D ATA SルEET

ACO 1/03/04/05/07/10/15/20 Cemented wirewound resistors

Cemented wirewound resistors AC0 1/03/04/05/07/10/15/20

FEATU RES

- High power dissipation in small volume
- High pulse load handling capabilities.

APPLICATIONS

- Ballast switching
- Shunt in small electric motors
- Power supplies.

D ESCRIPTIO N

The resistor element is a resistive wire which is wound in a single layer on a ceramic rod. Metal caps are pressed over the ends of the rod.
The ends of the resistance wire and the leads are connected to the caps by welding. Tinned copper-clad iron leads with poor heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting without overheating the solder joint.

The resistor is coated with a green silicon cement which is not resistant to aggressive fluxes. The coating is non-flammable, will not drip even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

Q UICK REFERENCE DATA

D ESCRIPTIO N	VALUE							
	AC01	AC03	AC04	AC05	AC07	AC10	AC15	AC20
Resistance range	$\begin{gathered} \hline 0.1 \Omega \\ \text { to } \\ 2.4 \mathrm{k} \Omega \\ \hline \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 5.1 \mathrm{k} \Omega \\ \hline \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 6.8 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 10 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 15 \mathrm{k} \Omega \end{gathered}$	0.68Ω to $27 \mathrm{k} \Omega$	0.82Ω to $39 \mathrm{k} \Omega$	1.2Ω to $56 \mathrm{k} \Omega$
Resistance tolerance	$\pm 5 \%$; E24 series							
M aximum permissible body temperature	$350{ }^{\circ} \mathrm{C}$							
Rated dissipation at $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$	1 W	3 W	4 W	5 W	7 W	10 W	15 W	20 W
Rated dissipation at $\mathrm{Tamb}=70^{\circ} \mathrm{C}$	0.9 W	2.5 W	3.5 W	4.7 W	5.8 W	8.4 W	12.5 W	16 W
Climatic category (IEC 60068)	40/200/56							
Basic specification	IEC 60115-1							
Stability after: load, 1000 hours climatic tests short time overload	$\begin{gathered} \Delta R / R \max .: \pm 5 \%+0.1 \Omega \\ \Delta R / R \max .: \pm 1 \%+0.05 \Omega \\ \Delta R / R \max .: \pm 2 \%+0.1 \Omega \end{gathered}$							

ORDERING INFO RMATIO N

Table 1 O rdering code indicating resistor type and packaging

TYPE	ORDERING CODE 23..			
	LOOSE IN BOX	BAND OLIER IN AMMOPACK		
	STRAIG HT LEADS	RAD IAL2500 units	STRAIG H T LEAD S	
	100 units		500 units	1000 units
AC01	-	$0632890 . .{ }^{(2)}$	-	$0632833 .$.
AC03 ${ }^{(1)}$	-	-	22329 03...	-
AC04 ${ }^{(1)}$	-	-	22329 04...	-
AC05 ${ }^{(1)}$	-	-	$2232905 \ldots$	-
AC07 ${ }^{(1)}$	-	-	$2232907 \ldots$	-
AC10	-	-	22329 10...	-
AC15	22329 15...	-	-	-
AC20	22329 20...	-	-	-

Notes

1. Products with bent leads and loose in box, are available on request.
2. Last 3 digits available on request.

O rdering code (12NC)

- The resistors have a 12 -digit ordering code starting with 23
- The subsequent 7 digits indicate the resistor type and packaging; see Table 1.
- The remaining 3 digits indicate the resistance value:
- The first 2 digits indicate the resistance value.
- The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

RESISTANCE DECADE	LAST DIGIT
0.1 to 0.91Ω	7
1 to 9.1Ω	8
10 to 91Ω	9
100 to 910Ω	1
1 to $9.1 \mathrm{k} \Omega$	2
10 to $56 \mathrm{k} \Omega$	3

Ordering example
The ordering code of an $\mathrm{ACO1}$ resistor, value 47Ω, supplied in ammopack of 1000 units is: 230632833479.

Product specifications deviating from the standard values are available on request.

Cemented wirewound resistors

ACO 1/03/04/05/0 7/10/15/20

FU N CTIO N AL DESCRIPTIO N

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5 \%$.
The values of the E24 series are in accordance with "IEC publication 60063".

