MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

General Description
The MAX11102/MAX11103/MAX11105/MAX11106/ MAX11110/MAX11111/MAX11115/MAX11116/ MAX11117 are 12-/10-/8-bit, compact, high-speed, lowpower, successive approximation analog-to-digital converters (ADCs). These high-performance ADCs include a high-dynamic range sample-and-hold and a high-speed serial interface. These ADCs accept a full-scale input from OV to the power supply or to the reference voltage.
The MAX11102/MAX11103/MAX11106/MAX11111 feature dual, single-ended analog inputs connected to the ADC core using a 2:1 MUX. The devices also include a separate supply input for data interface and a dedicated input for reference voltage. In contrast, the single-channel devices generate the reference voltage internally from the power supply.
These ADCs operate from a 2.2 V to 3.6 V supply and consume only 5.2 mW at 3 Msps and 3.7 mW at 2 Msps . The devices include full power-down mode and fast wake-up for optimal power management and a highspeed 3-wire serial interface. The 3-wire serial interface directly connects to SPI, QSPITM, and MICROWIRE® ${ }^{\circledR}$ devices without external logic.
Excellent dynamic performance, low voltage, low power, ease of use, and small package size make these converters ideal for portable battery-powered data-acquisition applications, and for other applications that demand low-power consumption and minimal space.
These ADCs are available in a 10-pin TDFN package, 10-pin $\mu \mathrm{MAX®}$ ® package, and a 6-pin SOT23 package. These devices operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

- 2Msps/3Msps Conversion Rate, No Pipeline Delay
- 12-/10-/8-Bit Resolution
- 1-/2-Channel, Single-Ended Analog Inputs
- Low-Noise 73dB SNR
- Variable I/O: 1.5V to 3.6V (Dual-Channel Only) Allows the Serial Interface to Connect Directly to $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3V Digital Systems
- 2.2V to 3.6V Supply Voltage
- Low Power

3.7 mW at 2 Msps

5.2 mW at 3 Msps

Very Low Power Consumption at $2.5 \mu \mathrm{~A} / \mathrm{ksps}$

- External Reference Input (Dual-Channel Devices Only)
- 1.3 A A Power-Down Current
- SPI-/QSPI-/MICROWIRE-Compatible Serial Interface
- 10-Pin, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ TDFN Package
- 10-Pin, 3mm x 5mm μ MAX Package
- 6-Pin, $2.8 \mathrm{~mm} \times 2.9 \mathrm{~mm}$ SOT23 Package
- Wide $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operation

Applications
Data Acquisition
Portable Data Logging
Medical Instrumentation
Battery-Operated Systems
Communication Systems
Automotive Systems
Ordering Information

PART	PIN-PACKAGE	BITS	SPEED (Msps)	NO. OF CHANNELS	TOP MARK
MAX11102AUB +	10μ MAX-EP*	12	2	2	+ +ABBA
MAX11102ATB +	10 TDFN-EP*	12	2	2	+ AWI
MAX11103AUB +	10μ MAX-EP*	12	3	2	+ AAAU
MAX11103ATB +	10 TDFN-EP*	12	3	2	+ AWV

Ordering Information continued at end of data sheet.

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range. +Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
QSPI is a trademark of Motorola, Inc.
MICROWIRE is a registered trademark of National Semiconductor Corp.
$\mu \mathrm{MAX}$ is a registered trademark of Maxim Integrated Products, Inc.
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

ABSOLUTE MAXIMUM RATINGS

VDD to GND .. 0.3 V to +4 V	
REF, OVDD, AIN1, AIN2, AIN to GND	
	$(\mathrm{VDD}+0.3 \mathrm{~V})$ and +4 V
$\overline{\mathrm{CS}}, \mathrm{SCLK}, \mathrm{CHSEL}$, DOUT TO GND...........-0.3V to the lower of	
	VOVDD + 0.3V) and +4V
AGND to GND-0.3V to +0.3V
Input/Output Current (all pins)	50 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=$	$\left.70^{\circ} \mathrm{C}\right)$

10-Pin TDFN (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ 10-Pin $\mu \mathrm{MAX}$ (derate $8.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	º C)....... 1951 mW C)........ 707.3 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	+ $150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	+ $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	+ $260^{\circ} \mathrm{C}$

位
6-Pin SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}$ REF $=\mathrm{V} D \mathrm{D}, \mathrm{VOVDD}=\mathrm{V} D \mathrm{D} . \mathrm{MAX11102:} \mathrm{fSCLK}=32 \mathrm{MHz}, 50 \%$ duty cycle, 2 Msps . $\mathrm{MAX} 11103:$ fSCLK $=48 \mathrm{MHz}$, 50% duty cycle, 3 Msps . CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			12			Bits
Integral Nonlinearity	INL				± 1	LSB
Differential Nonlinearity	DNL	No missing codes			± 1	LSB
Offset Error	OE			± 0.3	± 3	LSB
Gain Error	GE	Excluding offset and reference errors		± 1	± 3	LSB
Total Unadjusted Error	TUE			± 1.5		LSB
Channel-to-Channel Offset Matching				± 0.4		LSB
Channel-to-Channel Gain Matching				± 0.05		LSB
DYNAMIC PERFORMANCE (MAX11103: $\mathrm{f}_{\text {AIN }}=1 \mathrm{MHz}, \mathrm{MAX11102:} \mathrm{f}_{\text {AIN }}=0.5 \mathrm{MHz}$)						
Signal-to-Noise and Distortion	SINAD	MAX11103	70	72		dB
		MAX11102	70	72.5		
Signal-to-Noise Ratio	SNR	MAX11103	70.5	72		dB
		MAX11102	70.5	73		
Total Harmonic Distortion	THD	MAX11103		-85	-75	dB
		MAX11102		-85	-76	
Spurious-Free Dynamic Range	SFDR	MAX11103	76	85		dB
		MAX11102	77	85		
Intermodulation Distortion	IMD	MAX11103: $f_{1}=1.0003 \mathrm{MHz}, f_{2}=0.99955 \mathrm{MHz}$ MAX11102: $\mathrm{f}_{1}=500.15 \mathrm{kHz}, \mathrm{f}_{2}=499.56 \mathrm{kHz}$		-84		dB
Full-Power Bandwidth		-3dB point		40		MHz
Full-Linear Bandwidth		SINAD > 68dB		2.5		MHz
Small-Signal Bandwidth				45		MHz
Crosstalk				-90		dB

ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103) (continued)

