
### **TV-Stereo Processor**

### TDA 6610-5

#### **Bipolar IC**

#### Features

- All functions are I<sup>2</sup>C Bus controlled
- Suitable for multistandard including NICAM SCARTinterface
- Independent headphones output high signal noise ratio
- Extremely low total harmonic distortion
- High security of detection of the stereo decoder part because of the digital interference suppression and the very narrow bandwidth



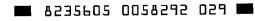
| Туре       | Ordering Code | Package    |
|------------|---------------|------------|
| TDA 6610-5 | Q67000-A5126  | P-DIP-28-3 |

#### General

The TDA 6610-5 represents a complete TV-stereo sound system controlled via the I<sup>2</sup>C Bus. The IC is divided into three functional blocks:

# 1. Stereo Sound Processing with High Quality (exceeds DIN 45500; suitable for NICAM and CD)

- a) Matrix for G-standard
- b) Additional single-channel AF-input (for e.g. AF-signal according to L-standard)
- c) Stereo SCART-interface is in accordance with FTZ-official specification
- d) Stereo loudspeaker signal section with Ch1/Ch2 switch, treble/bass control, quasi-stereo/ stereo base width control and separate left/right loudspeaker volume control
- e) Signal section with Ch1/Ch2 switch and volume control for stereo headphones


## 8235605 0058291 192 🖿

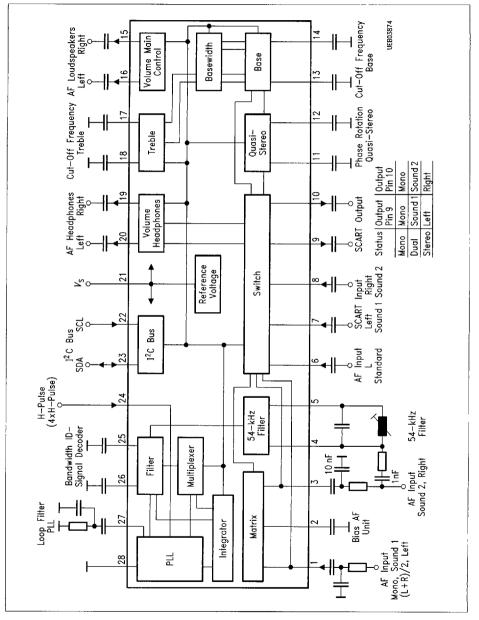
#### 2. TV-Sound Identification Signal Decoder Consisting of:

- a) Active pilot signal filter
- b) Phase-independent rectifier with very narrow bandwidth for evaluation of the identification signal
- c) Digital integrator to reduce interference
- d) Multiplexer for cyclical switch over between "stereo" or "dual" recognition
- e) PLL for the generation of the reference signal. External synchronization with either the flyback pulse or external reference clock signals of 62.5 kHz

#### 3. Control Section for:

- a) I<sup>2</sup>C Bus interface with listen/talk function
- b) Control of the complete AF-sound processing
- c) Control of the identification signal decoder
- d) Reading of the identification signal decoder status
- e) Test modes




#### **Pin Functions**

| Pin No. | Function                                  |
|---------|-------------------------------------------|
| 1       | AF-input mono, left, sound 1              |
| 2       | Bias for AF-unit                          |
| 3       | AF-input right, sound 2                   |
| 4       | 54-kHz input                              |
| 5       | 54-kHz filter                             |
| 6       | AF-input (L-standard)                     |
| 7       | AF-input SCART left (sound 1)             |
| 8       | AF-input SCART right (sound 2)            |
| 9       | AF-output SCART (mono, sound 1, left)     |
| 10      | AF-output SCART (mono, sound 2, right)    |
| 11      | Phase-shifter quasi-stereo                |
| 12      | Phase-shifter quasi-stereo                |
| 13      | Cut-off frequency base (base-width) left  |
| 14      | Cut-off frequency base (base-width) right |
| 15      | AF-output, loudspeaker left               |
| 16      | AF-output, loudspeaker right              |
| 17      | Cut-off frequency treble left             |
| 18      | Cut-off frequency treble right            |
| 19      | AF-output, headphones left                |
| 20      | AF-output, headphones right               |
| 21      | + V <sub>S</sub> (supply voltage)         |
| 22      | I <sup>2</sup> C Bus SCL                  |
| 23      | I <sup>2</sup> C Bus SDA                  |
| 24      | Input H-pulse (4 x H-pulse)               |
| 25      | Filter ID-signal decoder                  |
| 26      | Filter ID-signal decoder                  |
| 27      | PLL-filter ID-signal decoder              |
| 28      | Ground                                    |

## 🛛 8235605 0058293 T65 📖

Semiconductor Group

\_\_\_\_\_



#### **Block Diagram**

8235605 0058294 9T1 I

Semiconductor Group

#### **Circuit Description**

#### Signal Section

The audio signal processing in the matrix and the switch-over for multichannel TV-sound signals according to the two-carrier system used in Germany takes place in the matrix and switching sections. In addition to the two inputs for the demodulated sound carrier a two-channel SCART-input and an additional mono input (e.g. for demodulated L-standard sound) are provided. The two AF-inputs can be by-passed internally in such a way that decoded stereo sound signals of other audio systems (NICAM) can be processed. The switching section is terminated with the SCART-output and an independently switchable Ch1/Ch2 switch for the loudspeaker and headphone outputs.

In the loudspeaker signal path a switchable quasi-stereo section follows the Ch1/Ch2 switch. This section gives a special audio effect with mono signals due to a 180° phase shift at medium frequencies (about 1 kHz) in one channel. The following bass control exhibits a step of 3 dB with an adjustment range of + 15/– 12 dB. The cutoff frequency is set for each channel with an external capacitor.

A circuit for stereo base-width expansion, switchable if stereo signals are recognized, provides a more spatial audio effect due to 50 % of frequency dependent crosstalk in opposing phases. The circuit operates with the same cut-off frequency as the bass control, but the function is largely independent. Likewise the treble control, whose cut-off frequency is also controlled by a capacitor in each channel, has a step of 3 dB with an adjustment range of  $\pm$  12 dB. The volume control can be adjusted independently for the right and left loudspeaker signal path. Using 57 steps of 1.25 dB each, a 70 dB adjustment range is available, where the 57th step activates the "MUTE" function. Functions such as "balance" or "loudness" are realized by software adjustment of the appropriate tone and volume controls.

In the signal path for the headphones after the Ch1/Ch2 switch a volume control circuit is used for the simultaneous left/right adjustment. Thirty-two steps of 2 dB each allow an adjustment range of 62 dB ( $31 \times 2 dB = 62 dB$ , while the 32nd step activates the "MUTE" function).

#### Identification Sound Decoder

The input of the identification sound decoder consists of an op-amp for the pilot signal with its sidebands. An external LC-circuit is used to select the pilot carrier and his sidebands. The signal is then passed to a phase-independent active band-pass filter wih a very narrow bandwidth (adjustable externally). This filter detects whether the lower side-band of the pilot carrier, modulated with the identification signal, is present. The center frequency of the filter is switched between "dual" and "stereo" by a multiplexer. The multiplexing frequency is adjustable by software. If a side-band is detected, the multiplexer stops. The first "detected" criterion is processed by a digital integrator and a following comparator in order to suppress interferences due to noise. The decoder status caw can be read out via I<sup>2</sup>C Bus (talk mode) as the "stereo" or "dual" mode. The control of the corresponding signal path can take place either directly internally or through the  $\mu$ C . All required clock signals are derived from a fast lowding PLL synchronized by a external reference frequency. This reference frequency has to be sufficiently close to the horizontal frequency, but **a rigid phase coupling is not required**. Therefore, alternatively to the line frequency the use of a crystal-controlled 62.5 kHz frequency commonly available in PLL-tuning systems is possible.

### 🖬 8235605 0058295 838 🎟

#### **Control Section**

All functions are controlled via I<sup>2</sup>C Bus interface with listen/talk functions. The actual valid data are stored in a latch block.

The telegram structure is:

start condition - chip address - any number of data bytes - stop condition

The following conditions apply to the data bytes:

Before a data byte (with the adjustment information) is transmitted, a subaddress byte has **always** to be transmitted.

Example: The headphone volume (HP vol) has to be increased in several (i.e. 3) steps.

Within a telegram (i.e. without a new start condition) any different subaddresses can be accessed. The changeover between "listen" and "talk" however has always to be initialized via the sequence "stop condition - start condition - chip address". Before each readout always a start condition and chip address (talk) has to be transmitted. The data to be read out are loaded into the I<sup>2</sup>C Bus interface after this sequence and are available for the transfer to the  $\mu$ C.

