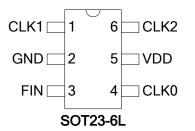
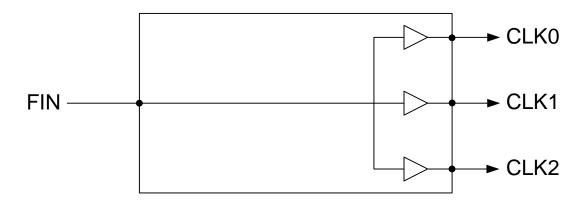


PL133-37

Low-Power, 1.62V to 3.63V, 1MHz to 150MHz, 1:3 Fanout Buffer IC


FEATURES

- 3 LVCMOS Outputs
- 12 mA Output Drive Strength
- Supports LVCMOS or Sine Wave Input Clock
- Very Low Jitter and Phase Noise
- Low Current Consumption
- Single 1.8V, 2.5V, or 3.3V, ±10% Power Supply
- Operating Temperature Range
 - 0°C to 70°C (Commercial)
 -40°C to 85°C (Industrial)
- Available in SOT23-6L GREEN/RoHS Compliant Packages


DESCRIPTION

The PL133-37 is an advanced fanout buffer design for high performance, low-power, small form-factor applications. The PL133-37 accepts a reference clock input of 1MHz to 150MHz and produces three outputs of the same frequency. Reference clock inputs may be LVCMOS or sine-wave signals (the inputs are internally AC-coupled). Offered in a small 3 x 3mm SOT23, the PL133-37 offers the best phase noise and jitter performance and lowest power consumption of any comparable IC.

PACKAGE PIN CONFIGURATION

BLOCK DIAGRAM

PIN DESCRIPTION

Name	Package Pin # SOT23-6L	Туре	Description	
CLK1	1	0	Output clock	
GND	2	Р	Ground connection	
FIN	3	I	Reference clock input	
CLK0	4	0	Output clock	
VDD	5	Р	Power supply	
CLK2	6	0	Output clock	

LAYOUT RECOMMENDATIONS

The following guidelines are to assist you with a performance optimized PCB design:

Signal Integrity and Termination Considerations

- Keep traces short!

- Trace = Inductor. With a capacitive load this equals ringing!

- Long trace = Transmission Line. Without proper termination this will cause reflections (looks like ringing).

- Design long traces as "striplines" or "microstrips" with defined impedance.

- Match trace at one side to avoid reflections bouncing back and forth.

Decoupling and Power Supply Considerations

- Place decoupling capacitors as close as possible to the V_{DD} pin(s) to limit noise from the power supply

- Multiple V_{DD} pins should be decoupled separately for best performance.

- Addition of a ferrite bead in series with V_{DD} can help prevent noise from other board sources

- Value of decoupling capacitor is frequency dependant. Typical value to use is $0.1 \mu F.$

Typical CMOS termination

Place Series Resistor as close as possible to CMOS output

CMOS Output Buffer To CMOS Input (Typical buffer impedance 20Ω) 50Ω line Series Resistor Use value to match output buffer impedance to 50Ω trace. Typical value 30Ω

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage Range	V _{DD}	-0.5	4.6	V
Input Voltage Range	VI	-0.5	V _{DD} +0.5	V
Output Voltage Range	Vo	-0.5	V _{DD} +0.5	V
Storage Temperature	Ts	-65	150	°C
Ambient Operating Temperature*		-40	85	°C

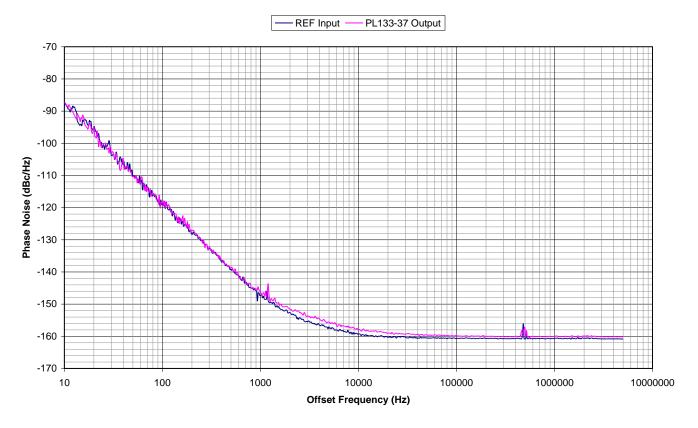
Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied. *Operating temperature is guaranteed by design. Parts are tested to commercial grade only.

