

THIS SPEC IS OBSOLETE

Spec No: 38-05248

Spec Title: CY62256 256K (32K X 8) STATIC RAM

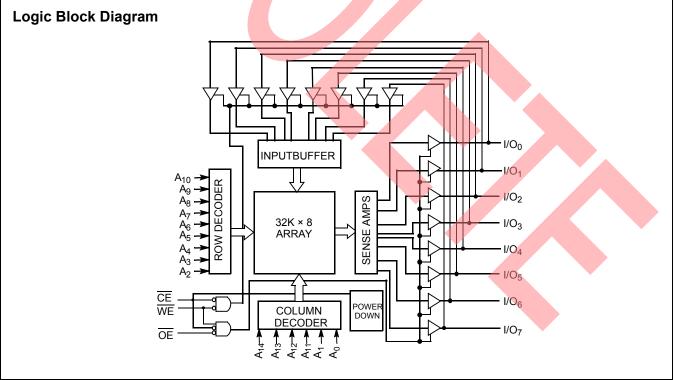
Sunset Owner: Anuj Chakrapani (AJU)

Replaced by: None

Downloaded from $\underline{Elcodis.com}$ electronic components distributor

256K (32K x 8) Static RAM

Features


- High speed
 55 ns
- Temperature Ranges
 - Commercial: 0°C to 70°C
- Industrial: -40°C to 85°C
- Automotive: –40°C to 125°C
- Voltage range
 - 4.5V 5.5V
- Low active power and standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in a Pb-free and non Pb-free standard 28-pin narrow SOIC, 28-pin TSOP-1, 28-pin Reverse TSOP-1 and 28-pin DIP packages

Functional Description^[1]

The CY62256 is a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}) and active LOW output enable (\overline{OE}) and Tri-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected.

An active LOW write enable signal ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When CE and $\overline{\text{WE}}$ inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, CE and OE active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05248 Rev. *G 198 Champion Court •

San Jose, CA 95134-1709 • 408-943-2600 Revised March 15, 2010

Product Portfolio

						Power Dissipation			
			V _{CC} Range (\	/)	Greed	Operating, I _{CC} Standby, I _{SB} (μΑ)			y, I _{SB2} A)
Product		Min.	Typ. ^[2]	Max.	Speed (ns)	Typ. ^[2]	Max.	Typ. ^[2]	Max.
CY62256L	Com'l/Ind'l	4.5	5.0	5.5	55/70	25	50	2	50
CY62256LL	Commercial				70	25	50	0.1	5
CY62256LL	Industrial				55/70	25	50	0.1	10
CY62256LL	Automotive				55	25	50	0.1	15

Pin Configurations

Narrow SOIC Top View A5 1 28 Vcc A6 2 27 WE A7 3 26 A4 A8 4 25 A3 A9 5 24 A2	DIP Top View A5 1 0 28 VCC A6 2 27 WE A7 3 26 A4 A8 4 25 A3 A9 5 24 A2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 A ₀ 220 LIVO 19 LIVO 18 LIVO 18 LIVO 16 LIVO 16 LIVO 16 LIVO 16 LIVO 16 LIVO 17 LIVO 16 LIVO 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A ₁₀ A ₉ A ₈ A ₇ A ₈ A ₇ A ₆ C ₂ C	8 A12 9 A13 10 A14 11 U/O1 12 U/O1 13 D GND 15 U/O3 16 U/O4 17 U/O5 19 U/O5 19 U/O5 21 A0

Pin Definitions

Pin Number	Туре	Description
1–10, 21, 23–26	Input	A ₀ -A ₁₄ . Address Inputs
11–13, 15–19,	Input/Output	I/O ₀ -/O ₇ . Data lines. Used as input or output lines depending on operation
27	Input/Control	WE. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted
20	Input/Control	CE. When LOW, selects the chip. When HIGH, deselects the chip
22	Input/Control	OE . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are Tri-stated, and act as input data pins
14	Ground	GND. Ground for the device
28	Power Supply	V _{CC} . Power supply for the device

Note: 2. Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}). Parameters are guaranteed by design and characterization, and not 100% tested.

