intersil

Precision Single and Dual Low Noise Operational Amplifiers

ISL28127, ISL28227

The ISL28127 and ISL28227 are very high precision amplifiers featuring very low noise, low offset voltage, low input bias current and low temperature drift making them the ideal choice for applications requiring both high DC accuracy and AC performance. The combination of precision, low noise, and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts.

Applications for these amplifiers include precision active filters, medical and analytical instrumentation, precision power supply controls, and industrial controls.

The ISL28127 single and ISL28227 dual are available in an 8 Ld SOIC, TDFN and MSOP packages. All devices are offered in standard pin configurations and operate over the extended temperature range to $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Very Low Voltage Noise .2.5nV/Hz
- Low Input Offset. 70 7 V , Max.
- Superb Offset Drift. $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, Max.
- Input Bias Current . 10nA, Max.
- Wide Supply Range . 4.5 V to 40 V
- Gain-bandwidth Product

10MHz Unity Gain Stable

- No Phase Reversal

Applications

- Precision Instruments
- Medical Instrumentation
- Industrial Controls
- Active Filter Blocks
- Data Acquisition
- Power Supply Control

Related Literature

- AN1508: ISL281x7SOICEVAL1Z Evaluation Board User's Guide
- AN1509: ISL282x7SOICEVAL1Z Evaluation Board User's Guide

Sallen-Key Low Pass Filter (1MHz)

FIGURE 1. TYPICAL APPLICATION

FIGURE 2. INPUT NOISE VOLTAGE SPECTRAL DENSITY

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	$\begin{gathered} \mathrm{V}_{\mathrm{OS}}(\mathrm{MAX}) \\ (\mu \mathrm{V}) \end{gathered}$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL28127FBZ	28127 FBZ	70	8 Ld SOIC	M8.15E
ISL28127FRTBZ	8127	75 (B Grade)	8 Ld TDFN	L8.3x3A
ISL28127FRTZ	-C 8127	150 (C Grade)	8 Ld TDFN	L8.3x3A
ISL28127FUBZ	$8127 Z$	70 (B Grade)	8 Ld MSOP	M8.118
ISL28127FUZ	8127Z -C	150 (C Grade)	8 Ld MSOP	M8.118
ISL28227FBZ	28227 FBZ	75	8 Ld SOIC	M8.15E
ISL28227FRTBZ	8227	75 (B Grade)	8 Ld TDFN	L8.3x3A
ISL28227FRTZ	-C 8227	150 (C Grade)	8 Ld TDFN	L8.3x3A
ISL28227FUBZ	82272	75 (B Grade)	8 Ld MSOP	M8.118
ISL28227FUZ	8227Z -C	150 (C Grade)	8 Ld MSOP	M8.118
ISL28127SOICEVAL1Z	Evaluation Board			
ISL28127MSOPEVAL1Z	Evaluation Board			
ISL28227SOICEVAL2Z	Evaluation Board			

1. Add "-T*" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28127, ISL28227. For more information on MSL please see techbrief TB363.

Pin Configurations

Pin Descriptions

$\begin{aligned} & \text { ISL28127 } \\ & \text { (8 LD SOIC, } \\ & 8 \text { LD MSOP) } \end{aligned}$	$\begin{aligned} & \text { ISL28127 } \\ & \text { (8 LD TDFN) } \end{aligned}$	ISL28227 (8 LD SOIC, 8 LD MSOP)	$\begin{aligned} & \text { ISL28227 } \\ & \text { (8 LD TDFN) } \end{aligned}$	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION
	3			+IN	Circuit 1	Amplifier non-inverting input
3		3	3	+IN_A	Circuit 1	Amplifier A non-inverting input
4	4	4	4	v -	Circuit 3	Negative power supply
		5	5	+IN_B	Circuit 1	Amplifier B non-inverting input
	2			-IN	Circuit 1	Amplifier inverting input
		6	6	-IN_B	Circuit 1	Amplifier B inverting input
	6			$\mathrm{V}_{\text {OUT }}$	Circuit 2	Amplifier output
		7	7	$\mathrm{V}_{\text {OUT }} \mathrm{B}$	Circuit 2	Amplifier B output
7	7	8	8	V+	Circuit 3	Positive power supply
6		1	1	$\mathrm{V}_{\text {OUT }} \mathrm{A}$	Circuit 2	Amplifier A output
2		2	2	-IN_A	Circuit 1	Amplifier A inverting input
1, 5, 8	1, 5, 8			NC	-	Not Connected - This pin is not electrically connected internally.
	PD			PD	-	Thermal Pad. Pad should be connected to lowest potential source in the circuit.
CIRCUIT 1 CIRCUIT 2 V+						

Absolute Maximum Ratings	
Maximum Supply Voltage	42V
Maximum Differential Input Current	20mA
Maximum Differential Input Voltage	. 0.5 V
Min/Max Input Voltage	$\mathrm{V}-\mathrm{-} 0.5 \mathrm{~V}$ to $\mathrm{V}++0.5 \mathrm{~V}$
Max/Min Input Current for Input Voltage >V+ or <V-	$\ldots \pm 20 m A$
Output Short-Circuit Duration (1 Output at a Time)	Indefinite
ESD Tolerance	
Human Body Model (Tested per JESD22-A114F)	
ISL28127.	.4.0kV
ISL28227.	. 6.0 kV
Machine Model (Tested per EIA/JESD22-A115-A) .	500V
Charged Device Model (Tested per JESD22-C101D)) 1.5 skV
Di-electrically Isolated PR40 process Latch-up free

