Multilayer Ceramic Chip Capacitors onlinecomponents.com Kyocera's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications, including general-purpose CM series, high-voltage CF series, low profile CT series, and DM series for automotive uses. ### **Features** - We have factories worldwide in order to supply our global customer bases quickly and efficiently and to maintain our reputation as one of the highest-volume producers in the industry. - All our products are highly reliable due to their monolithic structure of high-purity and superfine uniform ceramics and their integral internal electrodes. - By combining superior manufacturing technology and materials with high dielectric constants, we produce extremely compact components with exceptional specifications. - Our stringent quality control in every phase of production from material procurement to shipping ensures consistent manufacturing and super quality. - Kyocera components are available in a wide choice of dimensions, temperature characteristics, rated voltages, and terminations to meet specific configurational requirements. ### Structure ### **Tape and Reel** #### **Bulk Cassette** Please contact your local AVX, Kyocera sales office or distributor for specifications not covered in this catalog. Our products are continually being improved. As a result, the capacitance range of each series is subject to change without notice. Please contact an sales representative to confirm compatibility with your application. # **Multilayer Ceramic Chip Capacitors** Kyocera Ceramic Chip Capacitors are available for different applications as classified below: | Series | Dieletric Options | Typical Applications | Features | Terminations | Available Size | |--------|--|-------------------------------------|--|----------------|--| | СМ | COG (NP0)
X5R
X7R
*X6S
*X7S
Y5V | General Purpose | Wide Cap Range | Nickel Barrier | 0201, 0402, 0603
0805, 1206, 1210
1812 | | CF | COG (NP0)
X7R | High Voltage
&
Power Circuits | High Voltage
250VDC, 630VDC
1000VDC, 2000VDC
3000VDC, 4000VDC | Nickel Barrier | 0805, 1206, 1210
1812, 2208, 1808
2220 | | ст | COG (NPO)
X5R
X7R
Y5V | PLCC
(Decoupling) | Low Profile | Nickel Barrier | 0402, 0603, 0805
1206, 1210 | | DM | X7R | Automotive | Thermal shock
Resistivity
High Reliability | Nickel Barrier | 0603, 0805, 1206 | | CA | C0G (NP0)
X5R, X7R | Digital Signal
Pass line | Reduction in
Placing Costs | Nickel Barrier | 0405, 0508 | * option # **Multilayer Ceramic Chip Capacitors** onlinecomponents.com # **Dimensions** ## Tape & Reel | Size | EIA CODE | JIS CODE | | | Dimensio | ons (mm) | | | |------|----------|----------|----------|-----------|----------|----------|-------------|--------| | Size | EIA CODE | JIS CODE | L W | | P min. | P max. | P to P min. | T max. | | 03 | 0201 | 0603 | 0.6±0.03 | 0.3±0.03 | 0.13 | 0.23 | 0.20 | 0.33 | | 05 | 0402 | 1005 | 1.0±0.05 | 0.5±0.05 | 0.15 | 0.35 | 0.30 | 0.55 | | 105 | 0603 | 1608 | 1.6±0.10 | 0.8±0.10 | 0.20 | 0.60 | 0.50 | 0.90 | | 21 | 0805 | 2012 | 2.0±0.10 | 1.25±0.10 | 0.20 | 0.75 | 0.70 | 1.35 | | 316 | 1206 | 3216 | 3.2±0.20 | 1.60±0.15 | 0.30 | 0.85 | 1.40 | 1.75 | | 32 | 1210 | 3225 | 3.2±0.20 | 2.50±0.20 | 0.30 | 1.00 | 1.40 | 2.70 | | 42 | 1808 | 4520 | 4.5±0.20 | 2.00±0.20 | 0.15 | 0.85 | 2.60 | 2.20 | | 43 | 1812 | 4532 | 4.5±0.30 | 3.20±0.20 | 0.30 | 1.10 | 2.00 | 3.00 | | 52 | 2208 | 5720 | 5.7±0.40 | 2.00±0.20 | 0.15 | 0.85 | 4.20 | 2.20 | | 55 | 2220 | 5750 | 5.7±0.40 | 5.00±0.40 | 0.30 | 1.40 | 2.50 | 2.70 | [•]T (Thickness) depends on capacitance value. ## **Bulk Cassette** | Size | EIA CODE | JIS CODE | | w | _ | ı | | P to P | |------|----------|----------|----------|----------|----------|------|------|--------| | Size | LIA CODE | 013 CODE | _ | VV | | min. | max. | min. | | 05 | 0402 | 1005 | 1.0±0.05 | 0.5±0.05 | 0.5±0.05 | 0.15 | 0.35 | 0.30 | | 105 | 0603 | 1608 | 1.6±0.07 | 0.8±0.07 | 0.8±0.07 | 0.20 | 0.60 | 0.50 | | 21 | 0805 | 2012 | 2.0±0.1 | 1.25±0.1 | 1.25±0.1 | 0.20 | 0.75 | 0.70 | Note) Regarding support for Bulk cases, please contact us for further information. Standard thickness is shown on the appropriate product pages. [•] CA series (please refer applicable page) [•] As for the size of the product specified individually, please contact us. # Multilayer Ceramic Chip Capacitors Ordering Information onlinecomponents.com #### **KYOCERA PART NUMBER:** CM 21 X7R 104 50 K SERIES CODE -General Purpose CA = Capacitor Arrays CF High Voltage CT = Low Profile DM = Automotive SIZE CODE SIZE EIA (JIS) SIZE EIA (JIS) SIZE EIA (JIS) 03 = 0201 (0603)21 = 0805 (2012)52 = 2208 (5720) 55 = 2220 (5750)05 = 0402 (1005)316 = 1206 (3216)105 = 0603 (1608)32 = 1210 (3225)D11 = 0405 (1012)/2capF12 = 0508 (1220) / 4cap42 = 1808 (4520) D12 = 0508 (1220)/2cap43 = 1812 (4532)DIELECTRIC CODE **CODE EIA CODE** CG = C0G (NPO)X7S = X7S (Option) X6S = X6S (Option) X5R = X5RY5V = Y5VX7R = X7RNegative dielectric types are available on request. CAPACITANCE CODE -Capacitance expressed in pF. 2 significant digits plus number of zeros. For Values < 10pF, Letter R denotes decimal point, 100000pF = 1041.5pF = 1R5 $0.1\mu F = 104$ 0.5pF = R504700pF = 472100μF = 107 TOLERANCE CODE - $D = \pm 0.5pF$ $J = \pm 5\%$ $A = \pm 0.05pF$ (option) Z = -20 to +80% $B = \pm 0.1 pF$ (option) $K = \pm 10\%$ $F = \pm 1pF$ $C = \pm 0.25 pF$ $M = \pm 20\%$ $G = \pm 2\%$ (option) **VOLTAGE CODE** -04 = 4VDC100 = 100VDC1000 = 1000VDC06 = 6.3VDC250 = 250VDC2000 = 2000VDC 10 = 10VDC400 = 400VDC 3000 = 3000VDC16 = 16VDC630 = 630VDC4000 = 4000VDC25 = 25VDC 35 = 35VDC50 = 50VDC**TERMINATION CODE** A = Nickel Barrier PACKAGING CODE L = 13" Reel Taping & 4mm Cavity pitch B = BulkH = 7" Reel Taping & 2mm Cavity pitch C = Bulk Cassette (option) T = 7" Reel Taping & 4mm Cavity pitch N = 13" Reel Taping & 2mm Cavity pitch OPTION Thickness max. value is indicated in CT series EX. 125 \rightarrow 1.25mm max. 095 \rightarrow 0.95mm max. # Multilayer Ceramic Chip Capacitors Temperature Characteristics and Tolerance onlinecomponents.com # **High Dielectric Constant** | EIA Dielectric | Temperature Range | ∆C max. | | | | |----------------|-------------------|-------------|--|--|--| | X5R | −55 to 85°C | +15% | | | | | X7R | –55 to 125°C | ±15% | | | | | *X7S | −55 to 125°C | 1000/ | | | | | *X6S | –55 to 105°C | ±22% | | | | | Y5V | −30 to 85°C | -82 to +22% | | | | ^{*} option # **Temperature Compensation Type** | Electric Code
Value (pF) | COG | U∆ N750 | SL
