-	μΑ

Table 8 Bluetooth Power Consumption

DC Characteristics - General Purpose I/O

Parameter	Test Conditions	Min	Тур	Max	Unit
VIO Current			-	16	mA
Logic input low, V _{IL}		0	-	0.35 x VIO	V
Logic input high, V _{IH}		0.65 x VIO	-	VIO	V
Logic output low, V _{OL} (Full Drive)	lout = 8 mA	0	-	0.45	V
	lout = 4 mA	0	-	0.45	V
Logic output low, V _{OL}	lout = 1 mA	0	-	0.112	V
(Reduced Drive)	lout = 0.09 mA	0	-	0.01	V
Logic output high, V _{OH}	lout = -8 mA	VIO - 0.45	-	VIO	V
(Full Drive)	lout = -4 mA	VIO - 0.45	-	VIO	V
Logic output high, V _{OH}	lout = -1 mA	VIO - 0.112	-	VIO	V
(Reduced Drive)	lout = -0.3 mA	VIO - 0.033	-	VIO	V

Table 9 DC Characteristics General Purpose I/O

WLAN RF Characteristics

WLAN Transmitter Characteristics (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	Unit
11 Mbps CCK (802.11b) TX Output Power	11 Mbps CCK , 802.11(b) Mask Compliance, 35% EVM RMS power over TX packet	-	20	-	dBm
9 Mbps OFDM (802.11g) TX Output Power	9 Mbps OFDM , 802.11(g) Mask Compliance, -8 dB EVM RMS power over TX packet	-	19	-	dBm
54 Mbps OFDM (802.11g) TX Output Power	54 Mbps OFDM, 802.11(g) Mask Compliance, -25 dB EVM RMS power over TX packet	-	14.5	-	dBm
6.5 Mbps OFDM (802.11n) TX Output Power 6.5 Mbps OFDM, 802.11(n) Mask Compliance, -5 dB EVM RMS power over TX packet		-	19	-	dBm
65 Mbps OFDM (802.11n) TX Output Power	65 Mbps OFDM, 802.11(n) Mask Compliance, -28 dB EVM RMS power over TX packet	-	12.5	-	dBm

Table 10 WLAN Transmitter RF Characteristics

WLAN Receiver Characteristics (TA=25°C, VBAT=3.6 V) [1]

Parameter	Test Conditions	Min	Тур	Max	Unit
1 Mbps CCK (802.11b) RX Sensitivity	8% PER	-	-97	-	dBm
11 Mbps CCK (802.11b) RX Sensitivity	8% PER	-	-89	-	dBm
9 Mbps OFDM (802.11g) RX Sensitivity	10% PER	-	-90	-	dBm
54 Mbps OFDM (802.11g) RX Sensitivity	10% PER	-	-76	-	dBm
6.5 Mbps OFDM (802.11n) RX Sensitivity	10% PER	-	-91	-	dBm
65 Mbps OFDM (802.11n) RX Sensitivity	10% PER	-	-73	-	dBm
11 Mbps CCK (802.11b) RX Overload Level	8% PER	-	-	-10	dBm
6 Mbps OFDM (802.11g) RX Overload Level	10% PER	-	-	-20	dBm
54 Mbps OFDM (802.11g) RX Overload Level.	10% PER	-	-	-20	dBm
65 Mbps OFDM (802.11n) RX Overload Level	10% PER	-	-	-20	dBm

^[1] Up to 2 dB degradation at Channel 13 for 11g/n modes and up to 2 dB degradation at Channel 14 for 11b/g/n modes.

Table 11 WLAN Receiver RF Characteristics

Bluetooth RF Characteristics

Bluetooth Transmitter GFSK Characteristics, Class 1.5 (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	Bluetooth Spec	Unit
GFSK RF Output Power		-	9.5	-	-	dBm
EDR RF Output Power		-	7	-		dBm
Power Control Step Size		2	4	8	2-8	dB
EDR Relative Power		-2		1	-4/+1	dB