AC SPECIFICATIONS

PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input (EIN) Frequency	2.5V and 3.3V operation	1		150	MHz
Input (FIN) Frequency	1.8V operation	1		100	MHz
Input (FIN) Signal Amplitude	Internally AC coupled	0.9		V_{DD}	V_{PP}
Output Enable Time	OE Function; Ta=25° C, 15pF Load			10	ns
Output Rise Time	15pF Load, 10/90%V _{DD} , 3.3V		2	3	ns
Output Fall Time	15pF Load, 90/10%V _{DD} , 3.3V		2	3	ns
Duty Cycle	Input Duty Cycle is 50%	45	50	55	%
Output to Output Skew	All outputs equally loaded			250	ps

DC SPECIFICATIONS

PARAMETERS	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		V_{DD} = 3.3V, 25MHz, No Load		1.2		mA
Supply Current, Dynamic	I _{DD}	V _{DD} = 2.5V, 25MHz, No Load		0.9		mA
		V _{DD} = 1.8V, 25MHz, No Load		0.6		mA
Supply Current, Standby	$I_{DD_{SB}}$	OE Pin Pulled Low, V_{DD} = 3.3V		0.3		mA
Operating Voltage	V _{DD}		1.62		3.63	V
Output Low Voltage	Vol	I _{OL} = +12mA, V _{DD} = 3.3V			0.4	V
Output High Voltage	V _{OH}	I _{он} = -12mA, V _{DD} = 3.3V	2.4			V
Output Current	I _{osd}	$V_{OL} = 0.4V, V_{OH} = 2.4V, V_{DD} = 3.3V$	12			mA

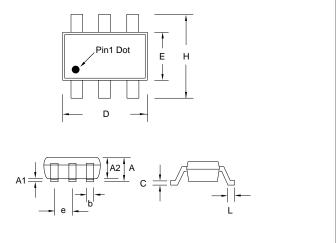

2880 Zanker Rd., San Jose, California 95134 Tel (408) 517-1668 Fax (408) 517-1688 www.phaselink.com Rev 03/18/11 Page 3

NOISE CHARACTERISTICS

PARAMETER	SYMBOL	IBOL CONDITIONS		ТҮР	MAX	UNIT
Additive Phase Jitter		V _{DD} =3.3V, Frequency=26MHz Offset=12KHz ~ 5MHz		70		fs
		V _{DD} =3.3V, Frequency=100MHz Offset=12KHz ~ 20MHz		80		fs

PL133-37 Additive Phase Jitter: VDD=3.3V, CLK=26MHz, Integration Range 12KHz to 5MHz: 0.072ps typical.

When a buffer is used to pass a signal then the buffer will add a little bit of its own noise. The phase noise on the output of the buffer will be a little bit more than the phase noise in the input signal. To quantify the noise addition in the buffer we compare the Phase Jitter numbers from the input and the output. The difference is called "Additive Phase Jitter". The formula for the Additive Phase Jitter is as follows:


Additive Phase Jitter = $\sqrt{(\text{Output Phase Jitter)}^2 - (\text{Input Phase Jitter)}^2)}$

PACKAGE DRAWINGS (GREEN PACKAGE COMPLIANT)

SOT23-6L

Symbol	Dimension in MM			
Symbol	Min.	Max.		
А	1.05	1.35		
A1	0.05	0.15		
A2	1.00	1.20		
b	0.30	0.50		
С	0.08	0.20		
D	2.80	3.00		
E	1.50	1.70		
Н	2.60	3.00		
L	0.35	0.55		
е	0.95 BSC			

ORDERING INFORMATION (GREEN PACKAGE COMPLIANT)

For part ordering, please contact our Sales Department: 2880 Zanker Rd., San Jose, CA 95134, USA Tel: (408) 571-1668 Fax: (408) 517-1688							
Part number,		 Combination of the following: Combination of the following: Carating temperature range None=Tubes R=Tape and Reel Temperature Range C=Commercial (0°C to 					
Part/Order Number	Marking	70°C) Package Option					
PL133-37TC-R	H37 LLL	6-Pin SOT23 (Tape and Reel)					
*Note: LLL designates lot nu	mber						

PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by PhaseLink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.

Solder reflow profile available at www.phaselink.com/QA/solderingGreen.pdf

2880 Zanker Rd., San Jose, California 95134 Tel (408) 517-1668 Fax (408) 517-1688 www.phaselink.com Rev 03/18/11 Page 5