#### Chip Address

| MSB | • | • | • | • | • | • | LSB |
|-----|---|---|---|---|---|---|-----|
| 1   | 0 | 0 | 0 | 0 | 1 | 0 | R/W |

 $R/W = 0 \rightarrow Read$  (Listen)

 $R/W = 1 \rightarrow Write (Talk)$ 

### 8235605 0058296 774

#### Subaddress Bytes

|                          | MSB | • | • | • | • | • | • | LSB |
|--------------------------|-----|---|---|---|---|---|---|-----|
| Loudspeaker volume left  | X   | Х | Х | Х | Х | 0 | 0 | 1   |
| Loudspeaker volume right | X   | Х | Х | Х | Х | 0 | 1 | 0   |
| Headphone volume         | X   | Х | Х | Х | Х | 0 | 1 | 1   |
| Treble/bass              | X   | Х | х | Х | х | 1 | 0 | 1   |
| Switch byte I            | X   | Х | х | Х | Х | 1 | 1 | 1   |
| Switch byte II           | X   | Х | Х | Х | Х | 0 | 0 | 0   |

#### Setting Bytes

#### a) Loudspeaker Volume Left / Right

|                | MSB | • | • | ٠ | • | • | • | LSB |
|----------------|-----|---|---|---|---|---|---|-----|
| Maximum volume | Х   | Х | 1 | 1 | 1 | 1 | 1 | 1   |
| Max – 1 step   | X   | х | 1 | 1 | 1 | 1 | 1 | 0   |
| Max – 15 steps | X   | Х | 1 | 1 | 0 | 0 | 0 | 0   |
| Max – 55 steps | X   | Х | 0 | 0 | 1 | 0 | 0 | 0   |
| MUTE           | X   | х | 0 | 0 | 0 | 1 | 1 | 1   |
| MUTE           | X   | х | 0 | 0 | 0 | 0 | 0 | 0   |
| MUTE           | X   | Х | 0 | 0 | 0 | Х | Х | Х   |
| Power ON       | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1   |

#### b) Headphone Volume

|                | MSB | •  | •  | • | • | • | • | LSB |
|----------------|-----|----|----|---|---|---|---|-----|
| Max. volume    | T2  | T1 | T0 | 1 | 1 | 1 | 1 | 1   |
| Max – 1 step   | T2  | T1 | то | 1 | 1 | 1 | 1 | 0   |
| Max – 15 steps | T2  | Τ1 | Т0 | 1 | 0 | 0 | 0 | 0   |
| Max - 31 steps | T2  | T1 | Т0 | 0 | 0 | 0 | 0 | 1   |
| MUTE           | T2  | T1 | TO | 0 | 0 | 0 | 0 | 0   |
| Power ON       | 0   | 0  | 0  | 0 | 0 | 0 | 0 | 1   |

T0 - T2 are test bits; these have to be set to 0 for normal operation.

#### c) Treble / Bass

|                         | MSB    | • | • | •      | ٠    | • | ٠ | LSB  |
|-------------------------|--------|---|---|--------|------|---|---|------|
| Linear                  | 1      | 0 | 0 | 0      | 1    | 0 | 0 | 0    |
| Max. treble, lin. bass  | 1      | 1 | 0 | 0      | 1    | 0 | 0 | 0    |
| Max. treble, lin. bass  | 1      | 1 | Х | Х      | 1    | 0 | 0 | 0    |
| Min. treble, lin. bass  | 0      | 1 | 0 | 0      | 1    | 0 | 0 | 0    |
| vlin. treble, lin. bass | 0      | 0 | Х | Х      | 1    | 0 | 0 | 0    |
| in. treble, max. bass   | 1      | 0 | 0 | 0      | 1    | 1 | 0 | 1    |
| in. treble, max. bass   | 1      | 0 | 0 | 0      | 1    | 1 | Х | 1    |
| _in. treble, max. bass  | 1      | 0 | 0 | 0      | 1    | 1 | 1 | Х    |
| ₋in. treble, min. bass  | 1      | 0 | 0 | 0      | 0    | 1 | 0 | 0    |
| _in. treble, min. bass  | 1      | 0 | 0 | 0      | 0    | 0 | Х | Х    |
| Max. treble, max. bass  | 1      | 1 | Х | Х      | 1    | 1 | х | 1    |
| /lin. treble, min. bass | 0      | 0 | Х | Х      | 0    | 0 | Х | х    |
| Power ON                | 0      | 0 | 0 | 0      | 0    | 0 | 0 | 1    |
|                         | MSB    |   |   | LSB    | MSE  | 3 |   | LSB  |
|                         | treble | ) |   | treble | bass |   |   | bass |

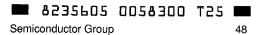
## 8235605 0058298 547 🖿

\_

#### d) Switch Byte I

| MSB                                                                    |       | •                     | ٠                                                                                                                                                | •                                                                                                                                            | •                                                                             | •                                                              | •                                         | LSB                 |
|------------------------------------------------------------------------|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|---------------------|
| MUTE I                                                                 | MU    | TE II                 | Ch1/Ch2 <sub>vol</sub>                                                                                                                           | Ch1/Ch2 <sub>HP</sub>                                                                                                                        | Mono                                                                          | SCART                                                          | SCART-D                                   | AM                  |
| MUTEI =                                                                | = 0   |                       | All AF-outputs ar                                                                                                                                | e muted (loud                                                                                                                                | Ispeakers                                                                     | s, headphoi                                                    | nes, SCART);                              | power ON            |
| MUTEI =                                                                | = 1   | 1                     | All AF-outputs O                                                                                                                                 | N                                                                                                                                            |                                                                               |                                                                |                                           |                     |
| MUTE II =                                                              | = 0   | I                     | Loudspeaker out                                                                                                                                  | puts muted; p                                                                                                                                | ower ON                                                                       | l                                                              |                                           |                     |
|                                                                        | = 1   |                       | Loudspeaker out                                                                                                                                  |                                                                                                                                              |                                                                               |                                                                |                                           |                     |
| MUTE I and                                                             | MUT   | ΓE II :               | are OR gated wit                                                                                                                                 | th respect to t                                                                                                                              | he louds                                                                      | peaker outp                                                    | outs                                      |                     |
| MUTE I                                                                 | ML    | JTE I                 | I Loud                                                                                                                                           | dspeaker outp                                                                                                                                | outs                                                                          | Headpho                                                        | nes, SCART-o                              | outputs             |
| 0                                                                      | 0     |                       | mute                                                                                                                                             | ed                                                                                                                                           |                                                                               | muted                                                          |                                           |                     |
| 0                                                                      | 1     |                       | mute                                                                                                                                             | ed                                                                                                                                           |                                                                               | muted                                                          |                                           |                     |
| 1                                                                      | 0     |                       | mute                                                                                                                                             | ed                                                                                                                                           |                                                                               | ON                                                             |                                           |                     |
| 1                                                                      | 1     |                       | ON                                                                                                                                               |                                                                                                                                              |                                                                               | ON                                                             |                                           |                     |
|                                                                        |       | ~                     | Cound t on the                                                                                                                                   | leudonaakar                                                                                                                                  |                                                                               |                                                                |                                           |                     |
| CH1/Ch2vol<br>CH1/Ch2vol                                               | =     | 0<br>1                | Sound 1 on the Sound 2 on the                                                                                                                    |                                                                                                                                              |                                                                               |                                                                |                                           |                     |
| CH1/Ch2 <sub>vol</sub>                                                 |       | 0                     | Sound 2 on the                                                                                                                                   |                                                                                                                                              |                                                                               | ower ON                                                        |                                           |                     |
|                                                                        |       | 1                     | Sound 2 on the                                                                                                                                   | •                                                                                                                                            |                                                                               |                                                                |                                           |                     |
|                                                                        | -     |                       |                                                                                                                                                  |                                                                                                                                              |                                                                               | cot to the                                                     | osition "dual                             | sound"              |
| CH1/Ch2 <sub>HP</sub><br>CH1/Ch2 <sub>vol</sub>                        | and   | CH1/                  | υπέμραις υπη τ                                                                                                                                   |                                                                                                                                              | maan io                                                                       | Serionie                                                       |                                           | oouna .             |
| CH1/Ch2vol                                                             | and ( |                       |                                                                                                                                                  |                                                                                                                                              |                                                                               |                                                                |                                           |                     |
| CH1/Ch2 <sub>vol</sub><br>Mono                                         |       | CH1/<br>0<br>1        | identification sig                                                                                                                               | anal decoder i                                                                                                                               | s set to r                                                                    | nono positi                                                    |                                           |                     |
| CH1/Ch2 <sub>vol</sub><br>Mono<br>Mono                                 | =     | 0                     | identification signormal operation                                                                                                               | gnal decoder i<br>In of identifica                                                                                                           | s set to r<br>tion signa                                                      | nono positi                                                    |                                           |                     |
| CH1/Ch2 <sub>vol</sub><br>Mono                                         | 8     | 0<br>1                | identification sig<br>normal operatic<br>normal TV-oper                                                                                          | gnal decoder i<br>in of identifica<br>ration; power                                                                                          | s set to r<br>tion signa<br>ON                                                | nono positi<br>al decoder                                      | on and held; p                            | ower ON             |
| CH1/Ch2 <sub>vol</sub><br>Mono<br>Mono<br>SCART                        | -     | 0<br>1<br>0           | identification signormal operation                                                                                                               | gnal decoder i<br>in of identifica<br>ration; power<br>ck; connectior                                                                        | s set to r<br>tion signa<br>ON<br>1 of SCAI                                   | nono positi<br>al decoder<br>RT-inputs -                       | on and held; p<br>AF-outputs. S           | ower ON             |
| CH1/Ch2 <sub>vol</sub><br>Mono<br>Mono<br>SCART                        | -     | 0<br>1<br>0           | identification sig<br>normal operatic<br>normal TV-oper<br>SCART-playbac                                                                         | gnal decoder i<br>on of identifica<br>ration; power<br>ck; connectior<br>r AM = 1 (loue                                                      | s set to r<br>tion signa<br>ON<br>of SCAI<br>dspeaker                         | nono positio<br>al decoder<br>RT-inputs -<br>and headp         | on and held; p<br>AF-outputs. S           | ower ON             |
| CH1/Ch2 <sub>vol</sub><br>Mono<br>Mono<br>SCART<br>SCART               |       | 0<br>1<br>0<br>1      | identification sig<br>normal operation<br>normal TV-oper<br>SCART-playbach<br>has priority ove                                                   | gnal decoder i<br>on of identifica<br>ration; power<br>ck; connectior<br>r AM = 1 (louc<br>ck stereo (mo                                     | s set to r<br>tion signa<br>ON<br>of SCAI<br>dspeaker<br>no); powe            | nono positi<br>al decoder<br>RT-inputs -<br>and headp<br>er ON | on and held; p<br>AF-outputs. S<br>hones) | ower ON<br>CART = 1 |
| CH1/Ch2 <sub>vol</sub><br>Mono<br>SCART<br>SCART<br>SCART-D            |       | 0<br>1<br>0<br>1      | identification sig<br>normal operation<br>normal TV-oper<br>SCART-playbach<br>has priority over<br>SCART-playbach<br>Enable for the C            | gnal decoder i<br>n of identifica<br>ration; power<br>ck; connectior<br>r AM = 1 (louc<br>ck stereo (mo<br>Ch1/Ch2 switc                     | s set to r<br>tion sign<br>ON<br>of SCAI<br>dspeaker<br>no); powe<br>h during | nono positi<br>al decoder<br>RT-inputs -<br>and headp<br>er ON | on and held; p<br>AF-outputs. S<br>hones) | ower ON<br>CART = 1 |
| CH1/Ch2 <sub>vol</sub><br>Mono<br>SCART<br>SCART<br>SCART-D<br>SCART-D |       | 0<br>1<br>0<br>1<br>0 | identification sig<br>normal operation<br>normal TV-oper<br>SCART-playbar<br>has priority ove<br>SCART-playbar<br>Enable for the C<br>SCART = 1) | gnal decoder i<br>n of identifica<br>ration; power i<br>ck; connectior<br>r AM = 1 (louc<br>ck stereo (mo<br>Ch1/Ch2 switc<br>on (G-standard | s set to r<br>tion sign<br>ON<br>of SCAI<br>dspeaker<br>no); powe<br>h during | nono positi<br>al decoder<br>RT-inputs -<br>and headp<br>er ON | on and held; p<br>AF-outputs. S<br>hones) | ower ON<br>CART = 1 |