Table 12 Bluetooth Transmitter RF Characteristics

Bluetooth Receiver Characteristics (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	Bluetooth Spec	Unit
GFSK Sensitivity	BER=0.1%	ı	-92	ı	-70	dBm
EDR 2 Mbps Sensitivity	BER=0.01%	-	-91	-	-70	dBm
EDR 3 Mbps Sensitivity	BER=0.01%	-	-82	-	-70	dBm
GFSK Maximum Input Level	BER=0.1%	-	-5	-	-20	dBm
EDR 2 Maximum Input Level	BER=0.1%	-	-10	-	-	dBm
EDR 3 Maximum Input Level	BER=0.1%	-	-10	-	-	-

Table 13 Bluetooth Receiver RF Characteristics

Bluetooth Low Energy RF Characteristics

Bluetooth BLE Transmitter GMSK and EDR Characteristics, Class 1.5 (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	BT Spec	Unit
GMSK RF Output Power		-	10	-	-	dBm
Power Control Step Size		2	4	8	2-8	dB

⁽¹⁾ BLE spec = 10dBm max can be achieved using normal system losses due to filters etc, or by reducing value through VS command.

Table 14 Bluetooth Low Energy Transmitter RF Characteristics

Bluetooth BLE Receiver Characteristics (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	BT Spec	Unit
GMSK Sensitivity	PER = 30.8%	-	-92	-	-70	dBm
GMSK Maximum Input Level	PER = 30.8%	-	-5	-	-20	dBm

Table 15 Bluetooth Low Energy Receiver RF Characteristics

WLAN POWER-UP SEQUENCE

The following sequence describes device power-up from shutdown. Only the WLAN Core is enabled; the Bluetooth and FM cores are disabled.

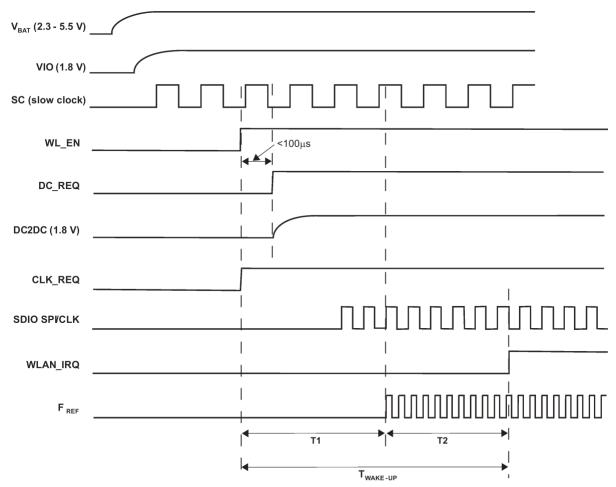
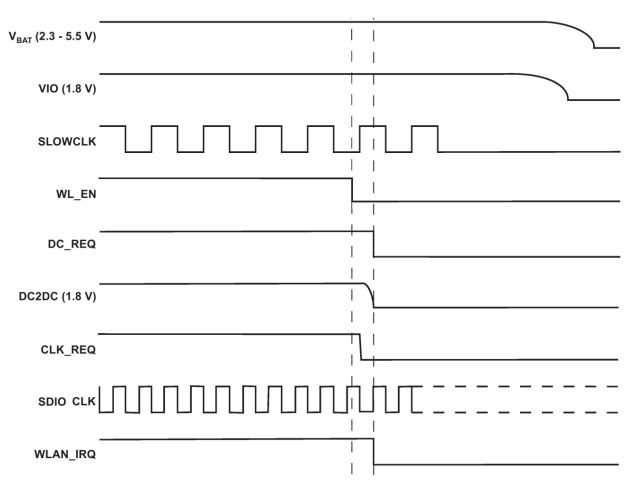


Figure 3 TiWi-BLE Power-up Sequence Requirements

- No signals are allowed on the IO pins if no IO power is supplied, because the IOs are not 'failsafe'. Exceptions are CLK_REQ_OUT, SLOWCLK, XTALP, and AUD_xxx, which are failsafe and can tolerate external voltages with no VDDS and DC2DC".
- 2. VBAT, VIO, and SLOWCLK must be available before WL_EN.
- 3. Twakeup = T1 + T2

The duration of T1 is defined as the time from WL_EN=high until Fref is valid for the SoC. T1=~55ms


The duration of T2 depends on:

Operating system

- Host enumeration for the SDIO/WSPI
- PLL configuration
- Firmware download
- Releasing the core from reset
- Firmware initialization

The information in this document is subject to change without notice.