Thermal Information

Thermal Resistance (Typical)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\text {Jc }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
8 Ld SOIC (Note 5, 7)		
ISL28127.	120	60
ISL28227.	110	55
8 Ld TDFN (Notes 4, 6)		
ISL28127.	48	7
ISL28227.	47	6
8 Ld MSOP (Note 5, 7)		
ISL28127.	155	50
ISL28227. .	150	45

Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-Free Reflow Profile . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp

Operating Conditions

Ambient Operating Temperature Range $.40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Maximum Operating Junction Temperature $150^{\circ} \mathrm{C}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

4. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
5. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
6. For θ_{Jc}, the "case temp" location is the center of the exposed metal pad on the package underside.
7. For θ_{JC}, the "case temp" location is taken at the package top center.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=\mathrm{OV}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
V_{OS}	Offset Voltage; SOIC Package	ISL28127	-70	10	70	$\mu \mathrm{V}$
			-120	-	120	$\mu \mathrm{V}$
		ISL28227	-75	10	75	$\mu \mathrm{V}$
			-150	-	150	$\mu \mathrm{V}$
	Offset Voltage; MSOP Grade B Package	ISL28127	-70	-10	70	$\mu \mathrm{V}$
			-150	-	150	$\mu \mathrm{V}$
	Offset Voltage; TDFN Grade B Package	ISL28127	-75	-10	75	$\mu \mathrm{V}$
			-160	-	160	$\mu \mathrm{V}$
	Offset Voltage; MSOP, TDFN Grade B Package	ISL28227	-75	-10	75	$\mu \mathrm{V}$
			-150	-	150	$\mu \mathrm{V}$
	Offset Voltage; MSOP, TDFN Grade C Package	ISL28127 ISL28227	-150	-10	150	$\mu \mathrm{V}$
			-250	-	250	$\mu \mathrm{V}$

ISL28127, ISL28227

Electrical Specifications $V_{S} \pm 15 \mathrm{~V}, \mathrm{~V}_{C M}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 8) } \end{gathered}$	TYP	MAX (Note 8)	UNIT
TCV ${ }_{\text {OS }}$	Offset Voltage Drift; SOIC Package	ISL28127	-0.5	0.1	0.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		ISL28227	-0.75	0.1	0.75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; MSOP, Grade B	ISL28127	-0.80	0.1	0.80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; TDFN, Grade B	ISL28127	-0.90	0.1	0.90	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; MSOP, TDFN, Grade B	ISL28227	-0.75	0.1	0.75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; MSOP, TDFN, Grade C	$\begin{aligned} & \text { ISL28127 } \\ & \text { ISL28227 } \end{aligned}$	-1	0.1	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		-10	1	10	nA
			-12	-	12	nA
I_{B}	Input Bias Current		-10	1	10	nA
			-12	-	12	nA
V_{CM}	Input Voltage Range	Guaranteed by CMRR	-13	-	13	v
			-12	-	12	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-13 \mathrm{~V}$ to +13 V	115	120	-	dB
		$\mathrm{V}_{\mathrm{CM}}=-12 \mathrm{~V}$ to +12 V	115	-	-	dB
PSRR	Power Supply Rejection Ratio ISL28127	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	115	125	-	dB
		$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	115	-	-	dB
	Power Supply Rejection Ratio ISL28227	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	110	117	-	dB
		$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	110	-	-	dB
$A_{\text {vol }}$	Open-Loop Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-13 \mathrm{~V} \text { to }+13 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$	1000	1500	-	V/mV
V_{OH}	Output Voltage High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	13.5	13.65	-	v
			13.2	-	-	v
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	13.4	13.5	-	v
			13.1	-	-	v
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	-	-13.65	-13.5	v
			-	-	-13.2	v
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	-	-13.5	-13.4	v
			-	-	-13.1	v
$I_{\text {s }}$	Supply Current/Amplifier		-	2.2	2.8	mA
			-	-	3.7	mA
$\mathrm{I}_{\text {sc }}$	Short-Circuit	$\mathrm{R}_{\mathrm{L}}=0 \Omega$ to ground	-	± 45	-	mA
$\mathrm{V}_{\text {SUPPLY }}$	Supply Voltage Range	Guaranteed by PSRR	± 2.25	-	± 20	v

AC SPECIFICATIONS

GBW	Gain Bandwidth Product		-	10	-	MHz
$\mathrm{e}_{\mathrm{np}-\mathrm{p}}$	Voltage Noise	0.1 Hz to 10 Hz	-	85	-	$\mathrm{nV} \mathrm{P}_{\mathrm{P}}$
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{~Hz}$	-	3	-	$\mathrm{nV} / \mathrm{VHz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=100 \mathrm{~Hz}$	-	2.8	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