Limiting values

TYPE	LIMITING VOLTAGE ${ }^{(1)}$ (V)	LIMITING POWER (W)	
		$\mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}$	$\mathrm{Tamb}^{\text {a }} 70{ }^{\circ} \mathrm{C}$
AC01	$V=\sqrt{P_{n} \times R}$	1	0.9
AC03		3	2.5
AC04		4	3.5
AC05		5	4.7
AC07		7	5.8
AC10		10	8.4
AC15		15	12.5
AC20		20	16.0

Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60266 ".

The maximum permissible hot-spot temperature is $350^{\circ} \mathrm{C}$.

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

Fig. 1 M aximum dissipation ($\mathrm{P}_{\max }$) as a function of the ambient temperature ($\mathrm{T}_{\mathrm{amb}}$).

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

Pulse loading Capabilities

How to generate the maximum allowed pulse-load from the graphs composed for wirewound resistors of the AC-types.

Single pulse condition; see Fig. 3

1. If the applied pulse energy in Joules or W attseconds is known and also the R-value to be used in the application; take the R-value on the X-axis and go vertically to the curved line. From this point go horizontally to the Y-axis, this point gives the maimum allowed pulse energy in Joules/ohm or Wattsec./ohm. By multiplying this figure with -value in use gives the maximum allowed pulse-energy in Joules or W attsec. If this figure is higher than the applied pulse-energy the application is allowed. O therwise take one of the other graphs belonging to AC-types with higher P_{n}.
2. If, contrary to the information above, the applied peak-voltage and impulse times t_{i} are known. Calculate the pulse-energy (E_{p}) in Joules or W attsec. by the use of the following formula:

$$
E p=\left(\frac{V p^{2}}{R}\right) \times t_{i}\left(V_{p}=\text { peak voltage; } t_{i}=\text { impulse-time }\right)
$$

By dividing this result with the R_{n}-value of the R in use, gives the value W attsec./ohm on the Y-axis. Draw a line horizontally to the curved line and at the intersection the vertical line to the X-axis gives the maximum allowed R_{n}-value to be used in the application. If this R_{n}-value is higher than the R-value to be used in the application, the application is allowed. If not, take one of the other graphs belonging to AC-types with higher P_{n} or change the R_{n}-value to be used.

Repetitive pulse condition; see Fig. 2
With these graphs we can determine the allowed pulse-energy in W atts depending on the impulse- time t_{i} and the repetition time t_{p} of the pulses. The parameter is the Resistance Value. If the pulse shape is known (impulse-time t_{i} and repetition time t_{p}), draw a line vertically from the X-axis at the mentioned t_{i} to the line of the involved R-value. From the intersection the horizontal line to the Y - axis indicates the maximum allow ed pulse-load at a certain t_{p} / t_{i}. If the vertical line from the X-axis crosses the applied t_{p} / t_{i} before reaching the R -line, this $\mathrm{t}_{\mathrm{p}} / \mathrm{t}_{\mathrm{i}}$ line gives the maximum allowed pulse-energy at the Y-axis. If the applied pulse-energy is known (in W atts) and the impulse-time t_{i} also, draw a line horizontally from the Y-axis to the crossing with the pulse-line (t_{i}) and find the possible R-value needed in this application. The horizontal t_{p} / t_{i} lines give the maximum allowed pulse-load till they reach the R-line, that point indicates the maximum allowed impulse-time ti at the horizontal axis.

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

ACO1
Fig. 2 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\max }$) as a function of pulse duration (t_{i}).

Cemented wirewound resistors

ACO 1/03/04/05/0 7/10/15/20

AC01

Fig. 4 Pulse on a regular basis; maximum permissible peak pulse voltage ($\hat{V}_{\text {max }}$) as a function of pulse duration (t_{i}).

AC03
Fig. 5 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\max }$) as a function of pulse duration (t_{i}).

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

AC03

Fig. 6 Pulse capability; W_{s} as a function of R_{n}.

AC03
Fig. 7 Pulse on a regular basis; maximum permissible peak pulse voltage $\left(\hat{V}_{\text {max }}\right)$ as a function of pulse duration (t_{i}).

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

ACO4
Fig. 8 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\max }$) as a function of pulse duration $\left(t_{i}\right)$.

ACO4

Fig. 9 Pulse capability; W_{s} as a function of R_{n}.

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

ACO4

Fig. 10 Pulse on a regular basis; maximum permissible peak pulse voltage ($\hat{\mathrm{V}}_{\max }$) as a function of pulse duration (t_{i}).