 50% duty cycle, 3 Msps . CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONVERSION RATE						
Throughput		MAX11103	0.03		3	Msps
		MAX11102	0.02		2	
Conversion Time		MAX11103	260			ns
		MAX11102	391			
Acquisition Time	tACQ		52			ns
Aperture Delay		From $\overline{\mathrm{CS}}$ falling edge		4		ns
Aperture Jitter				15		ps
Serial-Clock Frequency	fCLK	MAX11103	0.48		48	MHz
		MAX11102	0.32		32	
ANALOG INPUT (AIN1, AIN2)						
Input Voltage Range	VAIN_		0		VREF	V
Input Leakage Current	IILA			0.002	± 1	$\mu \mathrm{A}$
Input Capacitance	CAIN_	Track		20		pF
		Hold		4		
EXTERNAL REFERENCE INPUT (REF)						
Reference Input-Voltage Range	Vref		1		$\begin{gathered} \hline \text { VDD + } \\ 0.05 \end{gathered}$	V
Reference Input Leakage Current	IILR	Conversion stopped		0.005	± 1	$\mu \mathrm{A}$
Reference Input Capacitance	CREF			5		pF
DIGITAL INPUTS (SCLK, $\overline{\mathbf{C S}}$, CHSEL)						
Digital Input High Voltage	V_{IH}		0.75 x Vovid			V
Digital Input Low Voltage	VIL				$\begin{aligned} & 0.25 \times \\ & \text { VovDD } \end{aligned}$	V
Digital Input Hysteresis	VHYST			$0.15 x$ VovDD		V
Digital Input Leakage Current	IIL	Inputs at GND or VDD		0.001	± 1	$\mu \mathrm{A}$
Digital Input Capacitance	CIn			2		pF
DIGITAL OUTPUT (DOUT)						
Output High Voltage	VoH	ISOURCE $=200 \mu \mathrm{~A}$	0.85 x Vovid			V
Output Low Voltage	VoL	ISINK $=200 \mu \mathrm{~A}$			$\begin{gathered} 0.15 \times \\ \text { VOVDD } \end{gathered}$	V
High-Impedance Leakage Current	IOL				± 1.0	$\mu \mathrm{A}$
High-Impedance Output Capacitance	Cout			4		pF

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power,
 Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103) (continued)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {OVDD }}=\mathrm{V}_{\text {DD }} . \operatorname{MAX11102:~fSCLK}=32 \mathrm{MHz}, 50 \%$ duty cycle, $2 \mathrm{Msps} . \operatorname{MAX} 11103:$ fSCLK $=48 \mathrm{MHz}$, 50% duty cycle, 3 Msps . CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Positive Supply Voltage	VDD		2.2		3.6	V
Digital I/O Supply Voltage	VoVDD		1.5		VDD	V
Positive Supply Current (Full-Power Mode)	IVDD	MAX11103, $\mathrm{V}_{\text {AIN_ }}=\mathrm{V}_{\text {GND }}$			3.3	mA
		MAX11102, $\mathrm{V}_{\text {AIN }}=\mathrm{V}_{\text {GND }}$			2.6	
	IovDD	MAX11103, $\mathrm{V}_{\text {AIN }}=\mathrm{V}_{\text {GND }}$			0.33	
		MAX11102, VAIN_ = VGND			0.22	
Positive Supply Current (FullPower Mode), No Clock	IVDD	MAX11103	1.98			mA
		MAX11102	1.48			
Power-Down Current	IPD	Leakage only		1.3	10	$\mu \mathrm{A}$
Line Rejection		$\mathrm{V}_{\mathrm{DD}}=+2.2 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.2 \mathrm{~V}$		0.7		LSB/V
TIMING CHARACTERISTICS (Note 1)						
Quiet Time	tQ	(Note 2)	4			ns
$\overline{\mathrm{CS}}$ Pulse Width	t1	(Note 2)	10			ns
$\overline{\overline{C S}}$ Fall to SCLK Setup	t2	(Note 2)	5			ns
$\overline{\overline{C S}}$ Falling Until DOUT HighImpedance Disabled	t3	(Note 2)	1			ns
Data Access Time After SCLK Falling Edge	t4	Figure 2, VovDd $=2.2 \mathrm{~V}-3.6 \mathrm{~V}$			15	ns
		Figure 2, VoVDD $=1.5 \mathrm{~V}-2.2 \mathrm{~V}$			16.5	
SCLK Pulse Width Low	t5	Percentage of clock period (Note 2)	40		60	\%
SCLK Pulse Width High	t6	Percentage of clock period (Note 2)	40		60	\%
Data Hold Time From SCLK Falling Edge	t7	Figure 3	5			ns
SCLK Falling Until DOUT HighImpedance	t8	Figure 4 (Note 2)	2.5		14	ns
Power-Up Time		Conversion cycle (Note 2)			1	Cycle

ELECTRICAL CHARACTERISTICS (MAX11105)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to 3.6 V, fsCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, $2 \mathrm{Msps}, \mathrm{CDOUT}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			12			Bits
Integral Nonlinearity	INL				± 1	LSB
Differential Nonlinearity	DNL	No missing codes			± 1	LSB
Offset Error	OE			± 0.3	± 3	LSB
Gain Error	GE	Excluding offset and reference errors		± 1	± 3	LSB
Total Unadjusted Error	TUE			± 1.5		LSB
DYNAMIC PERFORMANCE						
Signal-to-Noise and Distortion	SINAD	f AIN $=500 \mathrm{kHz}$	70	72.5		dB
Signal-to-Noise Ratio	SNR	f AIN $=500 \mathrm{kHz}$	70.5	73		dB

ELECTRICAL CHARACTERISTICS (MAX11105) (continued)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to 3.6 V, fsCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, $2 \mathrm{Msps}, \mathrm{CDOUT}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Total Harmonic Distortion	THD	$\mathrm{f}_{\text {AlN }}=500 \mathrm{kHz}$		-85	-76	dB
Spurious-Free Dynamic Range	SFDR	$\mathrm{f}_{\text {AIN }}=500 \mathrm{kHz}$	77	85		dB
Intermodulation Distortion	IMD	$\mathrm{f}_{1}=500.15 \mathrm{kHz}, \mathrm{f}_{2}=499.56 \mathrm{kHz}$		-84		dB
Full-Power Bandwidth		-3dB point		40		MHz
Full-Linear Bandwidth		SINAD > 68dB		2.5		MHz
Small-Signal Bandwidth				45		MHz
CONVERSION RATE						
Throughput			0.02		2	Msps
Conversion Time			391			ns
Acquisition Time	tACQ		52			ns
Aperture Delay		From $\overline{\mathrm{CS}}$ falling edge		4		ns
Aperture Jitter				15		ps
Serial Clock Frequency	fCLK		0.32		32	MHz

ANALOG INPUT

Input Voltage Range	VAIN		0	VDD	V
Input Leakage Current	IILA		0.002	± 1	$\mu \mathrm{~A}$
Input Capacitance	CAIN	Track	20	pF	
		Hold	4		

DIGITAL INPUTS (SCLK, $\overline{\mathbf{C S}}, \mathrm{CHSEL})$

Digital Input High Voltage	V_{IH}		$\begin{aligned} & 0.75 \times \\ & \text { VVDD } \end{aligned}$		V
Digital Input Low Voltage	VIL			$\begin{aligned} & 0.25 \times \\ & \text { VVDD } \end{aligned}$	V
Digital Input Hysteresis	VHYST		$\begin{aligned} & 0.15 x \\ & \text { VVDD } \end{aligned}$		V
Digital Input Leakage Current	IIL	Inputs at GND or VDD	0.001	± 1	$\mu \mathrm{A}$
Digital Input Capacitance	CIN		2		pF

DIGITAL OUTPUT (DOUT)

| Output High Voltage | VOH | ISOURCE = 200 AA | $0.85 \times$
 VVDD | V |
| :--- | :---: | :--- | :--- | :---: | :---: |
| Output Low Voltage | VOL | ISINK = 200 | | |