WLAN POWER-DOWN SEQUENCE

Notes:

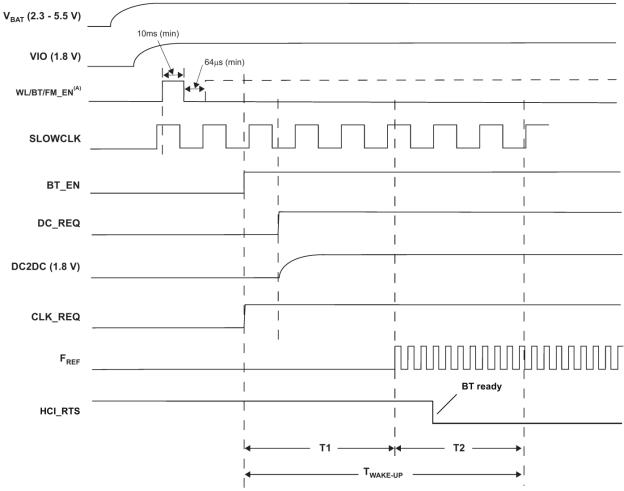

- 1. The DC2DC(1.8V) signal can be monitored on BT_FUNC2 Module Pin (#41)
- 2. DC_REQ and CLK_REQ are internal signals shown for reference only

Figure 4 TiWi-BLE Module Power-down Sequence Requirements

- 1. DC_REQ will go low only if WLAN is the only core working. Otherwise if another core is working (e.g BT) it will stay high.
- 2. CLK_REQ will go low only if WLAN is the only core working. Otherwise if another core is working and using the F_{REF} (e.g BT) it will stay high.
- 3. If WLAN is the only core that is operating, WL_EN must remain de-asserted for at least 64μ sec before it is re-asserted.

BLUETOOTH POWER-UP SEQUENCE

The following sequence describes device power up from shutdown. Only the Bluetooth core is enabled; the WLAN core is disabled.

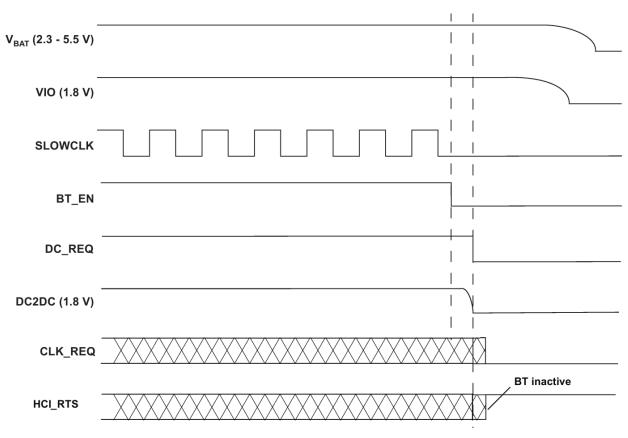

- Notes:
- 1. (A) After this sequence is completed, the device is in the low VIO-leakage state while in shutdown
- 2. The DC2DC(1.8V) signal can be monitored on BT_FUNC2 Module Pin (#41)
- 3. DC_REQ, CLK_REQ, and F_{REF} are internal signals shown for reference only

Figure 5 Bluetooth Power-up Sequence

Power up requirements:

- No signals are allowed on the IO pins if no IO power supplied, because the IOs are not 'failsafe'. Exceptions are CLK_REQ_OUT, SLOWCLK, XTALP, and AUD_xxx, which are failsafe and can tolerate external voltages with no VDDS and DC2DC.
- VDDS and SLOWCLK must be stable before releasing BT_EN.
- 3. Fast clock must be stable maximum 55 ms after BT_EN goes HIGH.

BLUETOOTH POWER-DOWN SEQUENCE

Notes:

- 1. The DC2DC(1.8V) signal can be monitored on BT_FUNC2 Module Pin (#41)
- 2. DC_REQ and CLK_REQ are internal signals shown for reference only

Figure 6 Bluetooth Power-down Sequence

The TiWi-BLE module indicates completion of Bluetooth power up sequence by asserting HCI_RTS low. This occurs up to 100 ms after BT_EN goes high.