+350 to -1000 | |-----------------------------|-----|---------|---------------------| | 0.5 to 2.7 | CK | UK | SL | | 3.0 to 3.9 | CJ | UJ | SL | | 4.0 to 9.0 | СН | UJ | SL | | ≥10 | CG | UJ | SL | K = ± 250 ppm/ °C, J = ± 120 ppm/ °C, H = ± 60 ppm/ °C, G = ± 30 ppm/ °C e.g. CG = 0 ± 30 ppm/ °C Note: All parts will be marked as "CG" but will conform to the above table. ### **Available Tolerances** Dielectric materials, capacitance values and tolerances are available in the following combinations only: | EIA Dielectric | Tolerance | Capacitance | |----------------|----------------|-------------| | | C=±0.25pF | | | | D=±0.50pF | *1 <10pF | | | F=±1pF | | | cog | *3 A=±0.05pF | <0.5pF | | COG | B=±0.1pF | ≤5pF | | | *3 G=±2% | \10xE | | | J=±5% | ≥10pF | | | K=±10% | E12 Series | | X5R | *2 K=±10% | F0 Order | | X6R
X7R | M=±20% | E6 Series | | Y5V | Z=-20% to +80% | E3 Series | #### Note: # **E Standard Number** | E3 | E6 | E12 | E24 (C | ption) | |-----|-----|-----|--------|--------| | | 1.0 | 1.0 | 1.0 | 1.1 | | 1.0 | 1.0 | 1.2 | 1.2 | 1.3 | | 1.0 | 1.5 | 1.5 | 1.5 | 1.6 | | | 1.5 | 1.8 | 1.8 | 2.0 | | | 2.2 | 2.2 | 2.2 | 2.4 | | 2.2 | 2.2 | 2.7 | 2.7 | 3.0 | | 2.2 | 2.2 | 3.3 | 3.3 | 3.6 | | | 3.3 | 3.9 | 3.9 | 4.3 | | | 4.7 | 4.7 | 4.7 | 5.1 | | 4.7 | 4.7 | 5.6 | 5.6 | 6.2 | | 4.7 | 6.8 | 6.8 | 6.8 | 7.5 | | | 0.6 | 8.2 | 8.2 | 9.1 | ^{**1} Nominal values below 10pF are available in the standard values of 0.5pF, 1.0pF, 1.5pF, 2.0pF, 3.0pF, 4.0pF, 5.0pF, 6.0pF, 7.0pF, 8.0pF, 9.0pF ^{*2} J = $\pm 5\%$ for X7R (X5R) is available on request. ^{*3} option # **CM Series Nickel Barrier Terminations** onlinecomponents.com [RoHS Compliant Products] ### **Features** We offer a diverse product line ranging from ultra–compact (0.6×0.3mm) to large (4.3×3.2mm) components configured for a variety of temperature characteristics, rated voltages, and packages. We offer the choice and flexibility for almost any applications. # **Applications** This standard type is ideal for use in a wide range of applications, from commercial to industrial equipment. ## **Temperature Compensation Dielectric** ### Thickness and standard package quantity | | | | P 0. 0 | 3 - 4 | , | | | | | | | | | |-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|----------|----------| | Size | *03 | *05 | 105 | *105 | | | | 2 | 21, 316, 3 | 2 | | | | | Thickness | Α | В | С | С | D | Е | F | G | Н | I | J | K | L | | (mm) | 0.3±0.03 | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.85±0.1 | 1.15±0.1 | 1.25±0.1 | 1.4 max. | 1.6 max. | 1.6±0.15 | 2.0±0.2 | 2.5±0.2 | | Taping (180 dia reel) | 15kp (P8) | 10kp (P8) | 4kp (P8) | 8kp (P8) | 4kp (P8) | 4kp (P8) | 3kp (E8) | 3kp (E8) | 3kp (E8) | 2.5kp (E8) | 2.5kp (E8) | 2kp (E8) | 1kp (E8) | | Taping (330 dia reel) | 50kp (P8) | 50kp (P8) | 10kp (P8) | 20kp (P8) | 10kp (P8) | 10kp (P8) | 10kp (E8) | 10kp (E8) | 10kp (E8) | 5kp (E8) | 5kp (E8) | 5kp (E8) | _ | | Size | 43 | | | | | | | | | | |-----------------------|-----------|-----------|-------------|-------------|--|--|--|--|--|--| | Thickness | J | K | L | M | | | | | | | | (mm) | 1.6±0.15 | 2.0±0.2 | 2.5±0.2 | 2.8±0.2 | | | | | | | | Taping (180 dia reel) | 1kp (E12) | 1kp (E12) | 0.5kp (E12) | 0.5kp (E12) | | | | | | | | Taping (330 dia reel) | _ | _ | _ | | | | | | | | Note: P8 = 8mm width paper tape E8 = 8mm width plastic tape E12 = 12mm width plastic tape * Carrier tape 2mm pitch from one capacitor to another. # **CM Series Nickel Barrier Terminations** onlinecomponents.com [RoHS Compliant Products] # **X5R Dielectric** | | Size