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power,
 Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11105) (continued)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to 3.6 V , fSCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, $2 \mathrm{Msps}, \mathrm{CDOUT}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Positive Supply Current (FullPower Mode), No Clock	IVDD			1.48		mA
Power-Down Current	IPD	Leakage only		1.3	10	$\mu \mathrm{A}$
Line Rejection		$\mathrm{V}_{\mathrm{DD}}=+2.2 \mathrm{~V}$ to +3.6 V		0.7		LSB/V
TIMING CHARACTERISTICS (Note 1)						
Quiet Time	tQ	(Note 2)	4			ns
$\overline{\overline{C S}}$ Pulse Width	t_{1}	(Note 2)	10			ns
$\overline{\overline{C S}}$ Fall to SCLK Setup	t2	(Note 2)	5			ns
$\overline{\mathrm{CS}}$ Falling Until DOUT HighImpedance Disabled	t3	(Note 2)	1			ns
Data Access Time After SCLK Falling Edge	t4	Figure 2, V $\mathrm{VDD}=+2.2 \mathrm{~V}$ to +3.6 V			15	ns
SCLK Pulse Width Low	t5	Percentage of clock period (Note 2)	40		60	\%
SCLK Pulse Width High	t6	Percentage of clock period (Note 2)	40		60	\%
Data Hold Time From SCLK Falling Edge	t7	Figure 3	5			ns
SCLK Falling Until DOUT HighImpedance	t8	Figure 4 (Note 2)	2.5		14	ns
Power-Up Time		Conversion cycle (Note 2)			1	Cycle

ELECTRICAL CHARACTERISTICS (MAX11106)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {OVDD }}=\mathrm{V}_{\mathrm{DD}}$, fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, $3 \mathrm{Msps} ; \mathrm{CDOUT}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			10			Bits
Integral Nonlinearity	INL				± 0.4	LSB
Differential Nonlinearity	DNL	No missing codes			± 0.4	LSB
Offset Error	OE			± 0.5	± 1	LSB
Gain Error	GE	Excluding offset and reference errors		0	± 1	LSB
Total Unadjusted Error	TUE			± 0.5		LSB
Channel-to-Channel Offset Matching				± 0.05		LSB
Channel-to-Channel Gain Matching				± 0.05		LSB
DYNAMIC PERFORMANCE						
Signal-to-Noise and Distortion	SINAD	$\mathrm{f}_{\text {AlN }}=1 \mathrm{MHz}$	61	61.8		dB
Signal-to-Noise Ratio	SNR	$\mathrm{f}_{\text {AIN }}=1 \mathrm{MHz}$	61	61.8		dB
Total Harmonic Distortion	THD	$\mathrm{f}_{\text {AlN }}=1 \mathrm{MHz}$		-83	-74	dB
Spurious-Free Dynamic Range	SFDR	$\mathrm{f}_{\text {AlN }}=1 \mathrm{MHz}$	75			dB

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11106) (continued)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {OVDD }}=\mathrm{V}_{\text {DD }}, ~ f S C L K=48 \mathrm{MHz}, 50 \%$ duty cycle, $3 \mathrm{Msps} ; \mathrm{C}_{\text {DOUT }}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Intermodulation Distortion	IMD	$\mathrm{f}_{1}=1.0003 \mathrm{MHz}, \mathrm{f}_{2}=0.99955 \mathrm{MHz}$	-82		dB
Full-Power Bandwidth		-3dB point	40		MHz
Full-Linear Bandwidth		SINAD > 60dB	2.5		MHz
Small-Signal Bandwidth			45		MHz
Crosstalk			-90		dB
CONVERSION RATE					
Throughput			0.03	3	Msps
Conversion Time			260		ns
Acquisition Time	tACQ		52		ns
Aperture Delay		From $\overline{\mathrm{CS}}$ falling edge	4		ns
Aperture Jitter			15		ps
Serial-Clock Frequency	fCLK		0.48	48	MHz
ANALOG INPUT (AIN1, AIN2)					
Input Voltage Range	VAIN_		0	VREF	V
Input Leakage Current	IILA		0.002	± 1	$\mu \mathrm{A}$
Input Capacitance	CAIN_	Track	20		pF
		Hold	4		
EXTERNAL REFERENCE INPUT (REF)					
Reference Input-Voltage Range	Vref		1	$\begin{gathered} \text { VDD + } \\ 0.05 \end{gathered}$	V
Reference Input Leakage Current	IILR	Conversion stopped	0.005	± 1	$\mu \mathrm{A}$
Reference Input Capacitance	CreF		5		pF
DIGITAL INPUTS (SCLK, $\overline{\mathbf{C S}}$, CHSEL)					
Digital Input-High Voltage	V_{IH}		$0.75 \times$ VovDD		V
Digital Input-Low Voltage	VIL			$0.25 \times$ Vovid	V
Digital Input Hysteresis	VHYST		$0.15 \times$ VovDd		V
Digital Input Leakage Current	I/L	Inputs at GND or V_{DD}	0.001	± 1	$\mu \mathrm{A}$
Digital Input Capacitance	CIN		2		pF
DIGITAL OUTPUT (DOUT)					
Output-High Voltage	VOH	ISOURCE $=200 \mu \mathrm{~A}$	$0.85 \times$ VovDD		V
Output-Low Voltage	VoL	ISINK $=200 \mu \mathrm{~A}$		$0.15 \times$ VovDd	V
High-Impedance Leakage Current	IOL			± 1.0	$\mu \mathrm{A}$
High-Impedance Output Capacitance	Cout		4		pF

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power,
 Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11106) (continued)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {OVDD }}=\mathrm{V}_{\text {DD }}$, fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, 3 Msps ; CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Positive Supply Voltage	VDD		2.2		3.6	V
Digital I/O Supply Voltage	VovDd		1.5		VDD	V
Positive Supply Current (FullPower Mode)	IVDD	$\mathrm{V}_{\text {AIN_ }}=\mathrm{V}_{\text {GND }}$			3.3	mA
	IovDD	$V_{\text {AIN_ }}=V_{\text {GND }}$			0.33	
Positive Supply Current (FullPower Mode), No Clock	IVDD		1.98			mA
Power-Down Current	IPD	Leakage only		1.3	10	$\mu \mathrm{A}$
Line Rejection		V DD $=+2.2 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~V}$ REF $=2.2 \mathrm{~V}$		0.17		LSB/V
TIMING CHARACTERISTICS (Note 1)						
Quiet Time	tQ	(Note 2)	4			ns
$\overline{\mathrm{CS}}$ Pulse Width	t1	(Note 2)	10			ns
$\overline{\text { CS Fall to SCLK Setup }}$	t2	(Note 2)	5			ns
$\overline{\mathrm{CS}}$ Falling Until DOUT HighImpedance Disabled	t3	(Note 2)	1			ns
Data Access Time After SCLK Falling Edge (Figure 2)	t4	VOVDD $=2.2 \mathrm{~V}-3.6 \mathrm{~V}$			15	ns
		VOVDD $=1.5 \mathrm{~V}-2.2 \mathrm{~V}$			16.5	
SCLK Pulse Width Low	t5	Percentage of clock period (Note 2)	40		60	\%
SCLK Pulse Width High	t6	Percentage of clock period (Note 2)	40		60	\%
Data Hold Time From SCLK Falling Edge	t7	Figure 3	5			ns
SCLK Falling Until DOUT HighImpedance	t8	Figure 4 (Note 2)	2.5		14	ns
Power-Up Time		Conversion cycle (Note 2)			1	Cycle

ELECTRICAL CHARACTERISTICS (MAX11110/MAX11117)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V} . \mathrm{MAX11110}$: fSCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, 2 Msps . MAX 11117 : fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, 3 Msps . CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			10			Bits
Integral Nonlinearity	INL				± 1	LSB
Differential Nonlinearity	DNL	No missing codes			± 1	LSB
Offset Error	OE	MAX11117		± 0.5	± 1.65	LSB
		MAX11110		± 0.3	± 1.2	
Gain Error	GE	Excluding offset and reference errors, MAX11117		± 0.7	± 1.4	LSB
		Excluding offset and reference errors, MAX11110		± 0.15	± 1	
Total Unadjusted Error	TUE			± 1		LSB