ISL28127, ISL28227

Electrical Specifications $V_{S} \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$ pen, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 8) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 8) } \end{gathered}$	UNIT
e_{n}	Voltage Noise Density	$\mathrm{f}=1 \mathrm{kHz}$	-	2.5	-	$\mathrm{nV} / \mathrm{V} \mathrm{Hz}$
e_{n}	Voltage Noise Density	$\mathrm{f}=10 \mathrm{kHz}$	-	2.5	-	$\mathrm{nV} / \mathrm{V} \mathrm{Hz}$
in	Current Noise Density	$\mathrm{f}=10 \mathrm{kHz}$	-	0.4	-	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
THD + N	Total Harmonic Distortion + Noise	$\begin{aligned} & 1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	-	0.00022	-	\%
TRANSIENT RESPONSE						
SR	Slew Rate	$A_{V}=10, R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{0}=4 \mathrm{~V}_{\text {P-P }}$	-	± 3.6	-	V/ $\mu \mathrm{s}$
t_{r}, t_{f}, Small Signal	Rise Time 10% to 90% of $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	-	36	-	ns
	Fall Time 90% to 10% of $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & R_{f}=R_{g}=2 k \Omega, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	-	38	-	ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1% 10V Step; 10% to $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1 V_{\text {OUT }}=10 V_{\text {PP }} \\ & R_{g}=R_{f}=10 k, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	-	3.4	-	$\mu \mathrm{s}$
	Settling Time to 0.01% 10V Step; 10% to $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{O U T}=10 V_{P-P,} \\ & R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	-	3.8	-	$\mu \mathrm{s}$
t_{OL}	Output Overload Recovery Time	$\begin{aligned} & A_{V}=100, V_{I N}=0.2 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$	-	1.7	-	$\mu \mathrm{s}$

Electrical Specifications $v_{S} \pm 5 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=0, \mathrm{v}_{0}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 8) } \end{gathered}$	TYP	MAX (Note 8	UNIT
$\mathrm{V}_{\text {os }}$	Offset Voltage; SOIC Package	ISL28127	-70	10	70	$\mu \mathrm{V}$
			-120	-	120	$\mu \mathrm{V}$
		ISL28227	-75	10	75	$\mu \mathrm{V}$
			-150	-	150	$\mu \mathrm{V}$
	Offset Voltage; MSOP Grade B Package	ISL28127	-70	-10	70	$\mu \mathrm{V}$
			-150	-	150	$\mu \mathrm{V}$
	Offset Voltage; TDFN Grade B Package	ISL28127	-75	-10	75	$\mu \mathrm{V}$
			-160	-	160	$\mu \mathrm{V}$
	Offset Voltage; MSOP, TDFN Grade B Package	ISL28227	-75	-10	75	$\mu \mathrm{V}$
			-150	-	150	$\mu \mathrm{V}$
	Offset Voltage; MSOP, TDFN Grade C Package	$\begin{aligned} & \text { ISL28127 } \\ & \text { ISL28227 } \end{aligned}$	-150	-10	150	$\mu \mathrm{V}$
			-250	-	250	$\mu \mathrm{V}$
TCV ${ }_{\text {OS }}$	Offset Voltage Drift; SOIC Package	ISL28127	-0.5	0.1	0.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		ISL28227	-0.75	0.1	0.75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; MSOP, Grade B	ISL28127	-0.80	0.1	0.80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; TDFN, Grade B	ISL28127	-0.90	0.1	0.90	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; MSOP, TDFN, Grade B	ISL28227	-0.75	0.1	0.75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage Drift; MSOP, TDFN, Grade C	$\begin{array}{\|l\|} \hline \text { ISL28127 } \\ \text { ISL28227 } \\ \hline \end{array}$	-1	0.1	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Electrical Specifications
$\mathrm{V}_{\mathrm{S}} \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{0}, \mathrm{V}_{\mathbf{0}}=\mathbf{0 V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 8) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 8) } \end{gathered}$	UNIT
l O	Input Offset Current		-10	1	10	nA
			-12	-	12	nA
I_{B}	Input Bias Current		10	1	10	nA
			-12	-	12	nA
V_{CM}	Common Mode Input Voltage Range	Guaranteed by CMRR	-3	-	3	V
			-2	-	2	v
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-3 \mathrm{~V}$ to +3 V	115	120	-	dB
		$\mathrm{V}_{\mathrm{CM}}=-2 \mathrm{~V}$ to +2 V	115	-	-	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	115	125	-	dB
		$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	115	-	-	dB
$A_{\text {voL }}$	Open-Loop Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-3 \mathrm{~V} \text { to }+3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$	1000	1500	-	V/mV
V_{OH}	Output Voltage High	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	3.5	3.65	-	v
			3.2	-	-	v
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	3.4	3.5	-	
			3.1	-	-	v
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to ground	-	-3.65	-3.5	v
			-	-	-3.2	v
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground	-	-3.5	-3.4	
			-	-	-3.1	v
I_{s}	Supply Current/Amplifier		-	2.2	2.8	mA
			-	-	3.7	mA
$\mathrm{I}_{\text {sc }}$	Short-Circuit		-	± 45	-	mA
AC SPECIFICATIONS						
GBW	Gain Bandwidth Product		-	10	-	MHz
THD + N	Total Harmonic Distortion + Noise	$\begin{aligned} & 1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{Vo}=2.5 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	-	0.0034	-	\%
TRANSIENT RESPONSE						
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=10, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	-	± 3.6	-	V/ $/ \mathrm{s}$
t_{r}, t_{f}, Small Signal	Rise Time 10% to 90% of $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{~m} V_{P-P,} \\ & R_{f}=R_{g}=2 k \Omega, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	-	36	-	ns
	Fall Time 90% to 10% of $V_{\text {OUT }}$	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=100 \mathrm{~m} V_{P-P} \\ & R_{f}=R_{g}=2 k \Omega, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	-	38	-	ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\%	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=4 V_{P-P} \\ & R_{f}=R_{g}=2 k \Omega, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	-	1.6	-	$\mu \mathrm{s}$
	Settling Time to 0.01\%	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=4 V_{P-P} \\ & R_{f}=R_{g}=2 k \Omega, R_{L}=2 k \Omega \text { to } V_{C M} \end{aligned}$	-	4.2	-	$\mu \mathrm{s}$