TIWI-BLE TRANSCEIVER MODULE DATASHEET

ENABLE SCHEME

The module has 3 enable pins, one for each core: WL_EN, and BT_EN and FM_EN. Presently, there are 2 modes of active operation now supported: WLAN and Bluetooth. It is recommended that the FM_EN pin be grounded to disable the FM section. It is also recommended that the FM section be disabled by Bluetooth HCI commands.

- 1. Each core is operated independently by asserting each EN signal to Logic '1'. In this mode it is possible to control each core asynchronously and independently.
- Bluetooth mode operation. WLAN will be operated through WL_EN asynchronously and independently of Bluetooth.

IRQ OPERATION

- 1. The default state of the WLAN_IRQ prior to firmware initialization is 0.
- 2. During firmware initialization, the WLAN_IRQ is configured by the SDIO module; a WLAN_IRQ changes its state to 1.
- 3. A WLAN firmware interrupt is handled as follows:
 - a. The WLAN firmware creates an Interrupt-to-Host, indicated by a 1-to-0 transition on the WLAN_IRQ line (host must be configured as active-low or falling-edge detect).
 - b. After the host is available, depending on the interrupt priority and other host tasks, it masks the firmware interrupt. The WLAN_IRQ line returns to 1 (0-to-1 transition on the WLAN_IRQ line).
 - The host reads the internal register status to determine the interrupt sources the register is cleared after the read.
 - d. The host processes in sequence all the interrupts read from this register
 - e. The host unmasks the firmware interrupts.
- 4. The host is ready to receive another interrupt from the WLAN device.

SLOW (32 KHZ) CLOCK SOURCE REQUIREMENTS

The slow clock is always supplied from an external source. It is input on the SLOW_CLK pin, and can be a digital signal in the range of VIO only. For slow clock frequency and accuracy refer to Table 16. The external slow clock must be stable before the system exits from shut down mode.

Parameter [1]	Condition	Symbol	Min	Тур	Max	Unit
Input slow clock frequency				32768		Hz
Input slow clock accuracy	WLAN, BT				+/-250	ppm
Input transition time T _r /T _f – 10% to 90%		T _r /T _f			100	ns
Frequency input duty cycle			30	50	70	%
Input voltage limits	Square wave, DC coupled	VIH	0.65 x VDDS		VDDS	V_{peak}
VIL	0		0.35 x VDDS			
Input impedance			1			MW
Input capacitance					5	pF
Rise and fall time					100	ns
Phase noise	1 kHz			-125		dBc/Hz

[1] Slow clock is a fail safe input

Table 16 Slow Clock Source Requirements

BLUETOOTH HCI UART

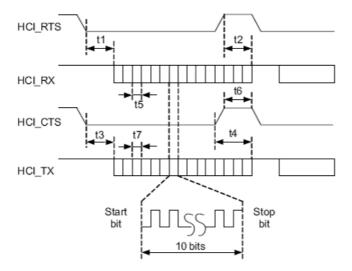


Figure 7 Bluetooth UART Timing

Symbol	Characteristics	Condition	Min	Тур	Max	Unit
	Baud rate	Most rates ⁽¹⁾	37.5		4000	kbps
t5, t7	Baud rate accuracy	Receive/Transmit			-2.5 to 1.5	%
t3	CTS low to TX_DATA on		0	2		μS
t4	CTS high to TX_DATA off	Hardware flow control			1	byte
t6	CTS-high pulse width		1			bit
t1	RTS low to RX_DATA on		0	2		μS
t2	RTS high to RX_DATA off	Interrupt set to 1/4 FIFO			16	byte
tb	Bit width (Jitter)		See a	pplication	note ⁽¹⁾	% relative to ideal bit width

⁽¹⁾ Some exceptions: e.g. for 19.2-MHz max baud rate = 3.84 kbps.