ELECTRICAL CHARACTERISTICS (MAX11110/MAX11117) (continued)

$(\mathrm{V} D \mathrm{D}=2.2 \mathrm{~V}$ to 3.6 V . MAX11110: fSCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, 2 Msps . MAX 11117 : fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, 3 Msps . CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC PERFORMANCE (MAX11117: f AIN $=1 \mathrm{MHz}$, MAX11110: f AIN $=0.5 \mathrm{MHz}$)						
Signal-to-Noise and Distortion	SINAD	MAX11117	59	61.5		dB
		MAX11110	60.5	61.5		
Signal-to-Noise Ratio	SNR	MAX11117	59	61.5		dB
		MAX11110	60.5	61.5		
Total Harmonic Distortion	THD	MAX11117		-85	-74	dB
		MAX11110		-85	-73	
Spurious-Free Dynamic Range	SFDR	MAX11117	75			dB
		MAX11110	75			
Intermodulation Distortion	IMD	MAXX11117: $f_{1}=1.0003 \mathrm{MHz}, f_{2}=0.99955 \mathrm{MHz}$ MAX11110: $\mathrm{f}_{1}=500.15 \mathrm{kHz}, \mathrm{f}_{2}=499.56 \mathrm{kHz}$		-82		dB
Full-Power Bandwidth		-3dB point		40		MHz
Full-Linear Bandwidth		SINAD > 60dB		2.5		MHz
Small-Signal Bandwidth				45		MHz
CONVERSION RATE						
Throughput		MAX11117	0.03		3	Msps
		MAX11110	0.02		2	
Conversion Time		MAX11117	260			ns
		MAX11110	391			
Acquisition Time	tACQ		52			ns
Aperture Delay		From $\overline{\mathrm{CS}}$ falling edge		4		ns
Aperture Jitter				15		ps
Serial Clock Frequency	fCLK	MAX11117	0.48		48	MHz
		MAX11110	0.32		32	

ANALOG INPUT (AIN)

Input Voltage Range	VAIN		0	VDD	V
Input Leakage Current	IILA		0.002	± 1	$\mu \mathrm{~A}$
Input Capacitance	CAIN	Track	20	pF	
		Hold	4		

DIGITAL INPUTS (SCLK, $\overline{\mathbf{C S}}, \mathrm{CHSEL})$

Digital Input-High Voltage	VIH		$0.75 \times$ VDD	V
Digital Input-Low Voltage	VIL		$0.25 \times$ VDD	V
Digital Input Hysteresis	VHYST		$0.15 \times$ VDD	V
Digital Input Leakage Current	IIL	Inputs at GND or VDD	0.001	± 1
Digital Input Capacitance	CIN		$\mu \mathrm{A}$	

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power,
 Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11110/MAX11117) (continued)

(VDD $=2.2 \mathrm{~V}$ to 3.6 V . MAX11110: fsCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, 2 Msps . MAX 11117 : fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, 3 Msps CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL OUTPUT (DOUT)						
Output-High Voltage	VoH	ISOURCE $=200 \mu \mathrm{~A}$	$\begin{gathered} 0.85 \times \\ V_{D D} \end{gathered}$			V
Output-Low Voltage	VoL	ISINK $=200 \mu \mathrm{~A}$			$\begin{gathered} 0.15 x \\ \text { VDD } \end{gathered}$	V
High-Impedance Leakage Current	IOL				± 1.0	$\mu \mathrm{A}$
High-Impedance Output Capacitance	Cout			4		pF
POWER SUPPLY						
Positive Supply Voltage	VDD		2.2		3.6	V
Positive Supply Current (Full-Power Mode)	IVDD	MAX11117, VAIN = VGND			3.55	mA
		MAX11110, VAIN = VGND			2.6	
Positive Supply Current (Full-Power Mode), No Clock	IVDD	MAX11117		1.98		mA
		MAX11110		1.48		
Power-Down Current	IPD	Leakage only		1.3	10	$\mu \mathrm{A}$
Line Rejection		$\mathrm{V} D \mathrm{D}=+2.2 \mathrm{~V}$ to +3.6 V		0.17		LSB/V
TIMING CHARACTERISTICS (Note 1)						
Quiet Time	tQ	(Note 2)	4			ns
$\overline{\text { CS }}$ Pulse Width	t1	(Note 2)	10			ns
$\overline{\mathrm{CS}}$ Fall to SCLK Setup	t2	(Note 2)	5			ns
$\overline{\mathrm{CS}}$ Falling Until DOUT HighImpedance Disabled	t3	(Note 2)	1			ns
Data Access Time After SCLK Falling Edge	t4	Figure 2, V DD $=+2.2 \mathrm{~V}$ to +3.6 V			15	ns
SCLK Pulse Width Low	t5	Percentage of clock period (Note 2)	40		60	\%
SCLK Pulse Width High	t6	Percentage of clock period (Note 2)	40		60	\%
Data Hold Time From SCLK Falling Edge	t7	Figure 3	5			ns
SCLK Falling Until DOUT HighImpedance	t8	Figure 4 (Note 2)	2.5		14	ns
Power-Up Time		Conversion cycle (Note 2)			1	Cycle

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11111)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {OVDD }}=\mathrm{V}_{\text {DD }}$, fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, $3 \mathrm{Msps}, \mathrm{C}_{\text {DOUT }}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{TA}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			8			Bits
Integral Nonlinearity	INL				± 0.15	LSB
Differential Nonlinearity	DNL	No missing codes			± 0.15	LSB
Offset Error	OE			0.45	± 0.7	LSB
Gain Error	GE	Excluding offset and reference errors		0	± 0.2	LSB
Total Unadjusted Error	TUE			0.5		LSB
Channel-to-Channel Offset Matching				0.01		LSB
Channel-to-Channel Gain Matching				0.01		LSB
DYNAMIC PERFORMANCE						
Signal-to-Noise and Distortion	SINAD	$\mathrm{f}_{\text {AIN_ }}=1 \mathrm{MHz}$	49	49.8		dB
Signal-to-Noise Ratio	SNR	$\mathrm{f}_{\text {AIN }}=1 \mathrm{MHz}$	49	49.8		dB
Total Harmonic Distortion	THD	$\mathrm{f}_{\text {AIN_ }}=1 \mathrm{MHz}$		-75	-67	dB
Spurious-Free Dynamic Range	SFDR	$\mathrm{f}_{\mathrm{AlN}} \mathrm{=}=1 \mathrm{MHz}$	63	67		dB
Intermodulation Distortion	IMD	$\mathrm{f}_{1}=1.0003 \mathrm{MHz}, \mathrm{f}_{2}=0.99955 \mathrm{MHz}$		-65		dB
Full-Power Bandwidth		-3dB point		40		MHz
Full-Linear Bandwidth		SINAD > 49dB		2.5		MHz
Small-Signal Bandwidth				45		MHz
Crosstalk				-90		dB

CONVERSION RATE

Throughput			0.03	3	Msps
Conversion Time			260		ns
Acquisition Time	tACQ		52		ns
Aperture Delay		From $\overline{\mathrm{CS}}$ falling edge	4		ns
Aperture Jitter			15		ps
Serial-Clock Frequency	fCLK		0.48	48	MHz
ANALOG INPUT (AIN1, AIN2)					
Input Voltage Range	VAIN		0	$V_{\text {REF }}$	V
Input Leakage Current	IILA		0.002	± 1	$\mu \mathrm{A}$
Input Capacitance	CAIN_	Track	20		pF
		Hold	4		