NOTE:
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Typical Performance Curves $\mathrm{v}_{\mathrm{s}}= \pm 15 v, v c m=0 \mathrm{v}, \mathrm{R}_{\mathrm{L}}=$ open, unless otherwise specfified.

FIGURE 3. INPUT NOISE VOLTAGE 0.1 Hz to $\mathbf{1 0} \mathbf{H z}$

FIGURE 5. INPUT NOISE CURRENT SPECTRAL DENSITY

FIGURE 7. CMRR vs FREQUENCY, $\mathrm{V}_{\mathrm{S}}= \pm \mathbf{2 . 2 5}, \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 4. INPUT NOISE VOLTAGE SPECTRAL DENSITY

FIGURE 6. PSRR vs FREQUENCY, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 8. $\mathbf{V}_{\text {os }}$ vs TEMPERATURE vs $\mathbf{V}_{\text {SUPPLY }}$

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{v}, \mathrm{vcm}=\mathrm{ov}, \mathrm{R}_{\mathrm{L}}=0$ pen, unless otherwise specified. (continued)

FIGURE 9. IB+ vs TEMPERATURE vs SUPPLY VOLTAGE

FIGURE 11. $I_{0 S}$ vs TEMPERATURE vs SUPPLY VOLTAGE

FIGURE 13. INPUT OFFSET VOLTAGE DISTRIBUTION, $\mathbf{V}_{\mathbf{S}}=\mathbf{\pm 1 5 V}$

FIGURE 10. IB- vs TEMPERATURE vs SUPPLY VOLTAGE

FIGURE 12. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE VOLTAGE, $\mathrm{V}_{\mathbf{S}}= \pm \mathbf{1 5} \mathrm{V}$

FIGURE 14. INPUT OFFSET VOLTAGE DISTRIBUTION, $\mathbf{V}_{\mathbf{S}}= \pm 5 \mathrm{~V}$

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{v}, \mathrm{vcm}=\mathrm{ov}, \mathrm{R}_{\mathrm{L}}=0$ pen, unless otherwise specified. (Continued)

FIGURE 15. OFFSET VOLTAGE DRIFT DISTRIBUTION, $V_{s}= \pm 15 V$

FIGURE 17. I_{B+} INPUT BIAS CURRENT DRIFT DISTRIBUTION, $V_{S}= \pm 15 \mathrm{~V}$

FIGURE 19. I_{B} INPUT BIAS CURRENT DRIFT DISTRIBUTION, $V_{S}= \pm 15 \mathrm{~V}$

FIGURE 16. OFFSET VOLTAGE DRIFT DISTRIBUTION, $\mathrm{v}_{\mathbf{S}}= \pm 5 \mathrm{~V}$

FIGURE 18. $\mathrm{I}_{\mathrm{B}+}$ INPUT BIAS CURRENT DRIFT DISTRIBUTION, $V_{S}= \pm 5 \mathrm{~V}$

FIGURE 20. IB- INPUT BIAS CURRENT DRIFT DISTRIBUTION, $V_{S}= \pm 5 \mathrm{~V}$

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{v}, \mathrm{vcm}=\mathrm{ov}, \mathrm{R}_{\mathrm{L}}=0$ pen, unless otherwise specified. (Continued)

FIGURE 21. INPUT OFFSET CURRENT DISTRIBUTION, $V_{S}= \pm 15 V$

FIGURE 23. V_{OH} vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

FIGURE 25. OPEN-LOOP GAIN, PHASE vs FREQUENCY,
$R_{L}=10 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$

FIGURE 22. INPUT OFFSET CURRENT DISTRIBUTION, $\mathrm{V}_{\mathbf{S}}= \pm 5 \mathrm{~V}$

FIGURE 24. V_{OL} vs TEMPERATURE, $\mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 5} \mathrm{V}$

FIGURE 26. OPEN-LOOP GAIN, PHASE vs FREQUENCY,
$R_{L}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Typical Performance Curves $\mathrm{v}_{\mathrm{s}}= \pm 15 \mathrm{v}, \mathrm{vcM}=\mathrm{ov}, \mathrm{R}_{\mathrm{L}}=0$ pen, unless otherwise specified. (Continued)

FIGURE 27. FREQUENCY RESPONSE vs CLOSED LOOP GAIN

FIGURE 29. GAIN vs FREQUENCY vs R_{L}

FIGURE 31. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

FIGURE 28. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE $\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{\mathrm{g}}$