ł

#### e) Switch Byte II

| MSB  | •     | •         | •  | •     | •        | •          | LSB       |
|------|-------|-----------|----|-------|----------|------------|-----------|
| MPX0 | MPX1  | Quasi-st  | Be | H-pul | Matrix 0 | Matrix 1   | Bypass    |
| MPX0 | MPX 1 | MPX perio | d  |       |          | recommende | ed C25 26 |
| 0    | 0     | 2 s       |    | pow   | ver ON   | 1μF        | 20, 20    |
| 0    | 1     | 4 s       |    |       |          | 2.2 μF     |           |
| 1    | 0     | 8 s       |    |       |          | 4.7 μF     |           |

MPX-period = 2 s signifies: Identification (ID) signal decoder searches 1 s for dual and 1 s for stereo transmission

| Quasi-st<br>Quasi-St<br>Be<br>Be | = | 0<br>1<br>0<br>1 | Quasi-<br>Stereo | stereo OFF; Pow<br>stereo ON<br>basewidth expa<br>basewidth expa | nsion OFF; Power ON                                                 |
|----------------------------------|---|------------------|------------------|------------------------------------------------------------------|---------------------------------------------------------------------|
| H pul<br>H pul                   | = | 0<br>1           |                  | al decoder syncl                                                 | pronization with $f_{\rm H}$ = 15.625 kHz; power ON 4 x $f_{\rm H}$ |
| Matrix 0                         |   | Mat              | trix 1           | Matrix status                                                    |                                                                     |
| 0                                |   | 0                |                  | mono                                                             | power ON                                                            |
| 0                                |   | 1                |                  | stereo                                                           |                                                                     |
| 1                                |   | 0                |                  | dual                                                             |                                                                     |
| 1                                |   | 1                |                  | automatic acco                                                   | rding to ID-signal decoder                                          |
| Bypass                           | = | 0                |                  | Normal operati                                                   | ons (G-standard)                                                    |
| Bypass                           | = | 1                |                  | signals can be                                                   | d so that left/right<br>fed in; power ON<br>ority over bypass = 1)  |



#### **Priority List of Setting Bits**

- 1. MUTE I
- 2. MUTE II (only with regard to the loudspeaker outputs)
- 3. SCART
- 4. Standard L
- 5. Bypass
- 6. Matrix 0, 1

#### h) Talk Mode

| MS | • | •       | •             | •     | • | • | LSB |
|----|---|---------|---------------|-------|---|---|-----|
| St | D | T5      | T4            | Т3    | Х | X | X   |
| 0  | 0 | decode  | er detects m  | nono  |   |   |     |
| 1  | 0 | decode  | er detects s  | tereo |   |   |     |
| 0  | 1 | decode  | er detects d  | ual   |   |   |     |
| 1  | 1 | interna | Ily inhibited |       |   |   |     |

#### T3 - T5 are test bits



#### **Absolute Maximum Ratings**

 $T_{\rm A}$  = 0 to 70 °C; all voltages relatives to  $V_{\rm SS}$ 

| Parameter                         | Symbol             | Li   | mit Values      | Unit |
|-----------------------------------|--------------------|------|-----------------|------|
|                                   |                    | min. | max.            |      |
| Supply voltage                    | V <sub>21</sub>    | 0    | 14              | V    |
| Max. DC-voltage                   | V <sub>1</sub>     | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_2$              | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_3$              | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_4$              | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_6$              | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_7$              | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_8$              | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_{11}$           | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>12</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>13</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>14</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>17</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>18</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | $V_{22}$           | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>23</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>24</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-voltage                   | V <sub>25</sub>    | 0    | $V_{21}$        | V    |
| Max. DC-voltage                   | V <sub>26</sub>    | 0    | V <sub>21</sub> | V    |
| Max. DC-current                   | $I_5$              | 0    | 2               | mA   |
| Max. DC-current                   | $I_9$              | 0    | 2               | mA   |
| Max. DC-current                   | I <sub>10</sub>    | 0    | 2               | mA   |
| Max. DC-current                   | I <sub>15</sub>    | 0    | 2               | mA   |
| Max. DC-current                   | I <sub>16</sub>    | 0    | 2               | mA   |
| Max. DC-current                   | I <sub>19</sub>    | 0    | 2               | mA   |
| Max. DC-current                   | I <sub>20</sub>    | 0    | 2               | mA   |
| Max. DC-current                   | I <sub>27</sub>    | 0    | 1               | mA   |
| Junction temperature              | Tj                 |      | 150             | °C   |
| Storage temperature               | T <sub>stg</sub>   | - 40 | 125             | °C   |
| Thermal resistance system ambient | R <sub>th SA</sub> |      | 53              | K/W  |

#### **Operating Range**

| Supply voltage        | V <sub>6</sub> | 10   | 13.2 | V   |
|-----------------------|----------------|------|------|-----|
| Ambient temperature   | T <sub>A</sub> | 0    | 70   | °C  |
| Input frequency range | $f_1$          | 0.01 | 20   | kHz |

8235605 0058302 878 📟

#### Characteristics

 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

I<sup>2</sup>C Bus present: start - 84 - 01,3F - 0 2,3F - 0 3,1F - 0 5,88 - 0 6,10 - 07,C8 - 00,01 - stop

Chip address - Vol $_{\rm LSI}$  63 - Vol $_{\rm LSr}$  63 - Vol $_{\rm HP}$  31 - tone lin - adj 0dB - MUTE I, MUTE II, Mono - Bypass

The basic setting for each point in the specification is always preset; only settings which deviate from this are given in the test conditions. Details in *italics* only provide explanation of the hexadecimal code and with switch bits on the set bits and features are stated.

| Parameter           | Symbol          | Li             | mit Valu | ies | Unit | Test Condition |
|---------------------|-----------------|----------------|----------|-----|------|----------------|
|                     |                 | min. typ. max. |          | 1   |      |                |
| Current consumption | I <sub>21</sub> |                | 50       |     | mA   |                |