EXTERNAL REFERENCE INPUT (REF)

Reference Input Voltage Range	VREF		1	$\begin{gathered} \text { VDD }+ \\ 0.05 \end{gathered}$	V
Reference Input Leakage Current	IILR	Conversion stopped	0.005	± 1	$\mu \mathrm{A}$
Reference Input Capacitance	CreF		5		pF

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11111) (continued)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {OVDD }}=\mathrm{V}_{\text {DD }}$, fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, $3 \mathrm{Msps}, \mathrm{CDOUT}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (SCLK, $\overline{\mathbf{C S}}$)						
Digital Input High Voltage	V_{IH}		$0.75 \times$ VOVDD			V
Digital Input Low Voltage	VIL				$\begin{aligned} & \hline 0.25 \times \\ & \text { VovDD } \\ & \hline \end{aligned}$	V
Digital Input Hysteresis	VHYST			0.15 x VovDd		V
Digital Input Leakage Current	IIL	Inputs at GND or VDD		0.001	± 1	$\mu \mathrm{A}$
Digital Input Capacitance	CIN			2		pF
DIGITAL OUTPUT (DOUT)						
Output High Voltage	VOH	ISOURCE $=200 \mu \mathrm{~A}$ (Note 2)	0.85 x VovDD			V
Output Low Voltage	VoL	ISINK $=200 \mu \mathrm{~A}($ Note 2)			$\begin{aligned} & \hline 0.15 \times \\ & \text { VovDD } \\ & \hline \end{aligned}$	V
High-Impedance Leakage Current	IOL				± 1.0	$\mu \mathrm{A}$
High-Impedance Output Capacitance	Cout			4		pF
POWER SUPPLY						
Positive Supply Voltage	VDD		2.2		3.6	V
Digital I/O Supply Voltage	VovDd		1.5		VDD	V
Positive Supply Current (Full-Power Mode)	IVDD	$V_{\text {AIN }}=V_{\text {GND }}$			3.3	mA
	IOVDD	$V_{\text {AIN_ }}=V_{G N D}$			0.33	
Positive Supply Current (Full-Power Mode), No Clock	IVDD			1.98		mA
Power-Down Current	IPD	Leakage only		1.3	10	$\mu \mathrm{A}$
Line Rejection		V DD $=+2.2 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~V}$ REF $=2.2 \mathrm{~V}$		0.17		LSB/V
TIMING CHARACTERISTICS (Note 1)						
Quiet Time	tQ	(Note 2)	4			ns
$\overline{\overline{C S}}$ Pulse Width	t1	(Note 2)	10			ns
$\overline{\text { CS }}$ Fall to SCLK Setup	t2	(Note 2)	5			ns
$\overline{\overline{C S}}$ Falling Until DOUT HighImpedance Disabled	t3	(Note 2)	1			ns
Data Access Time After SCLK Falling Edge (Figure 2)	t4	VOVDD $=2.2 \mathrm{~V}-3.6 \mathrm{~V}$			15	ns
		VOVDD $=1.5 \mathrm{~V}-2.2 \mathrm{~V}$			16.5	
SCLK Pulse Width Low	t5	Percentage of clock period (Note 2)	40		60	\%
SCLK Pulse Width High	t6	Percentage of clock period (Note 2)	40		60	\%
Data Hold Time From SCLK Falling Edge	t7	Figure 3	5			ns
SCLK Falling Until DOUT HighImpedance	t8	Figure 4 (Note 2)	2.5		14	ns
Power-Up Time		Conversion cycle (Note 2)			1	Cycle

ELECTRICAL CHARACTERISTICS (MAX11115/MAX11116)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to 3.6 V . MAX11115: fSCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, 2 Msps . MAX 11116 : $\mathrm{fSCLK}=48 \mathrm{MHz}, 50 \%$ duty cycle, 3 Msps . CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			8			Bits
Integral Nonlinearity	INL				± 0.25	LSB
Differential Nonlinearity	DNL	No missing codes			± 0.25	LSB
Offset Error	OE			± 0.45	± 0.75	LSB
Gain Error	GE	Excluding offset and reference errors		± 0.04	± 0.5	LSB
Total Unadjusted Error	TUE			± 0.75		LSB
DYNAMIC PERFORMANCE (MAX11116: f AIN $=1 \mathrm{MHz}$ MAX11115: $\mathrm{f}_{\text {AIN }}=500 \mathrm{kHz}$)						
Signal-to-Noise and Distortion	SINAD	MAX11116	49	49.5		dB
		MAX11115	49	49.5		
Signal-to-Noise Ratio	SNR	MAX11116	49	49.5		dB
		MAX11115	49	49.5		
Total Harmonic Distortion	THD	MAX11116		-70	-66	dB
		MAX11115		-75	-67	
Spurious-Free Dynamic Range	SFDR	MAX11116	63	66		dB
		MAX11115	63	66		
Intermodulation Distortion	IMD	MAX11116: $f_{1}=1.0003 \mathrm{MHz}, f_{2}=0.99955 \mathrm{MHz}$ MAX11115: $f_{1}=500.15 \mathrm{kHz}, \mathrm{f}_{2}=499.56 \mathrm{kHz}$		-65		dB
Full-Power Bandwidth		-3dB point		40		MHz
Full-Linear Bandwidth		SINAD > 49dB		2.5		MHz
Small-Signal Bandwidth				45		MHz
CONVERSION RATE						
Throughput		MAX11116	0.03		3	Msps
		MAX11115	0.02		2	
Conversion Time		MAX11116	260			ns
		MAX11115	391			
Acquisition Time	tACQ		52			ns
Aperture Delay		From $\overline{\mathrm{CS}}$ falling edge		4		ns
Aperture Jitter				15		ps
Serial-Clock Frequency	${ }_{\text {f CLK }}$	MAX11116	0.48		48	MHz
		MAX11115	0.32		32	
ANALOG INPUT (AIN)						
Input Voltage Range	VAIN		0		VDD	V
Input Leakage Current	IILA			0.002	± 1	$\mu \mathrm{A}$
Input Capacitance	CAIN	Track		20		pF
		Hold		4		
DIGITAL INPUTS (SCLK, $\overline{\mathbf{C S}}$)						
Digital Input High Voltage	VIH		$\begin{gathered} 0.75 \times \\ \text { VDD } \end{gathered}$			V

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power,
 Serial 12-/10-/8-Bit ADCs

ELECTRICAL CHARACTERISTICS (MAX11115/MAX11116) (continued)