CY62256

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Poten (Pin 28 to Pin 14)	
DC Voltage Applied to Outputs in High-Z State ^[3]	–0.5V to V _{CC} + 0.5V

DC Input Voltage^[3]-0.5V to V_{CC} + 0.5V Output Current into Outputs (LOW)...... 20 mA Static Discharge Voltage..... > 2001V (per MIL-STD-883, Method 3015) Latch-up Current...... > 200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[4]	V _{cc}
Commercial	0°C to +70°C	$5V\pm10\%$
Industrial	–40°C to +85°C	$5V\pm10\%$
Automotive	–40°C to +125°C	$5V\pm10\%$

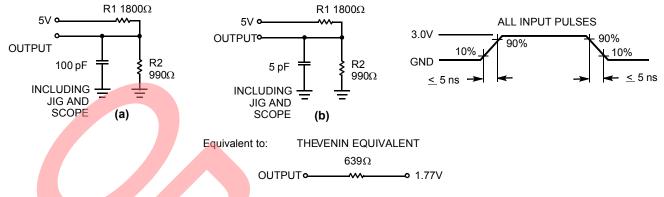
Electrical Characteristics Over the Operating Range

			CY62256–55		C	Y62256-	-70			
Parameter	Description	Test Condition	s	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -1.0 m/	4	2.4			2.4			V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1 mA				0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.5V	2.2		V _{CC} +0.5V	V
VL	Input LOW Voltage			-0.5		0.8	-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$	$SND \leq V_1 \leq V_{CC}$			+0.5	-0.5		+0.5	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output E)isab <mark>led</mark>	-0.5		+0.5	-0.5		+0.5	μA
I _{CC}	V _{CC} Operating Supply	V _{CC} = 5.5V,	Ļ		25	50		25	50	mA
	Current	$I_{OUT} = 0 \text{ mA},$ f = f _{Max} = 1/t _{RC}	LL		25	50		25	50	
I _{SB1}	Automatic CE	$V_{CC} = 5.5V, \overline{CE} \ge V_{IH},$	L		0.4	0.6		0.4	0.6	mA
	Power-down Current— TTL Inputs	$V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL},$ f = f _{Max}	LL		0.3	0.5		0.3	0.5	
I _{SB2}	Automatic CE	V _{CC} = 5.5V,	L		2	50		2	50	μA
	Power-down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$	LL - Com'l		0.1	5		0.1	5	
		$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f = 0	LL - Ind'l		0.1	10		0.1	10	
			LL - Auto		0.1	15				

Capacitance^[5]

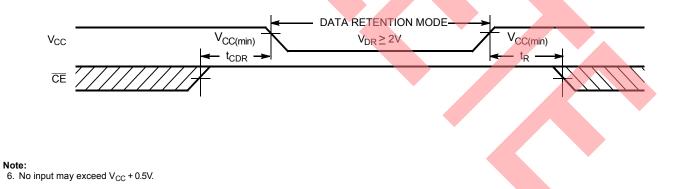
Parameter	Description	Test Conditions	Max.			Unit	
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ.)}$		6		pF	
C _{OUT}	Output Capacitance			8		pF	

Thermal Resistance^[5]


Parameter	Description	Test Conditions	DIP	SOIC	TSOP	RTSOP	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 2-layer printed circuit board	75.61	76.56	93.89	93.89	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case)		43.12	36.07	24.64	24.64	°C/W

Notes:

3. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 4. T_A is the "Instant-On" case temperature. 5. Tested initially and after any design or process changes that may affect these parameters.