ACO5

Fig. 11 Pulse on a regular basis; maximum permissible peak pulse power $\left(\hat{P}_{\max }\right)$ as a function of pulse duration (t_{i}).

AC05

Fig. 12 Pulse capability; W_{s} as a function of R_{n}.

AC05
Fig. 13 Pulse on a regular basis; maximum permissible peak pulse voltage $\left(\hat{V}_{\text {max }}\right)$ as a function of pulse duration (t_{i}).

AC07

Fig. 14 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\max }$) as a function of pulse duration $\left(t_{i}\right)$.

AC07

Fig. 15 Pulse capability; W_{s} as a function of R_{n}.

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

AC07
Fig. 16 Pulse on a regular basis; maximum permissible peak pulse voltage $\left(\hat{V}_{\max }\right)$ as a function of pulse duration (t_{i}).

AC10
Fig. 17 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\text {max }}$) as a function of pulse duration (t_{i}).

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

AC10

Fig. 18 Pulse capability; W_{s} as a function of R_{n}.

AC10

Fig. 19 Pulse on a regular basis; maximum permissible peak pulse voltage $\left(\hat{V}_{\text {max }}\right)$ as a function of pulse duration (t_{i}).

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

AC15

Fig. 20 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\max }$) as a function of pulse duration $\left(\mathrm{t}_{\mathrm{i}}\right)$.

AC15

Fig. 21 Pulse capability; W_{s} as a function of R_{n}.

Cemented wirewound resistors

ACO 1/03/04/05/07/10/15/20

AC15
Fig. 22 Pulse on a regular basis; maximum permissible peak pulse voltage ($\hat{V}_{\text {max }}$) as a function of pulse duration (t_{i}).

AC20
Fig. 23 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\max }$) as a function of pulse duration (t_{i}).

AC20

Fig. 24 Pulse capability; W_{s} as a function of R_{n}.

AC20

Fig. 25 Pulse on a regular basis; maximum permissible peak pulse voltage $\left(\hat{V}_{\text {max }}\right)$ as a function of pulse duration (t_{i}).

Application information

Fig. 26 Temperature rise of the resistor body as a function of the dissipation.

Cemented wirewound resistors
ACO 1/03/04/05/0 7/10/15/20

AC04
Fig. 29 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.

AC05
Fig. 30 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.

AC10

Fig. 32 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.

Cemented wirewound resistors
ACO 1/03/04/05/0 7/10/15/20

Mounting

The resistor is suitable for processing on cutting and bending machines. Ensure that the temperature rise of the resistor body does not affect nearby components or materials by conducted or convected heat. Figure 26 shows the hot-spot temperature rise of the resistor body as a function of dissipated power. Figures 27 to 34 show the lead length as a function of dissipated power and temperature rise.

MECHANICAL DATA

Mass per 100 units

TYPE	MASS (g)
AC01	55
AC03	110
AC04	140
AC05	220
AC07	300
AC10	530
AC15	840
AC20	1090

Marking

The resistor is marked with the nominal resistance value, the tolerance on the resistance and the rated dissipation at $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$.

Forvalues up to 910Ω, the R is used as the decimal point.

For values of $1 \mathrm{k} \Omega$ and upwards, the letter K is used as the decimal point for the $k \Omega$ indication.

0 utlines

Table 3 Resistor type and relevant physical dimensions; see Figs 35 and 36

TYPE	$\varnothing D$ MAX. (mm)	L MAX. (mm)	$\begin{gathered} \varnothing d \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{P} \\ (\mathrm{mm}) \end{gathered}$	S MAX. (mm)	\varnothing B MAX. (mm)
AC01	4.3	10	0.8 ± 0.03	-	-	-	-	-
AC03	5.5	13		1.3	8	10e	2	1.2
AC04	5.7	17						
AC05	7.5	17						
AC07	7.5	25				13e		
AC10	8	44		-	-	-	-	-
AC15	10	51		-	-	-	-	-
AC20	10	67		-	-	-	-	-

Fig. 36 Type with cropped and formed leads.

Dimensions in mm.
For dimensions see Table 4.
$\varnothing 0.8$ to 1.4.

Fig. 37 Type with double kink.