#### Signal Section

| Max. gain | V <sub>16-1</sub> | -2  | 0   | 2   | dB |                   |
|-----------|-------------------|-----|-----|-----|----|-------------------|
| Max. gain | V <sub>15-3</sub> | - 2 | 0   | 2   | dB |                   |
| Max. gain | V20-1             | -2  | 0   | 2   | dB |                   |
| Max. gain | V <sub>19-3</sub> | -2  | 0   | 2   | dB |                   |
| Max. gain | V <sub>16-3</sub> | - 2 | 0   | 2   | dB | 00,02; $V_1 = 01$ |
|           |                   |     |     |     |    | Matrix: Stereo    |
| Max. gain | V <sub>15-3</sub> | - 2 | 0   | 2   | dB | 00,02; $V_1 = 01$ |
|           |                   |     |     |     |    | Matrix: Stereo    |
| Max. gain | V <sub>20-3</sub> | - 2 | 0   | 2   | dB | 00,02; $V_1 = 0$  |
|           |                   |     |     |     |    | Matrix: Stereo    |
| Max. gain | V <sub>19-3</sub> | - 2 | 0   | 2   | dB | 00,02; $V_1 = 0$  |
|           |                   |     |     |     |    | Matrix: Stereo    |
| Max. gain | V <sub>16-1</sub> | 4   | 6   | 8   | dB | 00,02; $V_3 = 0$  |
|           |                   |     |     |     |    | Matrix: Stereo    |
| Max. gain | V <sub>20-1</sub> | 4   | 6   | 8   | dB | 00,02; $V_3 = 0$  |
|           |                   |     |     |     |    | Matrix: Stereo    |
| Max. gain | V <sub>16-7</sub> | - 5 | - 3 | - 1 | dB | 07,CC, SCART      |
| Max. gain | V <sub>15-8</sub> | - 5 | - 3 | – 1 | dB | 07,CC, SCART      |
| Max. gain | V <sub>20-7</sub> | - 5 | - 3 | - 1 | dB | 07,CC, SCART      |
| Max. gain | V <sub>19-8</sub> | - 5 | - 3 | – 1 | dB | 07,CC, SCART      |
| Max. gain | V <sub>16-6</sub> | -2  | 0   | 2   | dB | 07,C9, Standard L |
| Max. gain | V <sub>15-6</sub> | -2  | 0   | 2   | dB | 07,C9, Standard L |
| Max. gain | V <sub>20-6</sub> | -2  | 0   | 2   | dB | 07,C9, Standard L |
| Max. gain | V <sub>19-6</sub> | -2  | 0   | 2   | dB | 07,C9, Standard L |
|           |                   |     |     | 1   | 1  |                   |

#### 8235605 0058303 734 🖿

 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

| Parameter              | Symbol              | Li   | mit Val | ues        | Unit      | Test Condition                       |
|------------------------|---------------------|------|---------|------------|-----------|--------------------------------------|
|                        |                     | min. | typ.    | max.       | 1         |                                      |
| Gain                   | V <sub>9-1</sub>    | -2   | 0       | 2          | dB        |                                      |
| Gain                   | V <sub>10-3</sub>   | -2   | 0       | 2          | dB        |                                      |
| Gain                   | V <sub>9-3</sub>    | -2   | 0       | 2          | dB        | 00,02; $V_1 = 0$                     |
|                        | 5-5                 |      |         |            |           | Matrix: Stereo                       |
| Gain                   | V <sub>10-3</sub>   | -2   | 0       | 2          | dB        | 00,02; $V_1 = 0$                     |
|                        | 100                 |      |         | 1          | 1         | Matrix: Stereo                       |
| Gain                   | V <sub>9-1</sub>    | 4    | 6       | 8          | dB        | 00,02; $V_3 = 0$                     |
|                        | 51                  |      |         |            | 1         | Matrix: Stereo                       |
| Gain                   | V <sub>10-6</sub>   | -2   | 0       | 2          | dB        | 07,C9 Standard L                     |
| Gain                   | V <sub>9-6</sub>    | -2   | 0       | 2          | dB        | 07,C9 Standard L                     |
| Min. gain              |                     | - 65 | - 70    |            | dB        | 01,08-02,08                          |
| Mini. yan              | V <sub>16-1</sub>   | - 05 | - 70    |            | u D       | Vol LSI 8-Vol LSr 8                  |
| Min. gain              | V <sub>15-3</sub>   | - 65 | - 70    |            | dB        | 01,08-02,08                          |
| win. gan               | F 15-3              | - 05 | - /0    |            | u D       | Vol LSI 8-Vol LSr 8                  |
|                        |                     |      |         |            |           | 01,08-02,08                          |
| Min agin               | V                   | - 57 | - 62    |            | dB        | 03,01 <i>Vol</i> <sub>HP</sub> 1     |
| Min. gain<br>Min. gain | V <sub>20-1</sub>   | - 57 | - 62    |            | dB        | 03,01 <i>Vol</i> <sub>HP</sub> 1     |
| Min. gain              | V <sub>19-3</sub>   | - 68 | - 73    |            | dB        | 07,CC-01,08-02,08                    |
| win. gan               | V <sub>16-7</sub>   | - 00 | 1.10    |            | <b>UD</b> | SCART-Vol LSI 8-Vol LSr 8            |
| Min. gain              | V <sub>15-8</sub>   | - 68 | - 73    |            | dB        | 07,CC-01,08-02,08                    |
| Min. gan               | * 15-8              | 00   | 10      |            |           | SCART-Vol LSI 8-Vol <sub>LSr</sub> 8 |
| Min. gain              | V <sub>20-7</sub>   | - 60 | - 65    |            | dB        | 07,CC-03,01                          |
| Mini. gan              | * 20-7              |      |         |            |           | SCART-Vol KH 1                       |
| Min. gain              | V <sub>19-8</sub>   | - 60 | - 65    |            | dB        | 07,CC-03,01                          |
|                        | . 19-0              |      |         |            |           | SCART-Vol KH 1                       |
| Min. gain              | V <sub>16-6</sub>   | - 60 | - 70    |            | dB        | 07,C9-01,08-02,08                    |
| <b>3</b>               | 10-0                |      |         |            |           | Standard L Vol LSI 8-Vol LSr 8       |
| Min. gain              | V <sub>15-6</sub>   | - 60 | - 70    |            | dB        | 07,C9-01,08-02,08                    |
|                        | 13-0                |      | l l     |            |           | Standard L Vol LSI 8-Vol LSr 8       |
| Min. gain              | V <sub>20-6</sub>   | - 57 | - 62    |            | dB        | 07,C9-03,01                          |
| 0                      | 200                 |      |         |            |           | Standard L Vol KH 1                  |
| Min. gain              | V <sub>19-6</sub>   | - 57 | - 62    |            | dB        | 07,C9-03,01                          |
| 5                      | 13-0                |      |         |            |           | Standard L Vol KH 1                  |
| Flutter and wow        | ΔV <sub>15-16</sub> |      | 1       | ±2         | dB        | 01,3F to 01,24                       |
|                        | →r 15-16            |      |         |            |           | 02,3F to 02,24                       |
|                        |                     |      |         |            |           | Vol LSI 63-36-Vol LSr 63-36          |
| Flutter and wow        | $\Delta V_{19-20}$  |      |         | ±2         | dB        | 03,1F to 03,13                       |
|                        | <sup>⊥</sup> 19-20  |      |         | ÷ <b>č</b> | 1.0       | Vol <sub>KH</sub> 31-19              |

#### 1

8235605 0058304 670 🎟 Semiconductor Group

 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

| Parameter                    | Symbol             | ymbol Limit Valu |      | ues | Unit | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|--------------------|------------------|------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | min. typ.          | typ.             | max. | -   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Step width Vol <sub>15</sub> | $\Delta V_{15}$    | 0                | 1.25 | 2.5 | dB   | 01,X-01, (X ± 1)<br>Vol <sub>LSI</sub> X-Vol <sub>LSI</sub> (X = 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Step width Vol <sub>16</sub> | $\Delta V_{16}$    | 0                | 1.25 | 2.5 | dB   | 02,X-02,(X±1)<br>Vol Lsr X-Vol Lsr (X 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Step width Vol <sub>19</sub> | $\Delta V_{19}$    | 0                | 2    | 4   | dB   | $\begin{array}{c} 0.1 \\ 0.3 \\ X \\ -0.3 \\ 0.1 \\ X \\ -0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0$ |
| Step width Vol <sub>20</sub> | $\Delta V_{20}$    | 0                | 2    | 4   | dB   | 03,X-03, $(X \pm 1)$<br>Vol <sub>KH</sub> X-Vol <sub>KH</sub> (X 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bass boost                   | V <sub>16-1</sub>  | 13               | 15   |     | dB   | $05,8F; f_1 = 40 \text{ Hz}$<br>Bass max, treble lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bass boost                   | V <sub>15-3</sub>  | 13               | 15   | 1   | dB   | 05,8F; $f_1 = 40$ Hz<br>Bass max, treble lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bass boost                   | V <sub>16-1</sub>  | - 10             | - 12 |     | dB   | $05,8F; f_1 = 40 \text{ Hz}$<br>Bass max, treble lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bass boost                   | V <sub>15-3</sub>  | - 10             | - 12 |     | dB   | $05,8F; f_{I} = 40 \text{ Hz}$<br>Bass max, treble lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step wide bass               | $\Delta V_{15}$    | 1                | 3    | 5   | dB   | 05,8X-05,8 (X ± 1)<br>Bass X – bass (X ± 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Step wide bass               | $\Delta V_{16}$    | 1                | 3    | 5   | dB   | $\begin{array}{c} 05,8X-05,8 (X \pm 1) \\ Bass X - bass (X \pm 1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| High frequency<br>emphasis   | V <sub>16-1</sub>  | 10               | 12   |     | dB   | 05,8F; $f_1$ = 15 kHz<br>Treble max, bass lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| High frequency<br>emphasis   | V <sub>15-3</sub>  | 10               | 12   |     | dB   | 05,8F; f <sub>i</sub> = 15 kHz<br>Treble max, bass lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| High frequency<br>emphasis   | V <sub>16-1</sub>  | - 10             | - 12 |     | dB   | 05,8F; $f_{l}$ = 15 kHz<br>Treble max, bass lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| High frequency<br>emphasis   | V <sub>15-3</sub>  | - 10             | - 12 |     | dB   | 05,8F; $f_{\rm I}$ = 15 kHz<br>Treble max, bass lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Step wide treble             | $\Delta V_{15}$    | 1                | 3    | 5   | dB   | 05,X8-0,5 (X ± 1) 8<br>Treble X – treble (X ± 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Step wide treble             | $\Delta V_{16}$    | 1                | 3    | 5   | dB   | 05,X8-0,5 (X ± 1) 8<br>Treble X – treble (X ± 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Linearity sound              | $\Delta V_{15}$    |                  |      | ±2  | dB   | 05,88; <i>f</i> <sub>1</sub> = 40 Hz – 15 kHz<br>Treble, bass lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Linearity sound              | $\Delta V_{16}$    |                  |      | ±2  | dB   | $05,88; f_1 = 40 \text{ Hz} - 15 \text{ kHz}$<br>Treble, bass lin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Channel separation           | $\Delta V_{15-16}$ | 50               |      |     | dB   | $V_3$ or $V_1 = 600$ mVrms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Channel separation           | $\Delta V_{19-20}$ | 50<br>50         | 1    |     | dB   | $V_3$ or $V_1 = 600 \text{ mVrms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Channel separation           | $\Delta V_{9-10}$  | 50               |      | 1   | dB   | $V_3$ or $V_1 = 600 \text{ mVrms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