FIGURE 30. GAIN vs FREQUENCY vs C_{L}

FIGURE 32. LARGE SIGNAL 10 V STEP RESPONSE, $\mathrm{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}$

Typical Performance Curves $\mathrm{v}_{\mathrm{s}}= \pm 15 \mathrm{v}, \mathrm{vcm}=\mathrm{ov}, \mathrm{R}_{\mathrm{L}}=0$ pen, unless otherwise specified. (Continued)

FIGURE 33. LARGE SIGNAL TRANSIENT RESPONSE vs $\mathbf{R}_{\mathbf{L}} \mathbf{V}_{\mathbf{S}}=$ $\pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$

FIGURE 35. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, $\mathbf{V}_{\mathbf{S}}=$ $\pm 15 \mathrm{~V}$

FIGURE 34. SMALL SIGNAL TRANSIENT RESPONSE, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, $\pm 15 \mathrm{~V}$

FIGURE 36. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, $\mathbf{V}_{\mathbf{S}}$ $= \pm 15 \mathrm{~V}$

FIGURE 37. \% OVERSHOOT vs LOAD CAPACITANCE, $\mathbf{V}_{\mathbf{S}}=\mathbf{\pm 1 5 V}$

Applications Information

Functional Description

The ISL28127 and ISL28227 are single and dual, low noise 10 MHz BW precision op amps. Both devices are fabricated in a new precision 40V complementary bipolar DI process. A superbeta NPN input stage with input bias current cancellation provides low input bias current (1nA typical), low input offset voltage ($10 \mu \mathrm{~V}$ typ), low input noise voltage ($3 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$), and low $1 / f$ noise corner frequency $(5 \mathrm{~Hz})$. These amplifiers also feature high open loop gain ($1500 \mathrm{~V} / \mathrm{mV}$) for excellent CMRR (120dB) and THD+N performance (0.0002% @ $3.5 \mathrm{~V}_{\text {RMS }}$, 1 kHz into $2 \mathrm{k} \Omega$). A complimentary bipolar output stage enables high capacitive load drive without external compensation.

Operating Voltage Range

The devices are designed to operate over the $4.5 \mathrm{~V}(\pm 2.25 \mathrm{~V})$ to $40 \mathrm{~V}(\pm 20 \mathrm{~V})$ range and are fully characterized at $10 \mathrm{~V}(\pm 5 \mathrm{~V})$ and $30 \mathrm{~V}(\pm 15 \mathrm{~V}$). Parameter variation with operating voltage is shown in the "Typical Performance Curves" beginning on page 8.

Input ESD Diode Protection

The input terminals ($\mathrm{IN}+$ and IN -) have internal ESD protection diodes to the positive and negative supply rails, and an additional anti-parallel diode pair across the inputs (see Figures 38 and 39).

FIGURE 38. INPUT ESD DIODE CURRENT LIMITING- UNITY GAIN
For unity gain applications (see Figure 38) where the output is connected directly to the non-inverting input a current limiting resistor $\left(\mathrm{R}_{\mathrm{IN}}\right)$ will be needed under the following conditions to protect the anti-parallel differential input protection diodes.

- The amplifier input is supplied from a low impedance source.
- The input voltage rate-of-rise ($\mathrm{dV} / \mathrm{dt}$) exceeds the maximum slew rate of the amplifier $(\pm 3.6 \mathrm{~V} / \mu \mathrm{s})$.
If the output lags far enough behind the input, the anti-parallel input diodes can conduct. For example, if an input pulse ramps from 0 V to +10 V in $1 \mu \mathrm{~s}$, then the output of the ISL28x27 will reach only +3.6 V (slew rate $=3.6 \mathrm{~V} / \mu \mathrm{s}$) while the input is at 10 V , The input differential voltage of 6.4 V will force input ESD diodes to conduct, dumping the input current directly into the output stage and the load. The resulting current flow can cause permanent damage to the ESD diodes. The ESD diodes are rated to 20 mA , and in the previous example, setting $R_{I N}$ to $1 k$ resistor (see Figure 38) would limit the current to $<6.4 \mathrm{~mA}$, and provide additional protection up to $\pm 20 \mathrm{~V}$ at the input.
In applications where one or both amplifier input terminals are at risk of exposure to high voltage, current limiting resistors may be needed at each input terminal (see Figure $39 \mathrm{R}_{\mathrm{IN}^{+}}, \mathrm{R}_{\mathrm{IN}^{-}}$) to limit current through the power supply ESD diodes to 20 mA .

FIGURE 39. INPUT ESD DIODE CURRENT LIMITING DIFFERENTIAL INPUT

Output Current Limiting

The output current is internally limited to approximately $\pm 45 \mathrm{~mA}$ at $+25^{\circ} \mathrm{C}$ and can withstand an short circuit to either rail as long as the power dissipation limits are not exceeded. This applies to only 1 amplifier at a time for the dual op amp. Continuous operation under these conditions may degrade long term reliability.

Output Phase Reversal

Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL28127 and ISL28227 are immune to output phase reversal, even when the input voltage is 1 V beyond the supplies.