Table 4 Resistor type and relevant physical dimensions; see Fig. 37

TYPE	LEAD STYLE	$\varnothing \mathbf{D}$ $(\mathbf{m m})$	\mathbf{L} $\mathbf{M A X}$. $(\mathbf{m m})$	$\mathbf{b}_{\mathbf{1}}$ $(\mathbf{m m})$	$\mathbf{b}_{\mathbf{2}}$ $(\mathbf{m m})$	\mathbf{h} $(\mathbf{m m})$	$\mathbf{P}_{\mathbf{1}}$ $(\mathbf{m m})$	$\mathbf{P}_{\mathbf{2}}$ $(\mathbf{m m})$	\mathbf{S} $\mathbf{M A X}$ $(\mathbf{m m})$	$\varnothing \mathbf{B}$ $(\mathbf{m m})$
AC03 AC04 AC05	doublekink large pitch	0.8 ± 0.03	10	1.30 $+0.25 /-0.20$	1.65 $+0.25 /-0.20$	8	25.4	25.4	2	1.0
AC03 AC04 AC05	doublekink small pitch	0.8 ± 0.03	10	1.30 $+0.25 /-0.20$	2.15	$8.25 /-0.20$	8	22.0	20.0	2
1.0										

Cemented wirewound resistors

ACO 1/03/04/05/0 7/10/15/20

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publications 60115-1 and 60115-4", category 40/200/56 (rated temperature range $-40^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

In Table 5 the tests and requirements are listed with reference to the relevant clauses of
"IEC publications 60115-1, 115-4 and 68" ; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 5 Test procedures and requirements

$\begin{gathered} \text { IEC } \\ 60115-1 \\ \text { CLAU SE } \end{gathered}$	$\begin{gathered} \text { IEC } \\ 60068 \\ \text { TEST } \\ \text { METHOD } \end{gathered}$	TEST	PRO CED U RE	REQ U IREM EN TS
Tests in accordance with the schedule of IEC publication 60115-1				
4.15		robustness of resistor body	load $200 \pm 10 \mathrm{~N}$	no visible damage $\Delta R / R$ max.: $\pm 0.5 \%+0.05 \Omega$
4.16	U Ua Ub Uc	robustness of terminations: tensile all samples bending half number of samples torsion other half of samples	load 10 N; 10 s load $5 \mathrm{~N} 90^{\circ}, 180^{\circ}, 90^{\circ}$ $2 \times 180^{\circ}$ in opposite directions	no visible damage $\Delta R / R$ max.: $\pm 0.5 \%+0.05 \Omega$
4.17	Ta	solderability	$2 \mathrm{~s} ; 235{ }^{\circ} \mathrm{C}$	good tinning; no damage
4.18	Tb	resistance to soldering heat	thermal shock: $3 \mathrm{~s} ; 350^{\circ} \mathrm{C}$; 2.5 mm from body	$\Delta \mathrm{R} / \mathrm{R}$ max.: $\pm 0.5 \%+0.05 \Omega$
4.19	14 (Na)	rapid change of temperature	30 minutes at $-40^{\circ} \mathrm{C}$ and 30 minutes at $+200^{\circ} \mathrm{C}$; 5 cycles	no visible damage $\Delta R / R$ max.: $\pm 1 \%+0.05 \Omega$
4.22	FC	vibration	frequency 10 to 500 Hz ; displacement 0.75 mm or acceleration 10 g ; 3 directions; total 6 hours (3×2 hours)	no damage $\Delta R / R$ max.: $\pm 0.5 \%+0.05 \Omega$
4.20	Eb	bump	4000 ± 10 bumps; $390 \mathrm{~m} / \mathrm{s}^{2}$	no damage $\Delta R / R \max .: ~ \pm 0.5 \%+0.05 \Omega$