AC Test Loads and Waveforms

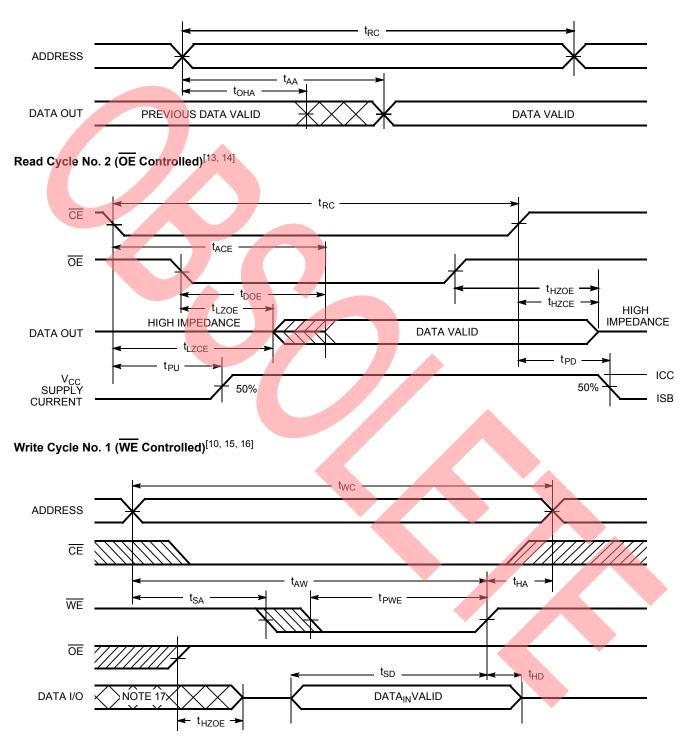
Data Retention Characteristics

Parameter	Description	Conditions ^[6]	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		2.0			V
I _{CCDR}	Data Retention Current L	$V_{CC} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$		2	50	μA
	LL - Com'l	$V_{\text{IN}} \ge V_{\text{CC}} - 0.3 \text{V}, \text{ or } V_{\text{IN}} \le 0.3 \text{V}$		0.1	5	μA
	LL - Ind'l			0.1	10	μA
	LL - Auto			0.1	10	μA
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[5]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

Switching Characteristics Over the Operating Range^[7]

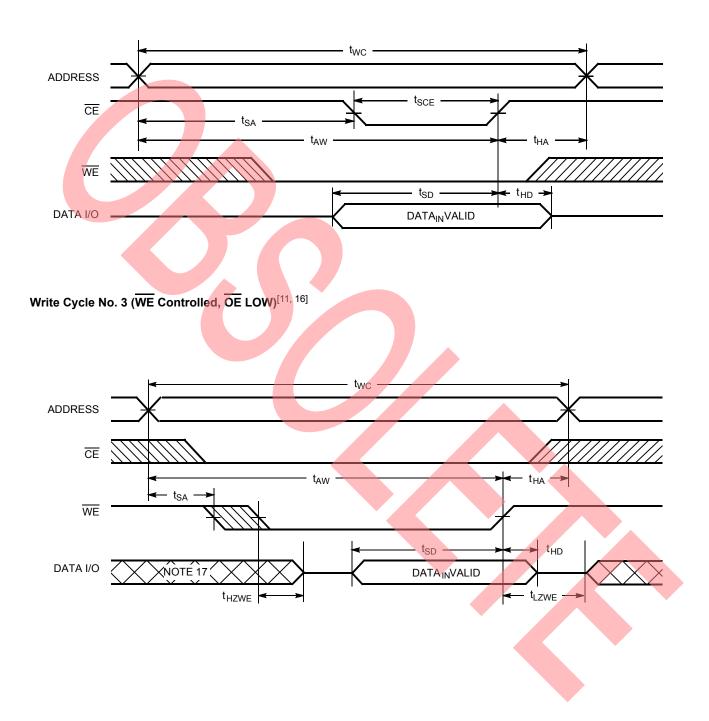
		CY62	256–55	CY62	256–70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle		1	•			
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		20		25	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	5		5		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		20		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
Write Cycle ^[10, 11]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	5		5		ns


Notes:

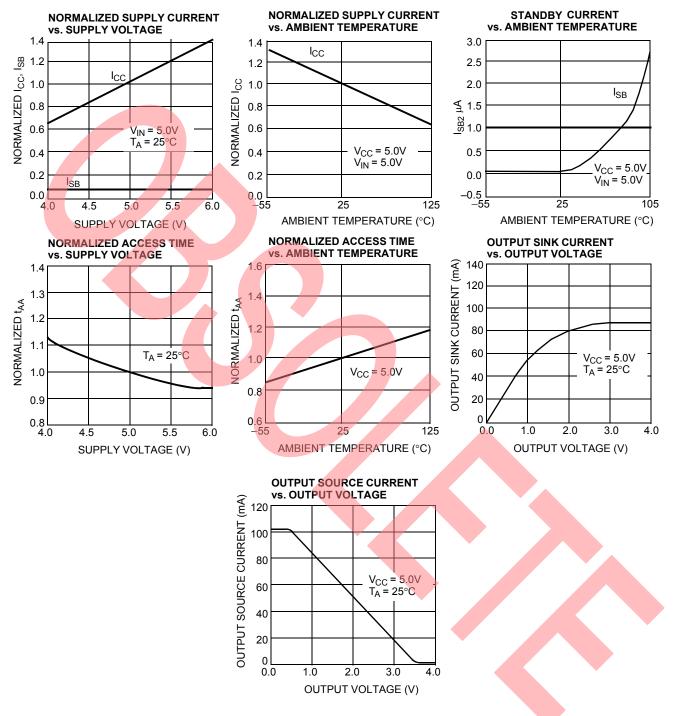
Notes:
7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{0L}/l_{0H} and 100 pF load capacitance.
8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
9. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of A<u>C</u> test Loads. <u>Transition</u> is measured ±500 mV from steady-state voltage.
10. The internal Write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a Write and either signal can terminate a Write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the Write.
11. The minimum Write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