8235605 0058305 507 🔳

Semiconductor Group

 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

| Parameter            | Symbol                    | Li        | imit Vai | ues                  | Unit                 | Test Condition                                        |
|----------------------|---------------------------|-----------|----------|----------------------|----------------------|-------------------------------------------------------|
|                      |                           | min.      | typ.     | max.                 |                      |                                                       |
| Cross talk           | α <sub>input interf</sub> |           |          |                      |                      |                                                       |
| attenuation switch   | / Output rms              |           |          |                      |                      |                                                       |
|                      |                           |           |          |                      |                      | $V_{\rm 1rms} = 0$                                    |
|                      |                           |           |          |                      |                      | $V_{1 \text{ int 1, 3,6}} = 600 \text{ mVrms}$        |
|                      |                           | 60        |          |                      | dB                   | $V_{i \text{ Int7,8}} = 2 \text{ Vrms}$               |
| Attenuation MUTE     | α <sub>1-16</sub>         | 80        |          |                      | dB                   | 01,00-02,00                                           |
|                      |                           |           |          |                      |                      | Vol LSI 0-Vol LSr 0                                   |
|                      |                           |           |          |                      |                      | $V_1 = 600 \text{ mVrms}$                             |
| Attenuation MUTE     | α <sub>1-16</sub>         | 80        |          |                      | dB                   | 07,48; $V_1 = 600 \text{ mVrms}$                      |
|                      |                           | 1         |          |                      |                      | MUTE I: 0                                             |
| Attenuation MUTE     | α <sub>1-16</sub>         | 80        |          |                      | dB                   | 07,88; $V_1 = 600 \text{ mVrms}$                      |
|                      |                           |           |          |                      |                      | MUTE II: 0                                            |
| Attenuation MUTE     | α <sub>3-15</sub>         | 80        |          |                      | dB                   | 01,00-02,00                                           |
|                      |                           |           |          |                      |                      | Vol LSI 0-Vol LSr 0                                   |
|                      |                           |           |          |                      |                      | $V_3 = 600 \text{ mVrms}$                             |
| Attenuation MUTE     | $\alpha_{3-15}$           | 80        |          |                      | dB                   | 07,48; V <sub>3</sub> = 600 mVrms<br><i>MUTE I: 0</i> |
|                      |                           | 00        |          |                      | dB                   | 07,88; V <sub>3</sub> = 600 mVrms                     |
| Attenuation MUTE     | α <sub>3-15</sub>         | 80        |          |                      | UD                   | MUTE II: 0                                            |
|                      |                           | 80        |          |                      | dB                   | $03,00; V_1 = 600 \text{ mVrms}$                      |
| Attenuation MUTE     | α <sub>1-20</sub>         | 00        |          |                      | UD                   | Vol <sub>KH</sub> 0                                   |
| Attenuation MUTE     | <b>a</b>                  | 80        | 1        |                      | dB                   | 07,48; $V_1 = 600 \text{ mVrms}$                      |
| Allenuation MOTE     | α <sub>1-20</sub>         |           |          |                      | 1 and                | MUTE I: 0                                             |
| Attenuation MUTE     | α <sub>3-19</sub>         | 80        |          |                      | dB                   | 03,00; $V_3 = 600 \text{ mVrms}$                      |
| Alteruation MOTE     | ~ 3-19                    |           |          |                      |                      | Vol <sub>KH</sub> 0                                   |
| Attenuation MUTE     | α <sub>3-19</sub>         | 80        |          |                      | dB                   | 07,48; $V_3 = 600 \text{ mVrms}$                      |
|                      | ··· 3-19                  |           |          |                      |                      | MUTE I: O                                             |
| Analog values are va | alid for feed-            | in at the | e pin 6, | 7, 8; V <sub>7</sub> | <sub>8</sub> = 2 Vrm | ns; V <sub>6</sub> = 600 mVrms                        |
| Attenuation MUTE     |                           | 80        | 1        |                      | dB                   | 07,48; $V_3 = 600 \text{ mVrms}$                      |
| Alternation MOTE     | α <sub>3-10</sub>         |           |          |                      |                      | MUTE I: 0                                             |
| Attenuation MUTE     | α <sub>1-9</sub>          | 80        |          |                      | dB                   | 07,48; $V_3 = 600 \text{ mVrms}$                      |
|                      | ∽ 1-9                     |           |          |                      |                      | MUTE I: 0                                             |
| Attenuation MUTE     | α <sub>6-10</sub>         | 80        |          |                      | dB                   | 07,49; V <sub>6</sub> = 600 mVrms                     |
|                      | ~ 6-10                    |           | 1        |                      |                      | MUTE I: 0, Standard L                                 |
| Attenuation MUTE     | α <sub>6-9</sub>          | 80        |          |                      | dB                   | 07,49; V <sub>6</sub> = 600 mVrms                     |
|                      | 0-9                       |           |          |                      |                      | MUTE I: 0, Standard L                                 |

8235605 0058306 443 🖿

Semiconductor Group

1

 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

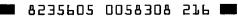
| Parameter            | Symbol                                  | L         | imit Val | ues                    | Unit      | Test Condition                                  |
|----------------------|-----------------------------------------|-----------|----------|------------------------|-----------|-------------------------------------------------|
|                      |                                         | min.      | typ.     | max.                   | 1         |                                                 |
| Max. input voltage   | V <sub>6</sub>                          | 600       |          | -                      | mVrms     | <i>THD</i> <sub>15,16</sub> = 1 %               |
| Max. input voltage   | V <sub>3</sub>                          | 600       |          |                        | mVrms     | $THD_{15} = 1 \%$                               |
| Max. input voltage   | $V_1$                                   | 600       |          |                        | mVrms     | $THD_{16} = 1 \%$                               |
| Max. input voltage   | $V_1$                                   | 300       |          |                        | mVrms     | $THD_{16} = 1\%;00,02$                          |
|                      |                                         |           |          |                        | 1         | Matrix: Stereo                                  |
| Max. input voltage   | $V_7$                                   | 2         |          |                        | Vrms      | <i>THD</i> <sub>16</sub> = 1 %                  |
|                      | ,                                       |           |          |                        | Vrms      | 07, CC, SCART                                   |
| Max. input voltage   | V <sub>8</sub>                          | 2         |          |                        | %         | <i>THD</i> <sub>15</sub> = 3 %                  |
|                      |                                         |           |          |                        |           | 07, CC, SCART                                   |
| Distortion           | THD <sub>19</sub>                       | 0         | 0.01     | 0.1                    | %         | $V_3 = 250 \text{ mVrms}$                       |
| Distortion           | THD <sub>20</sub>                       |           | 0.01     | 0.1                    | %         | $V_1 = 250 \text{ mVrms}$                       |
| Distortion           | THD <sub>19</sub>                       |           | 0.01     | 0.1                    | %         | V <sub>3</sub> = 250 mVrms; 03,15               |
|                      |                                         |           | }        |                        |           | Vol <sub>KH</sub> 21                            |
| Distortion           | THD <sub>20</sub>                       |           | 0.01     | 0.1                    | %         | $V_1 = 250 \text{ mVrms}; 03,15$                |
|                      |                                         |           |          |                        |           | Vol <sub>KH</sub> 21                            |
| Analog values are va | alid for feed-                          | in at the | pin 6, 7 | 7, 8; V <sub>7,8</sub> | = 2 Vrms: |                                                 |
| Distortion           | THD <sub>16</sub>                       | 1         | 0.01     | 0.1                    | %         | $V_1 = 250 \text{ mVrms}$                       |
| Distortion           | THD <sub>15</sub>                       |           | 0.01     | 0.1                    | %         | $V_3 = 250 \text{ mVrms}$                       |
| Distortion           | $THD_{16}$                              |           | 0.01     | 0.2                    | %         | $V_1 = 250 \text{ mVrms}; 01$                   |
|                      | 10                                      |           |          |                        |           | 2F-02.2F                                        |
|                      |                                         |           |          |                        |           | Vol LSI 47-Vol LSr 47                           |
| Distortion           | THD <sub>15</sub>                       |           | 0.01     | 0.2                    | %         | $V_3 = 250 \text{ mVrms}; 01$                   |
|                      | 15                                      |           |          |                        |           | 2F-02,2F                                        |
|                      |                                         |           |          |                        |           | Vol LSI 47-Vol LSr 47                           |
| Distortion           | THD <sub>16</sub>                       |           | 0.01     | 0.4                    | %         | $V_1 = 250 \text{ mVrms}; 05,XX$                |
|                      |                                         |           |          |                        |           | any sound                                       |
| Distortion           | THD <sub>15</sub>                       |           | 0.01     | 0.4                    | %         | $V_3 = 250 \text{ mVrms}; 05,XX$                |
|                      |                                         |           |          |                        |           | any sound                                       |
| Analog values are va | alid for feed-                          | in at the | pin 6, 7 | , 8; V <sub>7,8</sub>  | = 2 Vrms; | V <sub>6</sub> = 250 mVrms                      |
| Distortion           | THD <sub>10</sub>                       |           | 0.01     | 0.1                    | %         | $V_3 = 250 \text{ mVrms}$                       |
| Distortion           | THD <sub>9</sub>                        | 1         | 0.01     | 0.1                    | %         | $V_1 = 250 \text{ mVrms}$                       |
| Distortion           | THD <sub>10</sub>                       |           | 0.01     | 0.1                    | %         | $V_6 = 250 \text{ mVrms}$                       |
|                      |                                         |           |          |                        |           | 07,C9, Standard L                               |
| Distortion           | THD <sub>9</sub>                        | 1         | 0.01     | 0.1                    | %         | $V_1 = 250 \text{ mVrms}$                       |
|                      | , i i i i i i i i i i i i i i i i i i i |           |          |                        |           | 07,C9, Standard L                               |
| Antiphase            | $\Delta V_{16-15}$                      | 0.5       | 0.55     |                        |           |                                                 |
| Cross talk atten.    |                                         |           |          |                        |           | $V_3 = 600 \text{ mVrms}$                       |
| Base width           |                                         |           |          |                        |           |                                                 |
|                      |                                         |           |          |                        |           | $f_{\rm I} = 2  \rm kHz;  00, 11,  Basis  widt$ |