$\left(V_{D D}=2.2 \mathrm{~V}\right.$ to 3.6 V . MAX11115: fSCLK $=32 \mathrm{MHz}, 50 \%$ duty cycle, 2 Msps . $\mathrm{MAX11116}$: fSCLK $=48 \mathrm{MHz}, 50 \%$ duty cycle, 3 Msps . CDOUT $=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Digital Input Low Voltage	VIL				$\begin{gathered} 0.25 x \\ V_{D D} \end{gathered}$	V
Digital Input Hysteresis	VHYST			$\begin{aligned} & 0.15 \\ & V_{D D} \end{aligned}$		V
Digital Input Leakage Current	IIL	Inputs at GND or VDD		0.001	± 1	$\mu \mathrm{A}$
Digital Input Capacitance	CIN			2		pF
DIGITAL OUTPUT (DOUT)						
Output High Voltage	VOH	ISOURCE $=200 \mu \mathrm{~A}$	$\begin{gathered} 0.85 \times \\ \text { VDD } \end{gathered}$			V
Output Low Voltage	VoL	ISINK $=200 \mu \mathrm{~A}$			$\begin{gathered} 0.15 x \\ \text { VDD } \end{gathered}$	V
High-Impedance Leakage Current	IOL				± 1.0	$\mu \mathrm{A}$
High-Impedance Output Capacitance	Cout			4		pF
POWER SUPPLY						
Positive Supply Voltage	VDD		2.2		3.6	V
Positive Supply Current (FullPower Mode)	IVDD	MAX11116, $\mathrm{V}_{\text {AIN }}=\mathrm{V}_{\text {GND }}$			3.55	mA
		MAX11115, VAIN = VGND			2.6	
Positive Supply Current (FullPower Mode), No Clock	IVDD	MAX11116		1.98		mA
		MAX11115		1.48		
Power-Down Current	IPD	Leakage only		1.3	10	$\mu \mathrm{A}$
Line Rejection		$\mathrm{V} D \mathrm{D}=+2.2 \mathrm{~V}$ to +3.6 V		0.17		LSB/V

TIMING CHARACTERISTICS (Note 1)

Quiet Time	tQ	(Note 2)	4	ns
$\overline{\mathrm{CS}}$ Pulse Width	t 1	$($ Note 2)	10	ns
$\overline{\mathrm{CS}}$ Fall to SCLK Setup	t 2	(Note 2)	5	ns
$\overline{\mathrm{CS}}$ Falling Until DOUT High- Impedance Disabled	t 3	(Note 2)	1	ns
Data Access Time After SCLK Falling Edge	t 4	Figure 2, VDD $=+2.2 \mathrm{~V}$ to +3.6V	n	ns
SCLK Pulse Width Low	t 5	Percentage of clock period (Note 2)	40	60
SCLK Pulse Width High	t 6	Percentage of clock period (Note 2)	40	60
Data Hold Time From SCLK Falling Edge	t 7	Figure 3	5	ns
SCLK Falling Until DOUT High- Impedance	t 8	Figure 4 (Note 2)	2.5	14
Power-Up Time		Conversion cycle (Note 2)	ns	

Note 1: All timing specifications given are with a 10pF capacitor
Note 2: Guaranteed by design in characterization; not production tested

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Figure 1. Interface Signals for Maximum Throughput, 12-Bit Devices

Figure 2. Setup Time After SCLK Falling Edge

Figure 3. Hold Time After SCLK Falling Edge

Figure 4. SCLK Falling Edge DOUT Three-State

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

(MAX11103AUB,$+ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1MHz SINE-WAVE INPUT
(16,834-POINT FFT PLOT)

ANALOG SUPPLY CURRENT
vs. TEMPERATURE

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

SOT Typical Operating Characteristics

(MAX11105AUB,$+ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OFFSET ERROR vs. TEMPERATURE

HISTOGRAM FOR 30,000 CONVERSIONS

DIFFERENTIAL NONLINEARITY
vs. DIGITAL OUTPUT CODE

SNR AND SINAD
vs. ANALOG INPUT FREQUENCY

ANALOG SUPPLY CURRENT
vs. TEMPERATURE

SFDR vs. ANALOG INPUT FREQUENCY

500kHz SINE-WAVE INPUT
(16,834-POINT FFT PLOT)

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

*CONNECT EXPOSED PAD TO GROUND PLANE. DEVICES DO NOT OPERATE WHEN EP IS NOT CONNECTED TO GROUND!

Pin Description

PIN			NAME	FUNCTION	
TDFN	$\mu \mathrm{MAX}$	SOT23			
1	1	-	AIN1	Analog Input Channel 1. Single-ended analog input with respect to AGND with range of OV to Vref.	
2	2	-	AIN2	Analog Input Channel 2. Single-ended analog input with respect to AGND with range of OV to VREF.	
-	-	3	AIN	Analog Input Channel. Single-ended analog input with respect to GND with range of OV to VDD.	
-	-	2	GND	Ground. Connect GND to the GND ground plane.	
3	3	-	AGND	Analog Ground. Connect AGND directly the GND ground plane.	
4	4	-	REF	External Reference Input. REF defines the signal range of the input signal AIN1/AIN2: OV to $V_{\text {REF }}$. The range of $V_{\text {REF }}$ is 1 V to $V_{\text {DD }}$. Bypass REF to $A G N D$ with $10 \mu \mathrm{~F} \\| 0.1 \mu \mathrm{~F}$ capacitor.	
5	5	1	VDD	Positive Supply Voltage. Bypass VDD with a $10 \mu \mathrm{~F} \\| \mathrm{O} 0.1 \mu \mathrm{~F}$ capacitor to GND. VDD range is 2.2 V to 3.6 V . For the SOT23 package, VDD also defines the signal range of the input signal AIN: OV to VDD.	
6	6	6	$\overline{\mathrm{CS}}$	Active-Low Chip-Select Input. The falling edge of $\overline{\mathrm{CS}}$ samples the analog input signal, starts a conversion, and frames the serial data transfer.	
7	7	-	CHSEL	Channel Select. Set CHSEL high to select AIN2 for conversion. Set CHSEL low to select AIN1 for conversion.	
8	8	-	OVDD	Digital Interface Supply for SCLK, $\overline{C S}$, DOUT, and CHSEL. The OVDD range is 1.5 V to $V_{D D}$. Bypass OVDD with a $10 \mu F \\| 0.1 \mu \mathrm{~F}$ capacitor to GND.	
9	9	5	DOUT	Three-State Serial Data Output. ADC conversion results are clocked out on the falling edge of SCLK, MSB first. See Figure 1.	
10	10	4	SCLK	Serial Clock Input. SCLK drives the conversion process. DOUT is updated on the falling edge of SCLK. See Figures 2 and 3.	
-	-	EP	GND	Exposed Pad (TDFN and μ MAX only). Connect EP directly to a solid ground plane. Devices do not operate unless EP is connected to ground!	

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Functional Diagrams

Typical Operating Circuit

MAX11102/03/05/06/10/11/15/16/17

2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Detailed Description

The MAX11102/MAX11103/MAX11105/MAX11106/MAX11110/ MAX111111/MAX11115/MAX11116/MAX11117 are fast, 12-/10-/8-bit, low-power, single-supply ADCs. The devices operate from a 2.2 V to 3.6 V supply and consume only $8.3 \mathrm{~mW}(\mathrm{VDD}=3 \mathrm{~V}) / 5.2 \mathrm{~mW}(\mathrm{VDD}=2.2 \mathrm{~V})$ at 3 Msps and $6.2 \mathrm{~mW}(\mathrm{VDD}=3 \mathrm{~V}) / 3.7 \mathrm{~mW}(\mathrm{VDD}=2.2 \mathrm{~V})$ at 2 Msps . The 3 Msps devices are capable of sampling at full rate when driven by a 48 MHz clock and the 2Msps devices can sample at full rate when driven by a 32 MHz clock. The dual-channel devices provide a separate digital supply input (OVDD) to power the digital interface enabling communication with $1.5 \mathrm{~V}, 1.8 \mathrm{~V}$, 2.5 V , or 3 V digital systems.