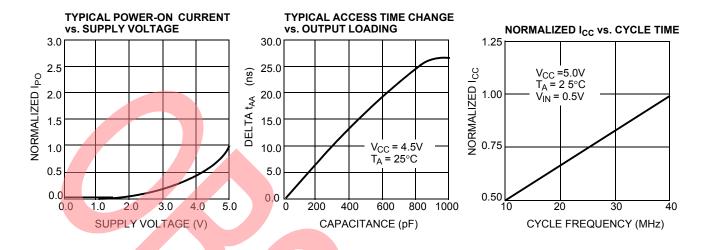
Read Cycle No. 1 (Address Transition Controlled)^[12, 13]


Notes:

- 12. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{||L}$. 13. WE is HIGH for Read cycle.
- 14. Address valid prior to or coincident with \overline{CE} transition LOW.
- 15. Data I/O is high impedance if $\overline{OE} = V_{|H|}$. 16. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 17. During this period, the I/Os are in output state and input signals should not be applied.


Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)^[10, 15, 16]



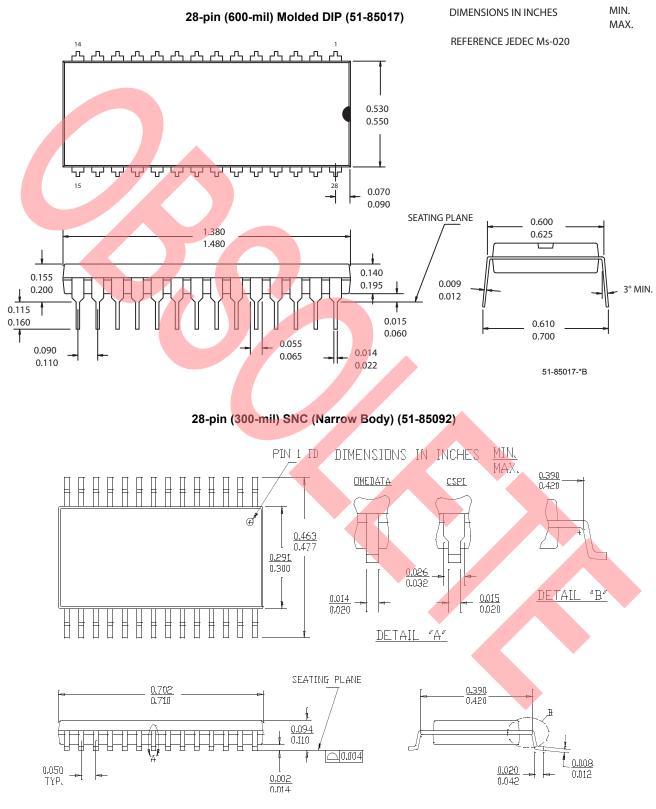
Typical DC and AC Characteristics



Typical DC and AC Characteristics (continued)

Truth Table

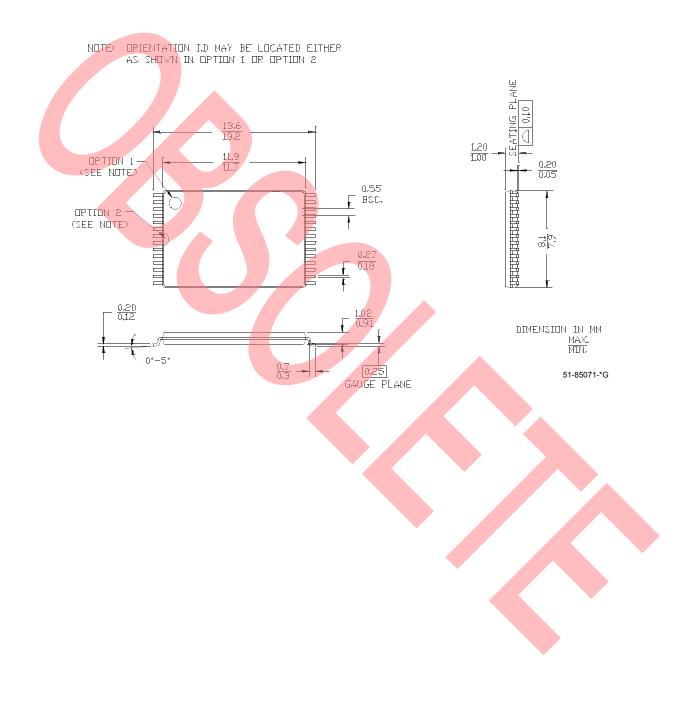
CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Output Disabled	Active (I _{CC})