Table 17 Bluetooth UART Timing

Figure 8 Bluetooth UART Data Frame

Symbol	Description
STR	Start bit
D0Dn	Data bits (LSB first)
PAR	Parity bit (optional)
STP	Stop bit

Table 18 Bluetooth UART Data Frame

SDIO INTERFACE TIMING

	PARAMETER				UNIT
t _{CR}	R Delay time, assign relative address or data transfer mode Read-command CMD valid to card-response CMD valid				Clock cycles
t _{cc}	Delay time, CMD command valid to CMD command va	lid	58		Clock cycles
t _{RC}	RC Delay time, CMD response valid to CMD command valid				Clock cycles
t _{AC}	Access time, CMD command valid to SD3-SD0 read of	lata valid	2		Clock cycles

Table 19 SDIO Interface Read (see Figure 9)

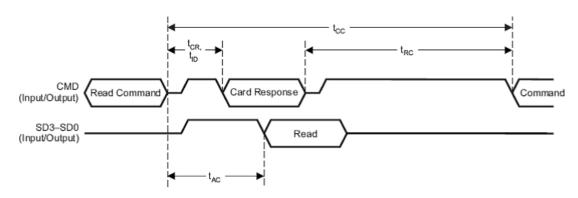
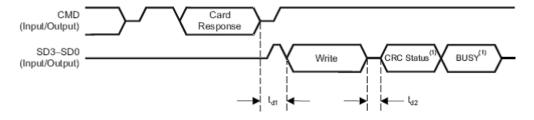



Figure 9 SDIO Single Block Read

	PARAMETER	MIN	MAX	UNIT
t _{d1}	Delay time, CMD card response invalid to SD3-SD0 write data valid	2		Clock cycles
t _{d2}	Delay time, SD3-SD0 write data invalid end to CRC status valid	2	2	Clock cycles

Table 20 SDIO Interface Write (see Figure 10)

CRC status and busy waveforms are only for data line 0. Data lines 1-3 are N/A. The busy waveform is optional, and
may not be present.

Figure 10 SDIO Single Block Write

SDIO CLOCK TIMING

Over Recommended Operating Conditions

Note: all timing parameters are indicated for the maximum Host-interface clock frequency.

	PARAMETER				UNIT
f _{clock}	Clock frequency, CLK	C _L ≤ 30 pF	0	26	MHz
DC	Low/high duty cycle	C _L ≤ 30 pF	40	60	%
t _{TLH}	Rise time, CLK	C _L ≤ 30 pF		4.3	ns
t _{THL}	Fall time, CLK	C _L ≤ 30 pF		3.5	ns
t _{ISU}	Setup time, input valid before CLK ↑	C _L ≤ 30 pF	4		ns
t _{IH}	Hold time, input valid after CLK ↑	C _L ≤ 30 pF	5		ns
todly	Delay time, CLK↓ to output valid	C _L ≤ 30 pF	2	12	ns

Table 21 SDIO Clock Timing

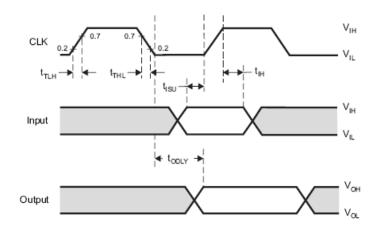
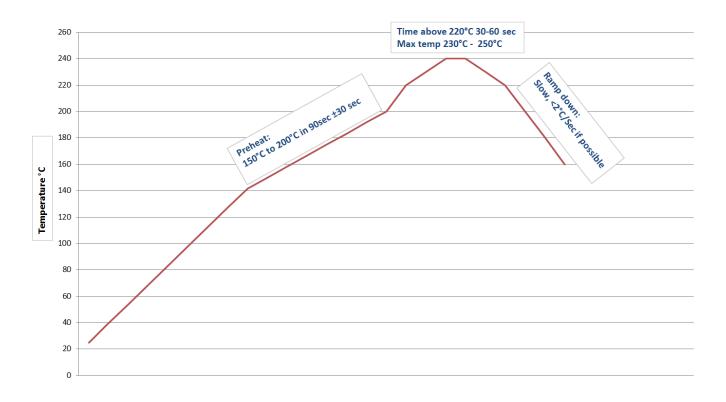



Figure 11 SDIO Clock Timing

SOLDERING RECOMMENDATIONS

Recommended Reflow Profile for Lead Free Solder

Note: The quality of solder joints on the castellations ('half vias') where they contact the host board should meet the appropriate IPC Specification. See IPC-A-610-D Acceptability of Electronic Assemblies, section 8.2.4 Castellated Terminations."