## 8235605 0058307 38T 페

1

٤

- ----


r

٩.

#### Characteristics (cont'd)

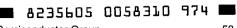
 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

| Parameter                            | Symbol             | L    | imit Val | ues  | Unit  | Test Condition                                                                                                                           |
|--------------------------------------|--------------------|------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                    | min. | typ.     | max. |       |                                                                                                                                          |
| Antiphase<br>Cross talk atten.       | $\Delta V_{16-15}$ | 0.5  | 0.55     |      |       | $V_3 = 600 \text{ mVrms}$                                                                                                                |
| Base width                           |                    |      |          |      |       | $f_{\rm I}$ = 2 kHz; 00,11, <i>Basis width</i>                                                                                           |
| Base width phase                     | Ф <sub>16-15</sub> | 150  | 180      | 210  | deg   | <i>V</i> <sub>1</sub> = 600 mVrms; 00,11<br><i>Basis width</i> , <i>f</i> = 2 kHz                                                        |
| Base width phase                     | Φ <sub>15-16</sub> | 150  | 180      | 210  | deg   | $V_1 = 600 \text{ mVrms}; 00,11$<br>Basis width, $f = 2 \text{ kHz}$                                                                     |
| Phase rotation<br>quasi stereo       | Φ <sub>16-15</sub> | 0    | 10       | 40   | deg   | $V_{3,1} = 600 \text{ mVrms}; 00,21$<br>Quasi stereo, $f = 40 \text{ Hz}$                                                                |
| Phase rotation quasi stereo          | $\Phi_{16-15}$     | 130  | 180      | 230  | deg   | $V_{3,1} = 600 \text{ mVrms}; 00,21$<br>Quasi stereo, $f = 1 \text{ kHz}$                                                                |
| Phase rotation<br>quasi stereo       | Φ <sub>16-15</sub> | - 30 | 10       | 0    | deg   | $V_{3,1} = 600 \text{ mVrms}; 00,21$<br>Quasi stereo, $f = 15 \text{ kHz}$                                                               |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N16</sub> | 1    | 90       | 97   | dB    | $V_{N \text{ rms } 20 \text{ Hz}-20 \text{ kHz}};$<br>$V_1 = 0.6 \text{ Vrms}$                                                           |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N15</sub> | 1    | 90       | 97   | dB    | $V_{N \text{ rms } 20 \text{ Hz} - 20 \text{ kHz}};$<br>$V_3 = 0.6 \text{ Vrms}$                                                         |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N16</sub> | 70   | 80       |      | dB    | V <sub>N rms 20 Hz-20 kHz</sub> ;<br>V <sub>1</sub> = 0.6 Vrms<br>01,27-02,27                                                            |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N15</sub> | 70   | 80       |      | dB    | $Vol_{LSI} 39-Vol_{LSr} 39$ $V_{N rms 20 H2-20 kHz};$ $V_{3} = 0.6 Vrms$ $01,27-02,27$ $Vol_{LSI} 39-Vol_{LSr} 39$                       |
| External voltage                     | V <sub>N15</sub>   |      | 2        | 10   | μVrms | V <sub>N rms 20 Hz-20 kHz</sub><br>01,00-02,00                                                                                           |
| External voltage                     | V <sub>N16</sub>   |      | 2        | 10   | μVrms | Vol <sub>LSI</sub> 0-Vol <sub>LSr</sub> 0<br>V <sub>N rms 20 Hz-20 kHz</sub><br>01,00-02,00<br>Vol <sub>LSI</sub> 0-Vol <sub>LSr</sub> 0 |



 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

| Parameter                            | Symbol             | Limit Values |      |      | Unit  | Test Condition                                                                                                                 |  |
|--------------------------------------|--------------------|--------------|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------|--|
|                                      |                    | min.         | typ. | max. |       |                                                                                                                                |  |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N20</sub> | 90           | 97   |      | dB    | $V_{\rm N \ rms \ 20 \ Hz-20 \ kHz};$<br>$V_1 = 0.6 \ Vrms$                                                                    |  |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N19</sub> | 1            | 90   | 97   | dB    | $V_{N \text{ rms } 20 \text{ Hz} - 20 \text{ kHz}}$<br>$V_3 = 0.6 \text{ Vrms}$                                                |  |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N20</sub> | 70           | 80   |      | dB    | $V_{N \text{ rms } 20 \text{ Hz} - 20 \text{ kHz}}^{\circ};$<br>$V_1 = 0.6 \text{ Vrms}$<br>03,10, <i>Vol</i> <sub>KH</sub> 16 |  |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N19</sub> | 70           | 80   |      | dB    | $V_{\rm N \ rms \ 20 \ Hz - 20 \ kHz};$<br>$V_3 = 0.6 \ Vrms$<br>03,10, Vol <sub>KH</sub> 16                                   |  |
| External voltage                     | V <sub>N20</sub>   |              | 2    | 10   | μVrms | V <sub>N rms 20 Hz-20 kHz</sub> ; 03,00<br><i>Vol</i> <sub>KH</sub> <i>0</i>                                                   |  |
| External voltage                     | V <sub>N19</sub>   |              | 2    | 10   | μVrms | V <sub>N rms 20 Hz-20 kHz</sub> ; 03,00<br><i>Vol</i> <sub>KH</sub> 0                                                          |  |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N9</sub>  | 1            | 90   | 97   | dB    | $V_{N \text{ rms } 20 \text{ Hz}-20 \text{ kHz}};$<br>$V_1 = 0.6 \text{ Vrms}$                                                 |  |
| Unweighted signal-<br>to-noise ratio | α <sub>S/N10</sub> | 1            | 90   | 97   | dB    | V <sub>N rms 20 Hz-20 kHz</sub> ;<br>V <sub>1</sub> = 0.6 Vrms                                                                 |  |
| Change of DC-switch<br>∆1 Bit        | $\Delta V_{16}$    |              |      | ± 10 | mV    | 01,X-01,X±1<br>Vol <sub>LSI</sub> X-Vol <sub>LSI</sub> (X±1)                                                                   |  |
| Change of DC-switch<br>∆1 Bit        | $\Delta V_{15}$    |              |      | ± 10 | mV    | $02, X - 02, X \pm 1$<br>$Vol_{LSr} X - Vol_{LSr} (X \pm 1)$                                                                   |  |
| Change of DC-switch<br>∆1 Bit        | $\Delta V_{16}$    |              |      | ± 10 | mV    | 05,X-05,X ± 1<br>Sound X-Sound (X ± 1)                                                                                         |  |
| Change of DC-switch<br>∆1 Bit        | $\Delta V_{15}$    |              |      | ± 10 | mV    | 05,X-05,X ± 1<br>Sound X-Sound (X ± 1)                                                                                         |  |
| Change of DC-switch<br>∆1 Bit        | $\Delta V_{19}$    |              |      | ± 10 | mV    | 03,X-03,X±1<br>Vol <sub>КН</sub> X-Vol <sub>КН</sub> (X±1)                                                                     |  |
| Change of DC-switch<br>∆1 Bit        | $\Delta V_{20}$    |              |      | ± 10 | mV    | 03,X-03,X ± 1<br>Vol <sub>KH</sub> X-Vol <sub>KH</sub> (X ± 1)                                                                 |  |