Power Dissipation

It is possible to exceed the $+150^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature ($T_{\text {JMAX }}$) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:
$\mathbf{T}_{\text {JMAX }}=\mathbf{T}_{\text {MAX }}+\theta_{\text {JA }}$ XPD MAXTOTAL
where:

- $P_{\text {DMAXTOTAL }}$ is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\text {MAX }}$)
- $P_{\text {MAX }}$ for each amplifier can be calculated using Equation 2:
$P_{\text {MAX }}=V_{S} \times I_{\text {GMAX }}+\left(V_{S}-V_{\text {OUTMAX }}\right) \times \frac{V_{\text {OUTMAX }}}{R_{\text {L }}}$
where:
- $\mathrm{T}_{\text {MAX }}=$ Maximum ambient temperature
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package
- $P D_{\text {MAX }}=$ Maximum power dissipation of 1 amplifier
- $\mathrm{V}_{\mathrm{S}}=$ Total supply voltage
- $I_{\text {qMAX }}=$ Maximum quiescent supply current of 1 amplifier
- $\mathrm{V}_{\text {OUTMAX }}=$ Maximum output voltage swing of the application
$\mathrm{R}_{\mathrm{L}}=$ Load resistance

ISL28127 and ISL28227 SPICE Model

Figure 40 shows the SPICE model schematic and Figure 41 shows the net list for the ISL28127 and ISL28227 SPICE model. The model is a simplified version of the actual device and simulates important AC and DC parameters. AC parameters incorporated into the model are: 1/f and flatband noise, Slew Rate, CMRR, Gain and Phase. The DC parameters are VOS, IOS, total supply current and output voltage swing. The model does not model input bias current. The model uses typical parameters given in the "Electrical Specifications" Table beginning on page 4. The AVOL is adjusted for 128 dB with the dominate pole at 5 Hz . The CMRR is set higher than the "Electrical Specifications" Table to better match design simulations ($150 \mathrm{~dB}, \mathrm{f}=50 \mathrm{~Hz}$). The input stage models the actual device to present an accurate $A C$ representation. The model is configured for ambient temperature of $+25^{\circ} \mathrm{C}$.

Figures 42 through 57 show the characterization vs simulation results for the Noise Voltage, Closed Loop Gain vs Frequency, Closed Loop Gain vs Rf/Rg, Closed Loop Gain vs R_{L}, Closed Loop Gain vs C_{L}, Large Signal 10V Step Response, Open Loop Gain Phase and Simulated CMRR vs Frequency.

LICENSE STATEMENT

The information in this SPICE model is protected under the United States copyright laws. Intersil Corporation hereby grants users of this macro-model hereto referred to as "Licensee", a nonexclusive, nontransferable licence to use this model as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted.

The Licensee may not sell, loan, rent, or license the macromodel, in whole, in part, or in modified form, to anyone outside the Licensee's company. The Licensee may modify the macro-model to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only.

This macro-model is provided "AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE."

In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice.

FIGURE 40. SPICE SCHEMATIC

FIGURE 41. SPICE NET LIST

Characterization vs Simulation Results

FIGURE 42. CHARACTERIZED INPUT NOISE VOLTAGE

FIGURE 44. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY

FIGURE 46. CHARACTERIZED CLOSED LOOP GAIN vs $\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{\mathrm{g}}$

FIGURE 43. SIMULATED INPUT NOISE VOLTAGE

FIGURE 45. SIMULATED CLOSED LOOP GAIN vs FREQUENCY

FIGURE 47. SIMULATED CLOSED LOOP GAIN vs $\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{\mathrm{g}}$

Characterization vs Simulation Results (Continued)

FIGURE 48. CHARACTERIZED CLOSED LOOP GAIN vs R_{L}

FIGURE 50. CHARACTERIZED CLOSED LOOP GAIN vs $\mathbf{C}_{\mathbf{L}}$

FIGURE 52. CHARACTERIZED LARGE SIGNAL 10V STEP RESPONSE

FIGURE 49. SIMULATED CLOSED LOOP GAIN vs R_{L}

FIGURE 51. SIMULATED CLOSED LOOP GAIN vs C_{L}

FIGURE 53. SIMULATED LARGE SIGNAL 10V STEP RESPONSE

Characterization vs Simulation Results (Continued)