Figure 12 Reflow Profile

CLEANING

In general, cleaning the populated modules is strongly discouraged. Residuals under the module cannot be easily removed with any cleaning process.

- Cleaning with water can lead to capillary effects where water is absorbed into the gap between the host board and the module. The combination of soldering flux residuals and encapsulated water could lead to short circuits between neighboring pads. Water could also damage any stickers or labels.
- Cleaning with alcohol or a similar organic solvent will likely flood soldering flux residuals into the RF shield, which is not accessible for post-washing inspection. The solvent could also damage any stickers or labels.
- Ultrasonic cleaning could damage the module permanently.

OPTICAL INSPECTION

After soldering the Module to the host board, consider optical inspection to check the following:

- Proper alignment and centering of the module over the pads.
- Proper solder joints on all pads.
- Excessive solder or contacts to neighboring pads, or vias.

REWORK

The module can be unsoldered from the host board if the Moisture Sensitivity Level (MSL) requirements are met as described in this datasheet.

Never attempt a rework on the module itself, e.g. replacing individual components. Such actions will terminate warranty coverage.

SHIPPING, HANDLING, AND STORAGE

Shipping

Bulk orders of the TiWi-BLE modules are delivered in trays of 100 or reels of 1,000.

Handling

The TiWi-BLE modules contain a highly sensitive electronic circuitry. Handling without proper ESD protection may destroy or damage the module permanently. ESD protection may destroy or damage the module permanently.

Moisture Sensitivity Level (MSL)

Per J-STD-020, devices rated as MSL 4 and not stored in a sealed bag with desiccant pack should be baked prior to use.

After opening packaging, devices that will be subjected to reflow must be mounted within 72 hours of factory conditions (<30°C and 60% RH) or stored at <10% RH.

Bake devices for 48 hours at 125°C.

Storage

Please use this product within 6 months after receipt. Any product used after 6 months of receipt needs to have solderability confirmed before use.

The product shall be stored without opening the packing under the ambient temperature from 5 to 35deg.C and humidity from 20 to 70%RH. (Packing materials, in particular, may be deformed at the temperatures above this range.)

Do not store in salty air or in an environment with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NOX.

Do not store in direct sunlight.

The product should not be subject to excessive mechanical shock.

Repeating Reflow Soldering

Only a single reflow soldering process is encouraged for host boards.

TIWI-BLE TRANSCEIVER MODULE DATASHEET

AGENCY CERTIFICATIONS

FCC ID: TFB-TIWI1-01, 15.247.

IC ID: 5969A-TIWI101, RSS 210

ETSI: The European Telecommunications Standards Institute. It produces the radio and communication standards for Europe. Our testing is to the ETSI standards EN 300 328 and EN 301 489, which are the portions of the relevant directives needed for a radio to obtain a CE mark.

SAR: This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, OET Bulletin 65 Supp. C, RSS-102 and Safety Code 6.

MECHANICAL DATA

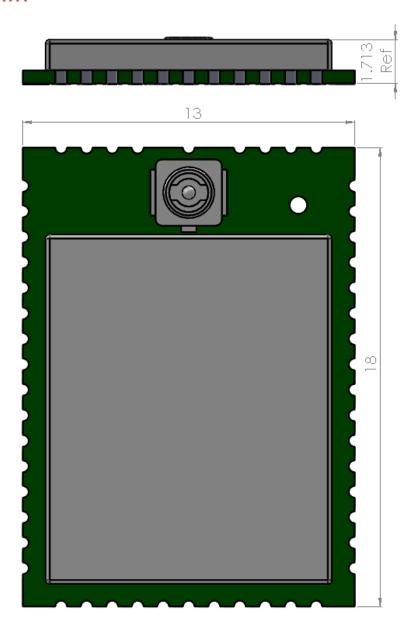
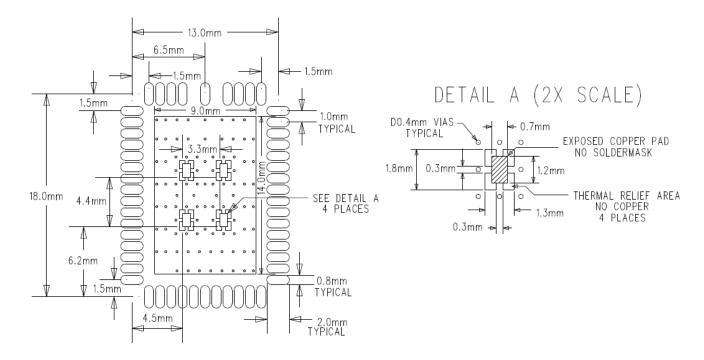
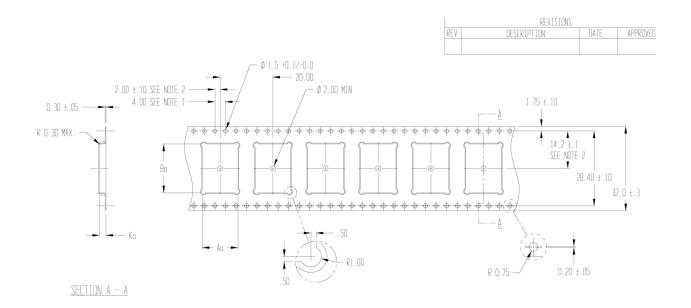