## 8235605 0058309152 🛲

 $V_{\rm S}$  = 12 V;  $T_{\rm A}$  = 25 °C, in accordance with test circuit 1

| Parameter | Symbol | Limit Values |      |      | Unit | Test Condition |
|-----------|--------|--------------|------|------|------|----------------|
|           |        | min.         | typ. | max. |      |                |

#### **Design-Related Data**

| Input resistance  | $R_7$          | 35 |     | kΩ |  |
|-------------------|----------------|----|-----|----|--|
| Input resistance  | $R_8$          | 35 |     | kΩ |  |
| Input resistance  | $R_{6}$        | 20 |     | kΩ |  |
| Input resistance  | $R_3$          | 20 |     | kΩ |  |
| Input resistance  | $R_1$          | 20 |     | kΩ |  |
| Output resistance | R 19           |    | 200 | Ω  |  |
| Output resistance | $R_{20}$       |    | 200 | Ω  |  |
| Output resistance | $R_{15}$       |    | 200 | Ω  |  |
| Output resistance | $R_{16}$       |    | 200 | Ω  |  |
| Output resistance | R <sub>9</sub> |    | 200 | Ω  |  |
| Output resistance | $R_{10}$       |    | 200 | Ω  |  |



 $V_{\rm S} = 12 \text{ V}; T_{\rm A} = 25 \,^{\rm o}{\rm C}$ 

| Parameter | Symbol | Limit Values |      |      | Unit | Test Condition | Test    |
|-----------|--------|--------------|------|------|------|----------------|---------|
|           |        | min.         | typ. | max. | ]    |                | Circuit |

#### **ID-Signal Decoder**

| Gain<br>Filter OP-amp | V <sub>5</sub>  | 13  | 14 | 15  | dB   | V <sub>IF</sub> = 80 mVpp                                                     | 1 |
|-----------------------|-----------------|-----|----|-----|------|-------------------------------------------------------------------------------|---|
| Max. input voltage    | V <sub>5</sub>  | 600 |    |     | mVpp | Function                                                                      | 2 |
| VCO voltage PLL       | V <sub>27</sub> | 1.3 |    |     | V    | $f_{24} = 14.6 \text{ kHz};$<br>$V_{24} = 2.5 \text{ V}$                      | 2 |
| VCO voltage PLL       | V <sub>27</sub> | 2   | 3  | 4   | V    | $f_{24} = 15.625 \text{ kHz};$<br>$V_{24} = 2.5 \text{ V}$                    | 2 |
| VCO voltage PLL       | V <sub>27</sub> |     |    | 4.7 | v    | $f_{24} = 16.6 \text{ kHz};$<br>$f_{24} = 2.5 \text{ V}$                      | 2 |
| VCO voltage PLL       | V <sub>27</sub> | 1.3 |    |     | v    | f <sub>24</sub> = 58.4 kHz;<br>V <sub>24</sub> = 2.5 V                        |   |
| VCO voltage PLL       | V <sub>27</sub> |     |    | 4.7 | v    | 00,09, <i>H-Imp</i><br>f <sub>24</sub> = 66.4 kHz;<br>V <sub>24</sub> = 2.5 V | 2 |
|                       |                 |     |    |     |      | 00,09, <i>H-Imp</i>                                                           | 2 |

$$V_{\text{KT FILTER}} = \frac{\sqrt{(V_{25} - V_{25}^*)^2 + (V_{26} - V_{26}^*)^2}}{V_5} V_{25} \text{ or } V_{26} \text{ when } V_5 = 0$$

$$V_{25}^* \text{ or } V_{26}^* \text{ when } V_5 = 400 \text{ mVpp}$$

| ID-filter gain | V <sub>KT Filter</sub> | 3.4 | 6. | .8 | $f_5 = Pilot signal: dual$                  |
|----------------|------------------------|-----|----|----|---------------------------------------------|
| ID-filter gain | V <sub>KT Filter</sub> | 3.4 | 6. | .8 | $I^2$ C-talk: dual<br>$f_5$ = Pilot signal: |
|                |                        |     |    |    | stereo<br>I²C-talk: stereo                  |

 $V_{25 \text{ test}} = V_{25} (V_5 = 0) \pm \Delta V_{25}$ ;  $V_{26 \text{ test}} = V_{26} (V_5 = 0) \pm \Delta V_{26}$ 

| Detection threshold | $\Delta V_{25}$  | 900 | mV | I <sup>2</sup> C-talk: stereo or dual    | 3 |
|---------------------|------------------|-----|----|------------------------------------------|---|
| Detection threshold | $-\Delta V_{25}$ | 900 | mV | I <sup>2</sup> C-talk: stereo or         | 3 |
| Detection threshold | $\Delta V_{26}$  | 900 | mV | dual<br>I <sup>2</sup> C-talk: stereo or | 3 |
| Detection threshold | $-\Delta V_{26}$ | 900 | mV | dual<br>I²C-talk: stereo or<br>dual      | 3 |

### 8235605 0058311 800 🔳

Semiconductor Group

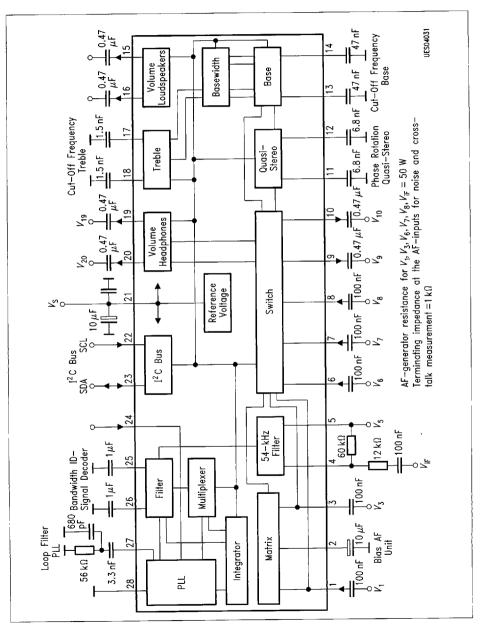
 $V_{\rm S} = 12 \text{ V}; T_{\rm A} = 25 \text{ °C}$ 

| Parameter                                   | Symbol           | Limit Values |      |                 | Unit             | Test Condition                                                             | Test    |
|---------------------------------------------|------------------|--------------|------|-----------------|------------------|----------------------------------------------------------------------------|---------|
|                                             |                  | min.         | typ. | max.            | 1                |                                                                            | Circuit |
| Mono threshold                              | $\Delta V_{25}$  | 0            |      | 100             | mV               | I <sup>2</sup> C-talk: mono                                                | 3       |
| Mono threshold                              | $-\Delta V_{25}$ | 0            |      | 100             | mV               | I <sup>2</sup> C-talk: mono                                                | 3       |
| Mono threshold                              | $\Delta V_{26}$  | 0            |      | 100             | mV               | I <sup>2</sup> C-talk: mono                                                | 3       |
| Mono threshold                              | $-\Delta V_{26}$ | 0            |      | 100             | mV               | I <sup>2</sup> C-talk: mono                                                | 3       |
| Detection response                          | t <sub>det</sub> | 1/4          |      | 1/2             | t <sub>MPX</sub> | I <sup>2</sup> C-talk: stereo or dual<br>$\pm \Delta V_{25} = 1 \text{ V}$ | 3       |
| Detection response                          | t <sub>det</sub> | 1/4          |      | 1/2             | t <sub>MPX</sub> | I <sup>2</sup> C-talk: stereo or dual $\pm \Delta V_{25} = 1 \text{ V}$    | 3       |
| Switching threshold <i>f</i> REF-input      | V <sub>24L</sub> | 0            |      | 1.5             | V                |                                                                            | 2       |
| Switching threshold $f_{\text{REF}}$ -input | V <sub>24L</sub> | 3.5          |      | V <sub>21</sub> | V                |                                                                            | 2       |
| Multiplexer clock                           | t <sub>MPX</sub> |              | 1.08 |                 | s                | 00,C0, MPX = 1 s                                                           |         |
| Multiplexer clock                           | t <sub>MPX</sub> |              | 2.17 |                 | s                | 00,C0, <i>MPX = 2 s</i>                                                    |         |
| Multiplexer clock                           | t <sub>MPX</sub> |              | 4.34 |                 | s                | 00,C0, <i>MPX</i> = 4 s                                                    |         |
| Multiplexer clock                           | t <sub>MPX</sub> |              | 8.68 |                 | S                | 00,C0, <i>MPX = 8 s</i>                                                    |         |

#### **Design-Related Data**

| Filter output<br>resistance     | R <sub>25, 26</sub> | 110 |  | kΩ |  |
|---------------------------------|---------------------|-----|--|----|--|
| $f_{\rm REF}$ -input resistance | R <sub>24</sub>     | 7   |  | kΩ |  |