$\begin{gathered} \text { IEC } \\ 60115-1 \\ \text { CLAU SE } \end{gathered}$	$\begin{gathered} \text { IEC } \\ 60068 \\ \text { TEST } \\ \text { METH O D } \end{gathered}$	TEST	PRO CED U RE	REQ U IREM EN TS
4.23 4.23 .2 4.23 .3 4.23.4 4.23 .5 4.23.6	Ba Db Aa M Db	climatic sequence: dry heat damp heat (accelerated) $1^{\text {st }}$ cycle cold low air pressure damp heat (accelerated) remaining cycles	16 hours; $200^{\circ} \mathrm{C}$ 24 hours; $55^{\circ} \mathrm{C}$; 95 to 100% RH 2 hours; $-40^{\circ} \mathrm{C}$ 1 hour; 8.5 kPa ; 15 to $35^{\circ} \mathrm{C}$ 5 days; $55^{\circ} \mathrm{C}$; 95 to 100% RH	$\Delta \mathrm{R} / \mathrm{R}$ max.: $\pm 1 \%+0.05 \Omega$
4.24 .2	3 (Ca)	damp heat (steady state)	56 days; $40^{\circ} \mathrm{C}$; 90 to $95 \% \mathrm{RH}$; dissipation $\leq 0.01 \mathrm{P}_{\mathrm{n}}$	no visible damage $\Delta R / R$ max.: $\pm 1 \%+0.05 \Omega$
4.8.4.2		temperature coefficient	$\begin{aligned} & \text { at } 20 /-40 / 20^{\circ} \mathrm{C}, 20 / 200 / 20^{\circ} \mathrm{C}: \\ & \mathrm{R}<10 \Omega \\ & \mathrm{R} \geq 10 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{TC} \leq \pm 600 \times 10^{-6} / \mathrm{K} \\ & -80 \times 10^{-6} \leq \mathrm{TC} \\ & \mathrm{TC} \leq+140 \times 10^{-6} / \mathrm{K} \end{aligned}$
		temperature rise	horizontally mounted, loaded with P_{n}	hot-spot temperature less than maximum body temperature
4.13		short time overload	$\begin{aligned} & \text { room temperature; dissipation } 10 \times \mathrm{P}_{\mathrm{n}} \text {; } \\ & 5 \mathrm{~s} \text { (voltage not more than } \\ & 1000 \mathrm{~V} / 25 \mathrm{~mm} \text {) } \end{aligned}$	$\Delta \mathrm{R} / \mathrm{R}$ max.: $\pm 2 \%+0.1 \Omega$
4.25.1		endurance (at $40{ }^{\circ} \mathrm{C}$)	1000 hours loaded with P_{n}; 1.5 hours on and 0.5 hours off	no visible damage $\Delta R / R$ max.: $\pm 5 \%+0.1 \Omega$
4.25.1		endurance (at $70{ }^{\circ} \mathrm{C}$)	1000 hours loaded with $0.9 \mathrm{P}_{\mathrm{n}}$; 1.5 hours on and 0.5 hours off	no visible damage $\Delta R / R$ max.: $\pm 5 \%+0.1 \Omega$
4.23.2	27 (Ba)	endurance at upper category temperature	1000 hours; $20{ }^{\circ} \mathrm{C}$; no load	no visible damage $\Delta \mathrm{R} / \mathrm{R} \max .: \pm 5 \%+0.1 \Omega$
O ther tests in accordance with IEC 60115 clauses and IEC 60068 test method				
4.29	45 (Xa)	component solvent resistance	70\% 1.1.2 trichlorotrifluoroethane and 30% isopropyl alcohol; $\mathrm{H}_{2} \mathrm{O}$	no visible damage
4.18	20 (Tb)	resistance to soldering heat	$10 \mathrm{~s} ; 260 \pm 5^{\circ} \mathrm{C}$; flux 600	$\Delta \mathrm{R} / \mathrm{R}$ max.: $\pm 0.5 \%+0.05 \Omega$
4.17	20 (Tb)	solderability (after ageing)	16 hours steam or 16 hours at $155^{\circ} \mathrm{C}$; $2 \pm 0.5 \mathrm{~s}$ in solder at $235 \pm 5^{\circ} \mathrm{C}$; flux 600	good tinning ($\geq 95 \%$ covered); no damage
4.5		tolerance on resistance	$\begin{aligned} & \hline \text { applied voltage }(\pm 10 \%) \text { : } \\ & \mathrm{R}<10 \Omega: 0.1 \mathrm{~V} \\ & 10 \Omega \leq \mathrm{R}<100 \Omega: 0.3 \mathrm{~V} \\ & 100 \Omega \leq \mathrm{R}<1 \mathrm{k} \Omega: 1 \mathrm{~V} \\ & 1 \mathrm{k} \Omega \leq \mathrm{R}<10 \mathrm{k} \Omega: 3 \mathrm{~V} \\ & 10 \mathrm{k} \Omega \leq \mathrm{R} \leq 33 \mathrm{k} \Omega: 10 \mathrm{~V} \end{aligned}$	$\mathrm{R}-\mathrm{R}_{\text {nom }}$: $\pm 5 \%$ max.
2001 M ar 15			24	