Code) | | | CM03
(0201) | | | | | CN
(04 | | | | | | CM
(06 | 105
03) | | | | CM21
(0805) | | | | | |------------|--------------------------------|---|----------------|----------------|----|----|---|-----|-----------|----|----|----|---|-----|-----------|------------|----|----|------|----------------|----|----|----|--------------| | | /oltage (VDC) | 4 | 6.3 | 10 | 16 | 25 | 4 | 6.3 | 10 | 16 | 25 | 50 | 4 | 6.3 | 10 | 16 | 25 | 50 | 4 | 6.3 | 10 | 16 | 25 | 50 | | 101 | 100 | 151 | 150
220
330 | | | | | A | 102
152 | 470
680
1000 | | | | | | | | | | | В | | | | | | | | | | | | | | 152 | 1500
2200
3300
4700 | | | A | A | 103
153 | 6800
10000
15000 | | <i>V///</i> // | | | | | | | | В | | | | | | | С | | | | | | | | 153 | 22000
33000 | D
E | | 104 | 47000
68000
100000 | | | | | | | | | В | | | | | | | С | С | | | | | | G | | 154 | 150000
220000
330000 | | | | | | | В | | | | | | | | | | | | | | | G | | | 105 | 470000
680000
1000000 | | | | | | | | | | | | | | С | С | | | · | | | G | | <i>777</i> 3 | | 155 | 1500000
2200000
3300000 | G | G | | | | 106 | 4700000
6800000
10000000 | | | | | | | | | | | | | | 6 | | | | | G | G | | | | | 156 | 15000000
22000000 | | | | | | | | | | | | | | | | | | 7/// | | | | | | | 476 | 33000000
47000000 | Size
(Code) | Code) (1206) | | | | | | CM32
(1210) | | | | | | CM43
(1812) | | |-----|-----------------------------------|--------------|----|----|-------|----|---|----------------|----|----|--------|--------|-----|----------------|--| | | /oltage (VDC) | 6.3 | 10 | 16 | 25 | 50 | 4 | 6.3 | 10 | 16 | 25 | 50 | 6.3 | 50 | | | 104 | 100000 | | | | | | | | | | | | | | | | 105 | 220000
470000
1000000 | | | | F | F | | | | | Н | H
K | | | | | 106 | 2200000
4700000
10000000 | J | J | J | J | | | | К | ı | K
L | , , | | L | | | 107 | 22000000
47000000
100000000 | | | | VIIII | | | | L | L | | | М | | | Optional Spec. # Thickness and standard package quantity | Size | *03 | *05 | 105 | *105 | | 21, 316, 32 | | | | | | | | | |---------------------|-------------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|------------|------------|----------|----------|--| | Thickness | Α | В | С | С | D | Е | F | G | Н | I | J | K | L | | | (mm) | 0.3±0.03 | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.85 ± 0.1 | 1.15±0.1 | 1.25±0.1 | 1.4 max. | 1.6 max. | 1.6±0.15 | 2.0±0.2 | 2.5±0.2 | | | Taping (180 dia ree |) 15kp (P8) | 10kp (P8) | 4kp (P8) | 8kp (P8) | 4kp (P8) | 4kp (P8) | 3kp (E8) | 3kp (E8) | 3kp (E8) | 2.5kp (E8) | 2.5kp (E8) | 2kp (E8) | 1kp (E8) | | | Taping (330 dia ree |) 50kp (P8) | 50kp (P8) | 10kp (P8) | 20kp (P8) | 10kp (P8) | 10kp (P8) | 10kp (E8) | 10kp (E8) | 10kp (E8) | 5kp (E8) | 5kp (E8) | 5kp (E8) | _ | | | Size | | 4 | 3 | | |-----------------------|-----------|-----------|-------------|-------------| | Thickness | J | K | L | M | | (mm) | 1.6±0.15 | 2.0±0.2 | 2.5±0.2 | 2.8±0.2 | | Taping (180 dia reel) | 1kp (E12) | 1kp (E12) | 0.5kp (E12) | 0.5kp (E12) | | Taping (330 dia reel) | _ | _ | _ | _ | Note: P8 = 8mm width paper tape E8 = 8mm width plastic tape E12 = 12mm width plastic tape * Carrier tape 2mm pitch from one capacitor to another. onlinecomponents.com # [RoHS Compliant Products] # X7R, Dielectric | | ze