Ordering Information

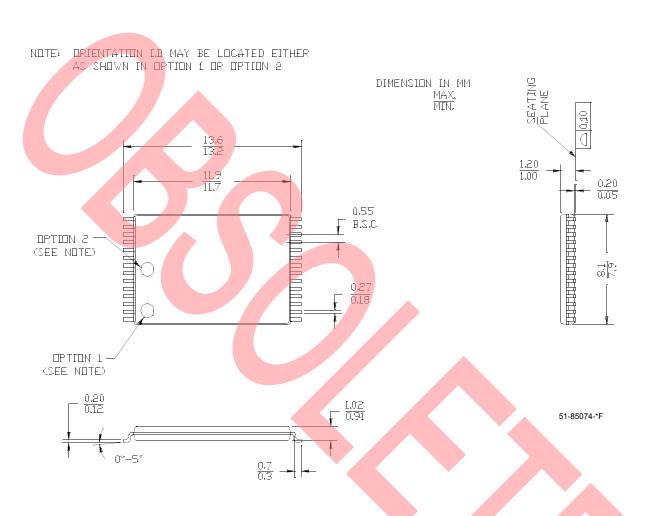
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62256LL-55SNI	51-85092	28-pin (300-mil Narrow Body) SNC	Industrial
	CY62256LL-55SNXI		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-55ZXI	51-85071	28-pin TSOP I (Pb-free)	
	CY62256LL-55SNE	51-85092	28-pin (300-mil Narrow Body) SNC	Automotive
	CY62256LL-55SNXE		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-55ZE	51-85071	28-pin TSOP I	
	CY62256LL-55ZXE		28-pin TSOP I (Pb-free)	
	CY62256LL-55ZRXE	5 <mark>1-85</mark> 074	28-pin Reverse TSOP I (Pb-free)	
70	CY62256LL-70PC	51-85017	28-pin (600-Mil) Molded DIP	Commercial
	CY62256LL-70PXC		28-pin (600-Mil) Molded DIP (Pb-free)	
	CY62256L-70SNC	51 <mark>-85</mark> 092	28-pin (300-mil Narrow Body) SNC	
	CY62256L-70SNXC		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70SNC		28-pin (300-mil Narrow Body) SNC	
	CY62256LL-70SNXC		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70ZC	51-85071	28-pin TSOP 1	
	CY62256LL-70ZXC		28-pin TSOP I (Pb-free)	
	CY62256L-70SNI	51-85 <mark>092</mark>	28-pin (300-mil Narrow Body) SNC	Industrial
	CY62256L-70SNXI		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70SNI		28-pin (300-mil Narrow Body) SNC	
	CY62256LL-70SNXI		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70ZXI	51-85071	28-pin TSOP I (Pb-free)	
	CY62256LL-70ZRI	51-85074	28-pin Reverse TSOP I	
	CY62256LL-70ZRXI		28-pin Reverse TSOP I (Pb-free)	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams


51-85092-*B

Page 11 of 14


Package Diagrams (continued)

28-pin Thin Small Outline Package Type 1 (8 x 13.4 mm) (51-85071)

Package Diagrams (continued)

28-pin Reverse Thin Small Outline Package Type 1 (8x13.4 mm) (51-85074)

All product and company names mentioned in this document are the trademarks of their respective holders.

Document #: 38-05248 Rev. *G

© Cypress Semiconductor Corporation, 2006-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Downloaded from Elcodis.com

Document History Page

REV.	ECN NO.	lssue Date	Orig. of Change	Description of Change
**	113454	03/06/02	MGN	Change from Spec number: 38-00455 to 38-05248 Remove obsolete parts from ordering info, standardize format
*A	115227	05/23/02	GBI	Changed SN Package Diagram
*B	116506	09/04/02	GBI	Added footnote 1 Corrected package description in Ordering Information table
*C	238448	See ECN	AJU	Added Automotive product information
*D	344595	See ECN	SYT	Added Pb-free packages on page# 10
*E	395936	See ECN	SYT	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Added CY62256L–70SNXI package in the Ordering Information on Page # 10
*F	493277	See ECN	VKN	Updated Ordering Information table
*G	2892469	03/15/10	AJU	Inactive parts; obsolete data sheet