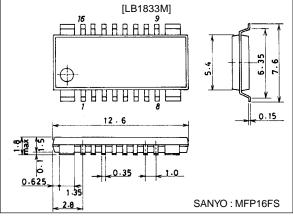
LB1833M

Low-Saturation Bidirectional Motor Driver for Low-Voltage Applications

Overview

The LB1833M is a low-saturation stepping motor driver IC for use in low-voltage applications. It is especially suited for use in portable equipment such as printer, FDD, camera.


Features

- Capable of being operated from a low voltage (2.5V min).
- Low saturation voltage. (Upper transistor+low transistor residual voltage 1.0V max at 400mA).
- Through current preventer on-chip.
- Logic power supply and motor power supply are sepatate.
- On-chip spark killer diodes.
- Possible to increase the internal allowable power dissipation because the package is compact (MFP-16FS) and heat can be radiated easily to the outside.

Package Dimensions

unit:mm

Specifications

Absolute Maximum Ratings at Ta = 25°C

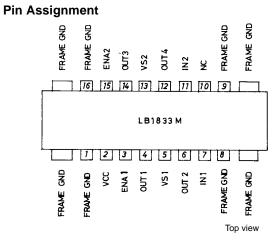
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		-0.3 to +8.0	V
	V _S max		-0.3 to +8.0	V
Output supply voltage	VOUT		–0.3 to $V_{S}+V_{SF}$	V
Input supply voltage	VIN		-0.3 to +8.0	V
GND pin flow-out current	IGND	per channel	1.0	Α
Allowable power dissipation	Pd max1	IC only	900	mW
	Pd max2	Mounted on specified board (20×30×1.5mm ³ glass epoxy)	1200	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

Allowable Operating Conditions at Ta = 25°C

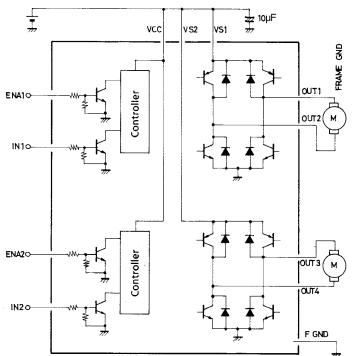
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc		2.5 to 7.0	V
	VS		1.8 to 7.0	V
Input high-level voltage	VIH		1.8 to 7.0	V
Input low-level voltage	VIL		-0.3 to +0.7	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

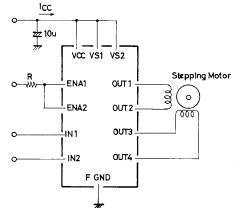
SANYO Electric Co., Ltd. Semiconductor Bussiness Headquaters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

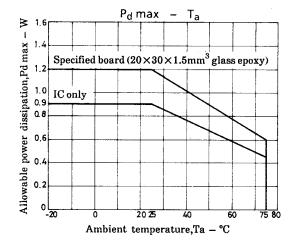

82098HA (KT)/2070TA/TS No.3297-1/3

Electrical Characteristics at Ta = 25° C, V_{CC}=3V

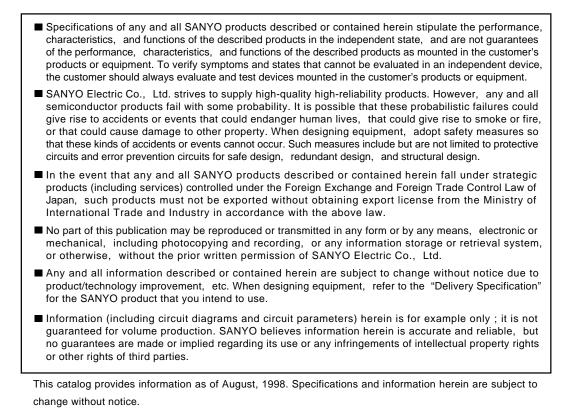

Parameter	Symbol	Symbol Conditions		Ratings		
Parameter	Symbol			typ	max	Unit
Supply current 1	Icco	ENA1, 2=0V, ENA4=0V, VIN1=3V or 0V, IS+ICC		0.1	10	μA
Supply current 2	ICC	ENA1=3V, VIN1=3V or 0V, IS+ICC		10	18	mA
Output saturation voltage	V _{OUT} 1	ENA=3V, VIN=3V or 0V, IOUT=200mA		0.35	0.50	V
	V _{OUT} 2	ENA=3V, VIN=3V or 0V, IOUT=400mA		0.75	1.0	V
Input current 1	IIN	V _{CC} =6V, V _{IN} =6V			250	μΑ
Input current 2	IENA	V _{CC} =6V, E _{NA} =6V			350	μA
Output sustain voltage	V _{O(sus)}	I _{OUT} =400mA				V
[Spark Killer Diode]		•				
Reverse current	I _{S(leak)}	V _{CC} , V _S =7V			30	μΑ
Forward voltage	V _{SF}	IOUT=500mA		1.7	V	

Truth Table


IN 1/2	ENA 1/2	OUT 1/3	OUT 2/4	Mode	
L	Н	Н	L	Forward	
Н	Н	L	Н	Reverse	
L	L	OFF	OFF	Standby	
Н	L	OFF	OFF	Standby	



Equivalent Circuit Block Diagram



Note : Use one of the FRAME-GND pins for grounding. when the Cufoild side is soldered, heat radiation can be more improved.