The conversion result appears at DOUT, MSB first, with a leading zero followed by the 12-bit, 10-bit, or 8-bit result. A 12-bit result is followed by two trailing zeros, a 10-bit result is followed by four trailing zeros, and an 8-bit result is followed by six trailing zeros. See Figures 1 and 5.
The dual-channel devices feature a dedicated reference input (REF). The input signal range for AIN1/AIN2 is defined as OV to VREF with respect to AGND. The single-channel devices use VDD as the reference. The input signal range of AIN is defined as OV to VDD with respect to GND.

These ADCs include a power-down feature allowing minimized power consumption at $2.5 \mu \mathrm{~A} / \mathrm{ksps}$ for lower throughput rates. The wake-up and power-down feature is controlled by using the SPI interface as described in the Operating Modes section.

Serial Interface

The devices feature a 3-wire serial interface that directly connects to SPI, QSPI, and MICROWIRE devices without external logic. Figures 1 and 5 show the interface signals for a single conversion frame to achieve maximum throughput.
The falling edge of $\overline{\mathrm{CS}}$ defines the sampling instant. Once $\overline{\mathrm{CS}}$ transitions low, the external clock signal (SCLK) controls the conversion.
The SAR core successively extracts binary-weighted bits in every clock cycle. The MSB appears on the data bus during the 2nd clock cycle with a delay outlined in the timing specifications. All extracted data bits appear successively on the data bus with the LSB appearing during the 13th/11th/9th clock cycle for 12-/10-/8-bit operation. The serial data stream of conversion bits is preceded by a leading "zero" and succeeded by trailing "zeros." The data output (DOUT) goes into high-impedance state during the 16th clock cycle.

Figure 5. 10-/8-Bit Timing Diagrams

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

To sustain the maximum sample rate, all devices have to be resampled immediately after the 16th clock cycle. For lower sample rates, the $\overline{\mathrm{CS}}$ falling edge can be delayed leaving DOUT in a high-impedance condition. Pull CS high after the 10th SCLK falling edge (see the Operating Modes section).

Analog Input

The devices produce a digital output that corresponds to the analog input voltage within the specified operating range of 0 to VreF for the dual-channel devices and 0 to VDD for the single-channel devices.
Figure 6 shows an equivalent circuit for the analog input AIN (for single-channel devices) and AIN1/AIN2 (for dual-channel devices). Internal protection diodes D1/D2 confine the analog input voltage within the power rails (VDD, GND). The analog input voltage can swing from GND - 0.3V to VDD + 0.3V without damaging the device.
The electric load presented to the external stage driving the analog input varies depending on which mode the ADC is in: track mode vs. conversion mode. In track mode, the internal sampling capacitor Cs (16pF) has to be charged through the resistor $R(R=50 \Omega)$ to the input voltage. For faithful sampling of the input, the capacitor voltage on Cs has to settle to the required accuracy during the track time.

Figure 6. Analog Input Circuit

The source impedance of the external driving stage in conjunction with the sampling switch resistance affects the settling performance. The THD vs. Input Resistance graph in the Typical Operating Characteristics shows THD sensitivity as a function of the signal source impedance. Keep the source impedance at a minimum for high-dynamic performance applications. Use a highperformance op amp such as the MAX4430 to drive the analog input, thereby decoupling the signal source and the ADC

While the ADC is in conversion mode, the sampling switch is open presenting a pin capacitance, CP (CP $=5 p F)$, to the driving stage. See the Applications Information section for information on choosing an appropriate buffer for the ADC.

ADC Transfer Function

The output format is straight binary. The code transitions midway between successive integer LSB values such as 0.5 LSB, 1.5 LSB, etc. The LSB size for singlechannel devices is $\mathrm{V}_{\mathrm{DD}} / 2^{n}$ and for dual-channel devices is $V_{R E F} / 2 n$, where n is the resolution. The ideal transfer characteristic is shown in Figure 10.

Operating Modes

The ICs offer two modes of operation: normal mode and power-down mode. The logic state of the $\overline{\mathrm{CS}}$ signal during a conversion activates these modes. The powerdown mode can be used to optimize power dissipation with respect to sample rate.

Normal Mode

In normal mode, the devices are powered up at all times, thereby achieving their maximum throughput rates. Figure 7 shows the timing diagram of these devices in normal mode. The falling edge of $\overline{\mathrm{CS}}$ samples the analog input signal, starts a conversion, and frames the serial data transfer.

Figure 7. Normal Mode

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Figure 8. Entering Power-Down Mode

Figure 9. Exiting Power-Down Mode

Figure 10. ADC Transfer Function
To remain in normal mode, keep $\overline{\mathrm{CS}}$ low until the falling edge of the 10th SCLK cycle. Pulling $\overline{\mathrm{CS}}$ high after the 10th SCLK falling edge keeps the part in normal mode. However, pulling $\overline{\mathrm{CS}}$ high before the 10th SCLK falling
edge terminates the conversion, DOUT goes into highimpedance mode, and the device enters power-down mode. See Figure 8.

Power-Down Mode
In power-down mode, all bias circuitry is shut down drawing typically only $1.3 \mu \mathrm{~A}$ of leakage current. To save power, put the device in power-down mode between conversions. Using the power-down mode between conversions is ideal for saving power when sampling the analog input infrequently.

Entering Power-Down Mode

To enter power-down mode, drive $\overline{C S}$ high between the 2nd and 10th falling edges of SCLK (see Figure 8). By pulling $\overline{\mathrm{CS}}$ high, the current conversion terminates and DOUT enters high impedance.

Exiting Power-Down Mode
To exit power-down mode, implement one dummy conversion by driving $\overline{\mathrm{CS}}$ low for at least 10 clock cycles (see Figure 9). The data on DOUT is invalid during this dummy conversion. The first conversion following the dummy cycle contains a valid conversion result.
The power-up time equals the duration of the dummy cycle, and is dependent on the clock frequency. The power-up time for 3 Msps operation (48 MHz SCLK) is 333ns. The power-up time for 2Msps operation (32MHz SCLK) is 500 ns .

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Supply Current vs. Sampling Rate

For applications requiring lower throughput rates, the user can reduce the clock frequency (fSCLK) to lower the sample rate. Figure 11 shows the typical supply current (IVDD) as a function of sample rate (fs) for the 3Msps devices. The part operates in normal mode and is never powered down. Figure 13 pertains to the 2 Msps devices.

Figure 11. Supply Current vs. Sample Rate (Normal Operating Mode, 3Msps Devices)

Figure 12. Supply Current vs. Sample Rate (Device Powered Down Between Conversions, 3Msps Devices)

The user can also power down the ADC between conversions by using the power-down mode. Figure 12 shows for the 3 Msps device that as the sample rate is reduced, the device remains in the power-down state longer and the average supply current (IVDD) drops accordingly. Figure 14 pertains to the 2 Msps devices.

Figure 13. Supply Current vs. Sample Rate (Normal Operating Mode, 2Msps Devices)

Figure 14. Supply Current vs. Sample Rate (Device Powered Down Between Conversions, 2Msps Devices)

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Dual-Channel Operation

The MAX11102/MAX11103/MAX11106/MAX11111 feature dual-input channels. These devices use a channelselect (CHSEL) input to select between analog input AIN1 (CHSEL $=0$) or AIN2 $(C H S E L=1)$. As shown in Figure 15 , the CHSEL signal is required to change between the 2nd and 12th clock cycle within a regular conversion to guarantee proper switching between channels.