Code) | | CM316
(1206) | | | | | | CM32
(1210) | | | | | CM43
(1812) | | |---------------------|---------------------|-----|-----------------|----|----|----|-----|----|----------------|----|----|-----|----|----------------|--| | Rated Volt Capacita | age (VDC) | 6.3 | 10 | 16 | 25 | 50 | 100 | 10 | 16 | 25 | 50 | 100 | 50 | 100 | | | 103 | 10000 | | | | | | | | | | | | | | | | | 22000 | | | | | | | | | | | | | | | | 104 | 47000
100000 | | | | | E | F | | | | | н | | | | | 104 | 220000 | | | | | F | J | | | | | K | | | | | | 470000 | | | | F | | | | | | Н | L L | | | | | 105 | 1000000 | | | F | J | | | | | Н | K | | K | | | | | 2200000 | | J | | | | | | | K | | | L | | | | 106 | 4700000
10000000 | | | | | | | L | L | | | | | | | | | 22000000 | | | | | | | | | | | | | | | Optional Spec. ## **Y5V Dielectric** | | Size
Code) | _ | 103
(01) | | | 105
02) | | | | 105
03) | | | CN
(08 | 121
05) | | | CM316
(1206) | | | CM32
(1210) | | |------------|----------------------------------|-----|-------------|----|----|------------|-----|----|----|------------|----|----|-----------|------------|----|----|-----------------|----|----|----------------|----| | | oltage (VDC) | 6.3 | 10 | 10 | 16 | 25 | 50 | 10 | 16 | 25 | 50 | 10 | 16 | 25 | 50 | 10 | 16 | 25 | 10 | 16 | 25 | | 102 | 1000
2200
4700 | | А | | | | В | | | | | | | | | | | | | | | | 103
473 | 10000
22000
47000 | А | | | В | В | P - | | | | С | | | | | | | | | | | | 104
474 | 100000
220000
470000 | | | В | | | | | С | С | | | Е | D
E | G | | | | | | | | 105
475 | 1000000
2200000
4700000 | | | | | | | С | | | | G | G | G | | | F | F | | | | | 106
476 | 10000000
22000000
47000000 | | | | | | | | | | | | | | | J | J | | К | ı | ı | ## Thickness and standard package quantity | Size | *03 | *05 | 105 | *105 | | | | 2 | 21, 316, 32 | 2 | | | | |-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|------------|------------|----------|----------| | Thickness | Α | В | С | С | D | Е | F | G | Н | 1 | J | K | L | | (mm) | 0.3±0.03 | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.85±0.1 | 1.15±0.1 | 1.25±0.1 | 1.4 max. | 1.6 max. | 1.6±0.15 | 2.0±0.2 | 2.5±0.2 | | Taping (180 dia reel) | 15kp (P8) | 10kp (P8) | 4kp (P8) | 8kp (P8) | 4kp (P8) | 4kp (P8) | 3kp (E8) | 3kp (E8) | 3kp (E8) | 2.5kp (E8) | 2.5kp (E8) | 2kp (E8) | 1kp (E8) | | Taping (330 dia reel) | 50kp (P8) | 50kp (P8) | 10kp (P8) | 20kp (P8) | 10kp (P8) | 10kp (P8) | 10kp (E8) | 10kp (E8) | 10kp (E8) | 5kp (E8) | 5kp (E8) | 5kp (E8) | _ | | | Size | | 4 | 3 | | |---|-----------------------|-----------|-----------|-------------|-------------| | | Thickness | J | K | L | M | | ĺ | (mm) | 1.6±0.15 | 2.0±0.2 | 2.5±0.2 | 2.8±0.2 | | | Taping (180 dia reel) | 1kp (E12) | 1kp (E12) | 0.5kp (E12) | 0.5kp (E12) | | ĺ | Taping (330 dia reel) | _ | _ | _ | _ | Note: P8 = 8mm width paper tape E8 = 8mm width plastic tape E12 = 12mm width plastic tape * Carrier tape 2mm pitch from one capacitor to another. # Multilayer Ceramic Chip Capacitors Electrical Characteristics onlinecomponents.com Please verify individual characteristics at the design stage to ensure total suitability. # Multilayer Ceramic Chip Capacitors Test Conditions and Standards onlinecomponents.com # Test Conditions and Specifications for Temperature Compensation type (C∆ to U∆ ⋅ SL Characteristics) | Test | Items | Specifications (C: nominal capacitance) | Test Conditions | | | | | |---|-----------------------|--|--|--|--|--|--| | Capacitance \ | /alue | Within tolerance | C≤1000pF 1MHz±10% 0.5 to | | | | | | Q | | C≥30pF: Q≥1000