FIGURE 54. SIMULATED OPEN-LOOP GAIN, PHASE vs frequency

FIGURE 56. CHARACTERIZED CMRR vs FREQUENCY

FIGURE 55. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY

FIGURE 57. SIMULATED CMRR vs FREQUENCY

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

REVISION	DATE	CHANGE
FN6633.6	12/13/10	page 3: The ISL28227 8 LD TDFN Pin configuration: Vout_A and Vout_B labels on pins 1 and 7 changed to VoutA and VoutB Figure 8: labeled red curve $\mathrm{Vs}= \pm 5 \mathrm{~V}$ and blue curve $\mathrm{Vs}= \pm 15 \mathrm{~V}$.
	12/10/10	-Converted to New Intersil Template -Added AN1509 in Related Literature on page 1 -Removed Titles from Graphics on page 1 and replaced with Figure names -Changed copyright to legal's suggested verbiage on page 1 -Updated Ordering Information table on page 2. Removed Coming Soon for ISL28127FRTBZ and ISL28127FUBZ parts. Added in the Vos (MAX) numbers in those rows (75 and 70 respectively). -Changed Tape and Reel Note in ordering information to "Add T*..." to include all Tape and Reel additions -Updated Electrical Spec Table page 4 and page 5 for Vos and TCVos oAdded data row for Offset Voltage; MSOP Grade B Package; ISL28127 oAdded data row for Offset Voltage; TDFN Grade B Package; ISL28127 oAdded data row for Offset Voltage Drift; MSOP Grade B Package; ISL28127 oAdded data row for Offset Voltage Drift; TDFN Grade B Package; ISL28127 oRemoved - Temperature data established by characterization from conditions (New standard note covers this verbiage) oChanged Note: "Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested". TO: Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. -Updated Typical Performance Curves oUpdated typical plot of Vos vs Temp for Figure 8. oAdded: IB+ vs Temp vs Vsupply plot; IB- vs Temp vs Vsupply plot; los vs Temp vs Vsupply plot; Figures 9, 10, 11 oAdded: Vos distribution Vs=15V plot; Vos distribution Vs=5V plot; TCVos distribution Vs=15V plot; TCVos distribution Vs=5V plot; TCIB+ distribution Vs=15V plot; TCIB+ distribution Vs=5V plot; TCIB- distribution Vs=15V plot; TCIB- distribution Vs=5V plot; TClos distribution Vs=15V plot; TClos distribution Vs=5V plot (Figures 13 thru 22)
FN6633.5	9/10/10	- Updated ordering information by removing Note 2, which referenced "-T13" tape and reel option and revised Note 1 to include "-T7A" tape and reel option. Removed Note reference next to part numbers and placed under part number in table head indicating that it references all parts. Change shows that all parts now have -T7, -T7A, and -T13 tape and reel options.
FN6633.4	7/2/10	In "Ordering Information" on page 2: Removed "Coming Soon" from ISL28127FRTZ, ISL28227FRTBZ, ISL28227FRTZ, ISL28227FUBZ \& ISL28227FUZ. Updated the part marking for ISL28127FRTBZ from "127Z" to " 8127 " Updated the part marking for ISL28127FRTZ from "-C 127Z" to "-C 8127" Updated the part marking for ISL28227FRTBZ from "227Z" to "8227" Updated the part marking for ISL28227FRTZ from "-C 227Z" to "-C 8227" Added $\mathrm{V}_{\text {OS }}$ of $75 \mu \mathrm{~V}$ for ISL28227FRTBZ Added V_{OS} of $75 \mu \mathrm{~V}$ for ISL28227FUBZ Added Evaluation Boards ISL28127MSOPEVAL1Z and ISL28227SOICEVAL2Z In "Thermal Information" on page 4, for 8 Ld TDFN, corrected Theta J_{A} note from Note 5 to Note 4. In $\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}$ "Electrical Specifications" table on page 4, added $\mathrm{V}_{\text {OS }}$ specs for ISL28227 MSOP, TDFN Grade B Packages. Added TCV ${ }_{\text {OS }}$ specs for ISL28227 MSOP, TDFN Grade B Packages Changed TYP for "Offset Voltage; MSOP, TDFN Grade C Package" from $10 \mu \mathrm{~V}$ to $-10 \mu \mathrm{~V}$ In $V_{S} \pm 5 V$ "Electrical Specifications" table on page 6 , added $V_{O S}$ specs for SOIC ISL28227. Added $V_{0 S}$ specs for MSOP, TDFN Grade B and C Packages. Added TCV ${ }_{\text {OS }}$ specs for SOIC ISL28227. Added TCV ${ }_{0 S}$ specs for MSOP, TDFN Grade B and C Packages
FN6633.3	3/11/10	PODs M8.118 and L8.3x3A - Updated to new intersil format by adding land pattern and moving dimensions from table onto drawing.
	3/3/10	On page 2: Under "Ordering Information" ISL28227FBZ: Changed Vos max from $80 \mu \mathrm{~V}$ to $75 \mu \mathrm{~V}$ On page 4: Changed: 1. ISL28227 SOIC Room Temp limit for Vos from $80 \mu \mathrm{~V}$ (MAX) and $-80 \mu \mathrm{~V}$ (MIN) to $75 \mu \mathrm{~V}$ (MAX) and $-75 \mu \mathrm{~V}$ (MIN). 2. ISL28227 SOIC Full Temp limit for Vos from $160 \mu \mathrm{~V}$ (MAX) and $-160 \mu \mathrm{~V}$ (MIN) to $150 \mu \mathrm{~V}$ (MAX) and $-150 \mu \mathrm{~V}$ (MIN) 3. ISL28227 SOIC limit for TCVos from $0.8 \mu \mathrm{~V}$ (MAX) and $-0.8 \mu \mathrm{~V}$ (MIN) to $0.75 \mu \mathrm{~V}$ (MAX) and $-0.75 \mu \mathrm{~V}$ (MIN)

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. (Continued)