14-Cycle Conversion Mode

The ICs can operate with 14 cycles per conversion. Figure 16 shows the corresponding timing diagram. Observe that DOUT does not go into high-impedance mode. Also, observe that $\mathrm{t}_{\mathrm{ACQ}}$ needs to be sufficiently long to guarantee proper settling of the analog input voltage. See the Electrical Characteristics table for taCQ requirements and the Analog Input section for a description of the analog inputs.

Applications Information

Layout, Grounding, and Bypassing

For best performance, use PCBs with a solid ground plane. Ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another or digital lines underneath the ADC package. Noise in the VDD power supply, OVDD, and REF affects the ADC's performance. Bypass the VDD, OVDD, and REF to ground with $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ bypass capacitors. Minimize capacitor lead and trace lengths for best supply-noise rejection.

Choosing an Input Amplifier
It is important to match the setting time of the input amplifier to the acquisition time of the ADC. The conversion results are accurate when the ADC samples the input signal for an interval longer than the input signal's worst-case settling time. By definition, settling time is the interval between the application of an input voltage step and the point at which the output signal reaches

Figure 15. Channel Select Timing Diagram

Figure 16. 14-Clock Cycle Operation

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

and stays within a given error band centered on the resulting steady-state amplifier output level. The ADC input sampling capacitor charges during the sampling cycle, referred to as the acquisition period. During this acquisition period, the settling time is affected by the input resistance and the input sampling capacitance. This error can be estimated by looking at the settling of an RC time constant using the input capacitance and the source impedance over the acquisition time period.
Figure 17 shows a typical application circuit. The MAX4430, offering a settling time of 37 ns at 16 bits, is an excellent choice for this application. See the THD vs. Input Resistance graph in the Typical Operating Characteristics.

Choosing a Reference

For devices using an external reference, the choice of the reference determines the output accuracy of the ADC. An ideal voltage reference provides a perfect initial accuracy and maintains the reference voltage independent of changes in load current, temperature, and time. Considerations in selecting a reference include initial voltage accuracy, temperature drift, current source, sink capability, quiescent current, and noise. Figure 17 shows a typical application circuit using the MAX6126 to provide the reference voltage. The MAX6033 and MAX6043 are also excellent choices.

Figure 17. Typical Application Circuit

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Definitions

Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. For these devices, the straight line is a line drawn between the end points of the transfer function after offset and gain errors are nulled.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB . A DNL error specification of ± 1 LSB or less guarantees no missing codes and a monotonic transfer function.

> Offset Error
> The deviation of the first code transition $(00 \ldots 000)$ to $(00 \ldots 001)$ from the ideal, that is, AGND +0.5 LSB .

Gain Error The deviation of the last code transition (111 . . 110) to (111 . . 111) from the ideal after adjusting for the offset error, that is, VREF - 1.5 LSB.

Aperture Jitter

Aperture jitter (tAJ) is the sample-to-sample variation in the time between the samples.

Aperture Delay

Aperture delay ($\mathrm{t} A \mathrm{D}$) is the time between the falling edge of sampling clock and the instant when an actual sample is taken.

Signal-to-Noise Ratio (SNR)

SNR is a dynamic figure of merit that indicates the converter's noise performance. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$
\text { SNR }(\mathrm{dB})(\mathrm{MAX})=(6.02 \times N+1.76)(\mathrm{dB})
$$

In reality, there are other noise sources such as thermal noise, reference noise, and clock jitter that also degrade SNR. SNR is computed by taking the ratio of the RMS signal to the RMS noise. RMS noise includes all spectral components to the Nyquist frequency excluding the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Ratio and Distortion
(SINAD)
SINAD is a dynamic figure of merit that indicates the converter's noise and distortion performance. SINAD is computed by taking the ratio of the RMS signal to the RMS noise plus distortion. RMS noise plus distortion includes all spectral components to the Nyquist frequency excluding the fundamental and the DC offset:

$$
\operatorname{SINAD}(\mathrm{dB})=20 \times \log \left[\frac{\text { SIGNAL }_{\text {RMS }}}{(\text { NOISE }+ \text { DISTORTION })_{\text {RMS }}}\right]
$$

Total Harmonic Distortion

Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
T H D=20 \times \log \left(\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}}}{V_{1}}\right)
$$

where V_{1} is the fundamental amplitude and $\mathrm{V}_{2}-\mathrm{V}_{5}$ are the amplitudes of the 2nd- through 5th-order harmonics.

Spurious-Free Dynamic Range (SFDR) SFDR is a dynamic figure of merit that indicates the lowest usable input signal amplitude. SFDR is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset. SFDR is specified in decibels with respect to the carrier (dBc).

Full-Power Bandwidth
Full-power bandwidth is the frequency at which the input signal amplitude attenuates by 3dB for a full-scale input.

Full-Linear Bandwidth
Full-linear bandwidth is the frequency at which the signal-to-noise ratio and distortion (SINAD) is equal to a specified value.

Intermodulation Distortion

Any device with nonlinearities creates distortion products when two sine waves at two different frequencies (f_{1} and f_{2}) are applied into the device. Intermodulation distortion (IMD) is the total power of the IM2 to IM5 intermodulation products to the Nyquist frequency relative to the total input power of the two input tones, f_{1} and f_{2}. The individual input tone levels are at -6dBFS.

MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs

Ordering Information (continued)

PART	PIN-PACKAGE	BITS	SPEED (Msps)	NO. OF CHANNELS	TOP MARK
MAX11105AUT +	6 SOT23	12	2	1	+ +ACON
MAX11106ATB +	10 TDFN-EP*	10	3	2	+ AWJ
MAX11110AUT +	6 SOT23	10	2	1	+ ACOO
MAX11111ATB +	10 TDFN-EP*	8	3	2	+ AWL
MAX11115AUT +	6 SOT23	8	2	1	+ ACOP
MAX11116AUT +	6 SOT23	8	3	1	+ ACOX
MAX11117AUT +	$6 ~ S O T 23 ~$	10	3	1	+ ACOY

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.

+ Denotes a lead(Pb)-free/RoHS-compliant package.
${ }^{*} E P=$ Exposed pad.

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
10 TDFN-EP	$\mathrm{T} 1033+2$	$\underline{21-0137}$	$\underline{90-0061}$
$10 \mu \mathrm{MAX}-\mathrm{EP}$	$\mathrm{U} 10 \mathrm{E}+3$	$\underline{21-0109}$	$\underline{90-0148}$
6 SOT 23	$\mathrm{U} 6+1$	$\underline{21-0058}$	$\underline{90-0175}$

MAX11102/03/05/06/10/11/15/16/17
 2Msps/3Msps, Low-Power,
 Serial 12-/10-/8-Bit ADCs

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/10	Initial release of the MAX11102/MAX11103/MAX11105/MAX11110/MAX111115/ MAX11116/MAX11117	-
1	7/10	Initial release of the MAX11106/MAX11111.	1-30
2	9/10	Corrected the package code of the $\mu \mathrm{MAX}$ package in the Package Information section.	29
3	10/10	Changed the typical power consumption to 2.2 V in the General Description, Features, and Detailed Description sections.	1,22
4	2/11	Update style, change voltage in Figure 17.	$\begin{aligned} & 4,5,8,9,10 \\ & 12,13,14,27 \end{aligned}$
5	8/11	Updated the Ordering Information and Electrical Characteristics sections.	$\begin{gathered} 1,4,6,8,10 \\ 12,14,29 \end{gathered}$
6	10/11	Updated Figures 15 and 16.	26, 27
7	9/12	Corrected top mark information in Ordering Information section.	1,29

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