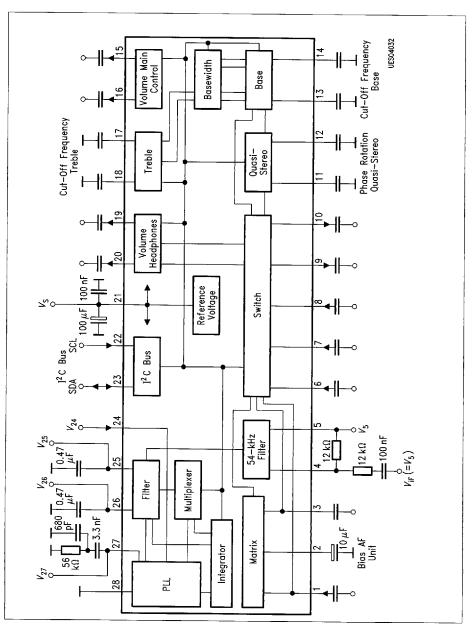
#### 8235605 0058312 747 📰


#### Characteristics

 $V_{\rm S} = 12 \text{ V}; T_{\rm A} = 25 \,^{\circ}\text{C}$ 

| Parameter | Symbol | L    | imit Va | ues  | Unit |
|-----------|--------|------|---------|------|------|
|           |        | min. | typ.    | max. |      |

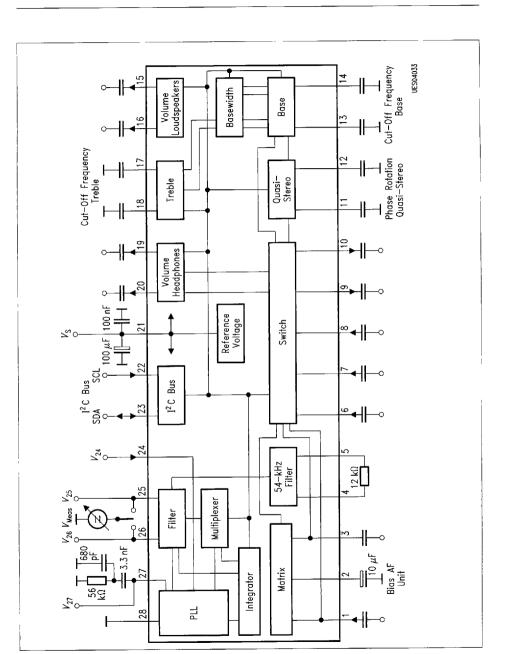
#### I<sup>2</sup>C Bus (SCL, SDA)


| 1 0 DU3 (00E, 0DA)                                                                                                |                                                       |             |                |                 |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|----------------|-----------------|
| SCL, SDA edges<br>Rise time<br>Fall time                                                                          | t <sub>R</sub><br>t <sub>F</sub>                      |             | 1<br>300       | μs<br>ns        |
| Shift register clock pulse SCL<br>Frequency<br>H-pulse width<br>L-pulse width                                     | fscl<br>t <sub>HIGH</sub><br>t <sub>LOW</sub>         | 0<br>4<br>4 | 100            | kHz<br>μs<br>μs |
| Start<br>Setup time<br>Hold time                                                                                  | t <sub>SUSTA</sub>                                    | 4 4         |                | μs<br>μs        |
| Stop<br>Setup time<br>Bus free time                                                                               | t <sub>SUSTO</sub>                                    | 4 4         |                | μs<br>μs        |
| Data transfer<br>Setup time<br>Hold time                                                                          | t <sub>SUDAT</sub>                                    | 1           |                | μs<br>μs        |
| Input SCL, SDA<br>Input voltage<br>Input current                                                                  | V <sub>QH</sub><br>V <sub>QL</sub><br>I <sub>QH</sub> | 2.4         | 5.5<br>1<br>20 | V<br>V<br>μA    |
| Output SDA (open collector)<br>Output voltage<br>$R_{\rm L} = 2.5 \ {\rm k}\Omega$<br>$I_{\rm QL} = 3 \ {\rm mA}$ | I <sub>QL</sub><br>V <sub>QH</sub><br>V <sub>QL</sub> | 5.4         | 0.4            | μA<br>V<br>V    |



**Test Circuit 1** 

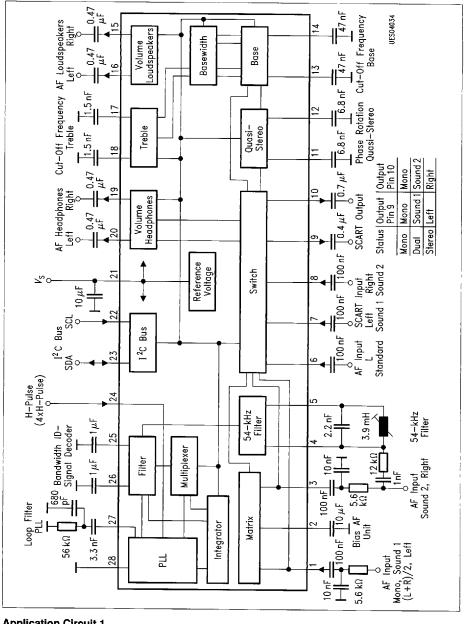
🔳 8235605 0058314 51T 🔳


Semiconductor Group



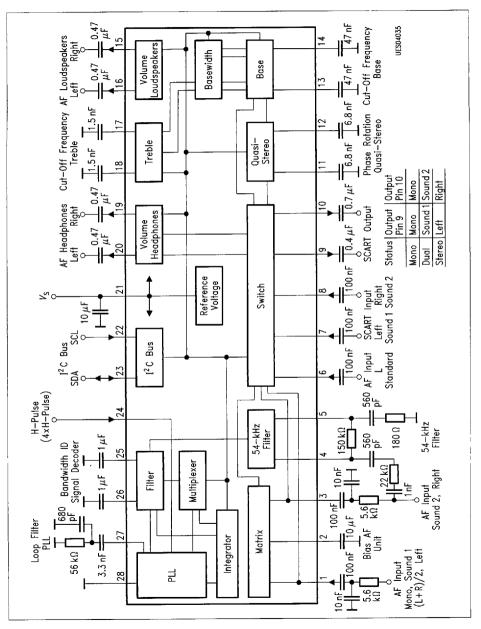
Test Circuit 2

### ■ 8235605 0058315 456 ■


Semiconductor Group



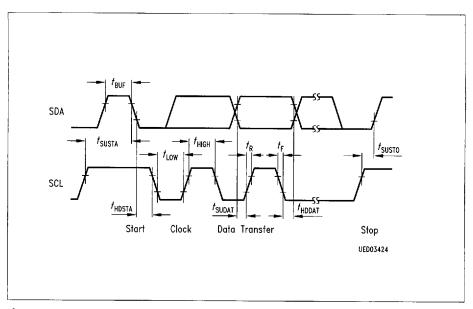
### Test Circuit 3


8235605 0058316 392

Semiconductor Group



8235605 0058317 229 8

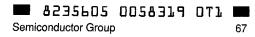

Semiconductor Group

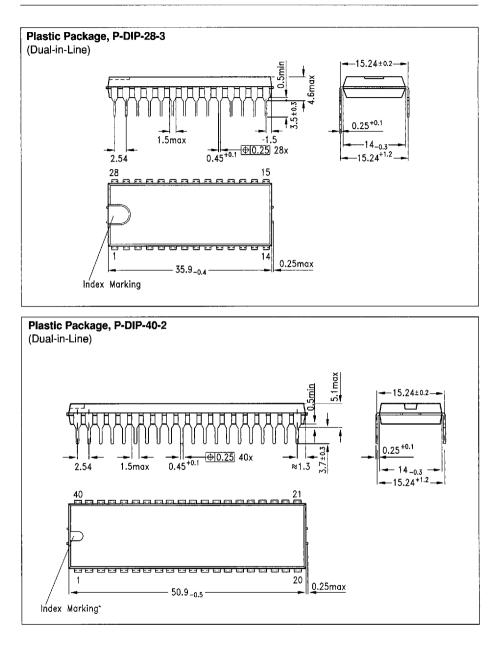


Application Circuit 2 8235605 0058318 165

Semiconductor Group

66



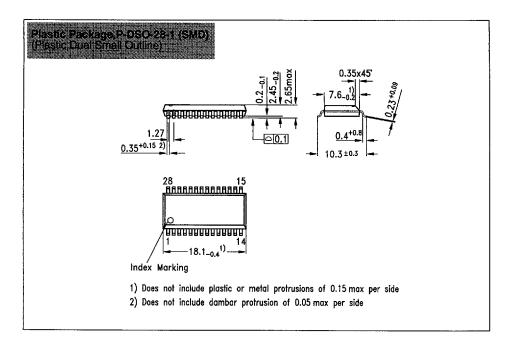


.

#### I<sup>2</sup>C Bus Timing Diagram

| Setup time (start)         |
|----------------------------|
| Hold time (start)          |
| H-pulse width (clock)      |
| L-pulse width (clock)      |
| Setup time (data transfer) |
| Hold time (data transfer)  |
| Setup time (stop)          |
| Bus free time              |
| Fall time                  |
| Rise time                  |
|                            |

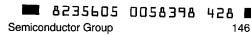
All times referred to  $V_{\rm IH}$  and  $V_{\rm IL}$  values.

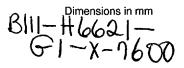





📕 8235605 0058397 591 🖿

Semiconductor Group


145


Dimensions in mm



Sorts of Packing Package outlines for tubes, trays ect. are contained in our Data Book "Package Information"

SMD = Surface Mounted Devices