Figure 13 Module Mechanical Dimensions (Maximum Module Height = 1.9 mm)



LAYOUT NOTES:

- 1 MINIMUM 4-LAYER PCB WITH SECOND LAYER GROUND PLANE
- 2 FOUR GROUND PADS BENEATH MODULE TO BE THERMALLY TIED TO TOP LAYER GROUND POUR (SEE DETAIL A). CONNECT TOP SIDE POUR TO LAYER 2 GROUND PLANE USING AMPLE VIAS.
- 3 AVOID LONG ROUTES ON TOP LAYER BENEATH MODULE. VIA FANOUT BENEATH MODULE IS ACCEPTABLE,

Figure 14 TiWi-BLE Recommended PCB Footprint (Top View)

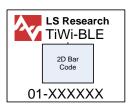
TAPE AND REEL SPECIFICATION

Ao = 13.50 Bo = 18.50 Ko = 2.50

- 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
- 2. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED
- AS TRUE POSITION OF POCKET, NOT POCKET HOLE

 3. AO AND BO ARE CALCULATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKET.

Figure 15 TiWi-BLE Tape and Reel Specification



DEVICE MARKINGS

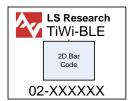
Rev 1 Devices

WL1271L: WL1271BYFVR PG3.32

Front End: TQM679002A

Where 01 = revision

XXXXXX = incremental serial number


2D Barcode Format is Data Matrix Standard

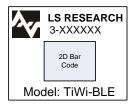
Rev 2 Devices

WL1271L: WL1271BYFVR PG3.32

Front End: TQM679002A

Changed PCB supplier.

Where 02 = revision XXXXXX = incremental serial number 2D Barcode Format is Data Matrix Standard



Rev 3 Devices

WL1271L: WL1271BYFVR PG3.32

Front End: TQM679002A

- LSR logo changed from red to black.
- Improvements to prevent solder from wicking to bottom pad on module pin 48.
- Switched the locations of the serial number and model name on the label.

Where 3 = Revision

XXXXXX = incremental serial number

2D Barcode Format is Data Matrix Standard

TIWI-BLE TRANSCEIVER MODULE DATASHEET

CONTACTING LS RESEARCH

Headquarters LS Research, LLC

W66 N220 Commerce Court Cedarburg, WI 53012-2636

USA

Tel: (262) 375-4400 Fax: (262) 375-4248

Website www.lsr.com

Wiki wiki.lsr.com

Technical Support <u>forum.lsr.com</u>

Sales Contact <u>sales@lsr.com</u>

The information in this document is provided in connection with LS Research (hereafter referred to as "LSR") products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of LSR products. EXCEPT AS SET FORTH IN LSR'S TERMS AND CONDITIONS OF SALE LOCATED ON LSR'S WEB SITE, LSR ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL LSR BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF LSR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. LSR makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. LSR does not make any commitment to update the information contained herein. Unless specifically provided otherwise, LSR products are not suitable for, and shall not be used in, automotive applications. LSR's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.