REVISION	DATE	CHANGE
FN6633.3 (Continued)	3/2/10	In "Absolute Maximum Ratings" on page 4, HBM for ISL28227 changed from " 4 kV " to " 6 kV " In "Thermal Information" on page 4, Tjc values for ISL28227 changed: For MSOP from " 50 " to " 45 " For SOIC from "60" to " 55 "
	2/25/10	In the "Ordering Information" (page 2): Part Number Part Marking Vos (Max) (uV) ISL28127FRTBZ TBD instead of 70 ISL28127FRTZ -C 127 Z instead of 127 ZC ISL28127FUBZ TBD instead of 70 ISL28127FUZ 8127Z -C instead of 8127Z 150 instead of 70 Removed "Coming Soon) for ISL28127FUZ package ISL28227FBZ Removed "Coming Soon) for ISL28227FBZ package ISL28227FRTBZ ISL28227FRTZ -C 227 Z instead of 227 Z C ISL28227FUZ 8227Z -C instead of 8227Z 150 instead of 70 Added the following row of data ISL28227FUBZ $8227 Z$ TBD In the "Electrical specifications" on page 4 and page 6 the following changes were made. The change applies to the same spec found on page 4 and page 6. VOS Offset Voltage; SOIC Package, ISL28127: Added -70 to MIN across room temp and -120 MIN across full temp VOS Offset Voltage; SOIC Package, ISL28227: Added -80 to MIN across room temp and -160 MIN across full temp VOS Offset Voltage; MSOP and TDFN Package Grade C, ISL28127/ISL28227: Added -150 to MIN across room temp and 250 MIN across full temp TCVOS Offset Voltage Drift; SOIC Package, ISL28127: Added -0.5 to MIN across full temp TCVOS Offset Voltage Drift; SOIC Package, ISL28227: Added -0.8 to MIN across full temp TCVOS Offset Voltage Drift; MSOP and TDFN Package Grade C, ISL28127/ISL28227: Added -1 to MIN across full temp IOS Input Offset Current: Added -10 to MIN across room temp and -12 to MIN across full temp IB Input Bias Current:Added -10 to MIN across room temp and $\mathbf{- 1 2}$ to MIN across full temp
	2/19/10	In the "Ordering Information" (page 2), added differentiated part numbers for B-grade and C-grade for TDFN and MSOP. In "Absolute Maximum Ratings" on page 4, added ESD and latch-up information. In "Thermal Information" on page 4, broke out Theta JA to list the single and dual and added Theta JC.
FN6633.2	1/29/10	Added license statement for P-Spice Model. Updated Spice Schematic by adding capacitors C4, C5 and C6 Updated Spice Net List as follows: From: Revision B, July 232009 To: Revision C, August 8th 2009 LaFontaine From: source ISL28127_SPICEMODEL_7_9 To: source ISL28127_SPICEMODEL_0_0 Added after I_IOS: C_C6 IN+ VIN- 2E-12 Added after R_R4: C_C4 VIN- 0 2.5e-12 C_C5 80 2.5e-12 From: .ends ISL28127 To: .ends ISL28127subckt Replaced POD MDP0027 with M8.15E to match ASYD in Intrepid (no dimension changes; the PODs are the same. The change was to update to the Intersil format, moving dimensions from table onto drawing and adding land pattern)

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. (Continued)

REVISION	DATE	CHANGE
FN6633.1	$9 / 14 / 09$ 9/2/09 7/21/09	"Functional Description" on page 14. Corrected low 1/f noise corner frequency from 3 Hz to 5 Hz to match Figure 2 on page 1. Corrected high open loop gain from $1400 \mathrm{~V} / \mathrm{mV}$ to $1500 \mathrm{~V} / \mathrm{mV}$ to match "Open-Loop Gain" on page 5 spec table. "Operating Voltage Range" on page 14. Removed following 2 sentences since there are no graphs illustrating common mode voltage sensitivity vs temperature or VOS as a function of supply voltage and temperature: "The input common mode voltage sensitivity to temperature is shown in Figure $3(\pm 15 \mathrm{~V})$. Figure 20 shows VOS as a function of supply voltage and temperature with the common mode voltage at OV for split supply operation." Added Theta J_{C} in "Thermal Information" on page 4 for TDFN package Updated Features to show only key features and updated applications section. Added Typical Application Circuit and performance graph, Updated Ordering Information to match Intrepid and added POD's L8.3x3A and M8.118, also added MSL level as part of new format. Added TDFN pinouts, updated pin descriptions to include TDFN pinouts, Added Theta Ja in Thermal information for TDFN and MSOP packages. Added Revision History and Products Text with device info links. Added SPICE Model with referencing text and Net List.
FN6633.0	5/28/09	Techdocs Issued File Number FN6633. Initial release of Datasheet with file number FN6633 making this a Rev 0.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL28127, ISL28227

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

TYPICAL RECOMMENDED LAND PATTERN

Package Outline Drawing

L8.3x3A

8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 4, 2/10

TOP VIEW

BOTTOM VIEW

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension applies to the metallized terminal and is measured between 0.15 mm and 0.20 mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.
7. Compliant to JEDEC MO-229 WEEC-2 except for the foot length.

Package Outline Drawing

M8.118
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE
Rev 3, 3/10

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensions are in millimeters.
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSEY14.5m-1994.
3. Plastic or metal protrusions of 0.15 mm max per side are not included.
4. Plastic interlead protrusions of 0.15 mm max per side are not included.
5. Dimensions are measured at Datum Plane "H".
6. Dimensions in () are for reference only.