C<30pF: Q≥400+20C | C>1000pF 1MHZ±10% 0.5 to 5Vrms | | | | | | Insulation res | istance (IR) (*5) | 10,000M Ω or 500M Ω • μF min., whichever is less | Measured after the rated voltage is applied for one minute at normal room temperature and humidity. (*3) | | | | | | Dielectric resi | stance (*5) | No problem observed | (*1) Apply 3 times of the rated voltage for 1 to 5 seconds. | | | | | | Appearance | | No problem observed | Microscope (10×magnification) | | | | | | Termination strength Bending strength Vibration test ΔC Q Soldering heat resistance ΔC Q IR (*5) Withstand voltage(*5) | | No problem observed | Apply a sideward force of 500g (5N) (*2) to a PCB-mounted sample. | | | | | | | | No mechanical damage at 1mm bent | Glass epoxy PCB (t=1.6mm); fulcrum
Spacing: 90mm; for 10 seconds. | | | | | | | | No significant change is detected | Vibration frequency: 10 to 55 (Hz) | | | | | | | | Within tolerance | Amplitude: 1.5mm Sweeping condition: 10→55→10Hz/ min. | | | | | | | | C≥30pF: Q≥1000
C<30pF: Q≥400+20C | In X, Y and Z directions:
2 hours each Total 6 hours | | | | | | | | No significant change is detected | Soak the sample in 260°C±5°C solder for 10±0.5 seconds | | | | | | | | ±2.5% or ±0.25pF max., whichever is larger | and place in a room at normal temperature | | | | | | | | C≥30pF: Q≥1000
C<30pF: Q≥400+20C | and humidity; measure after 24±2 hours. (Preheating Conditions) | | | | | | | | 10,000M Ω or 500M Ω • μF min., whichever is smaller | 1 80 to 100°C 2 minutes | | | | | | | | Resists without problem | 2 150 to 200°C 2 minutes | | | | | | Solderability | | Ni/ Br termination: 90% min. | Soaking Condition Sn63 Solder 235±5°C 2±0.5 sec. Sn-3Ag-0.5Cu 245±5°C 3±0.5 sec. | | | | | | Temperature | Appearance | No significant change is detected | (Cycle) | | | | | | cycle | ΔC | ±2.5% or ±0.25pF max., whichever is larger | (Cycle)Normal room temperature (3 min.) → | | | | | | | Q | C≥30pF: Q≥1000
C<30pF: Q≥400+20C | Lowest operation temperature (30 min.) → Normal room temperature (3 min.) → Highest operation temperature (30 min.) → | | | | | | | IR (*5) | 10,000M Ω or 500M Ω • μF min., whichever is smaller | | | | | | | | Withstand voltage(*5) | Resists without problem | After five cycles, measure after 24±2 hours. | | | | | | Load | Appearance | No significant change is detected | After conding yets divisite se for | | | | | | humidity
test (*4) | ΔC | ±7.5% or ±0.75pF max., whichever is larger | After appling rated voltage for 500+24/ -0 hours in pre-condition at | | | | | | Q Q | | C≥30pF: Q≥200
C<30pF: Q≥100+10C/3 | 40±2°C, humidity 90 to 95%RH allow parts to stabilize for 48±4 hours, at room temperature before making measurements. | | | | | | | IR (*5) | 500MΩ or 25MΩ • μF min., whichever is smaller | temperature before making measurements. | | | | | | High- | Appearance | No significant change is detected | | | | | | | temperature with | ΔC | ±3% or ±0.3pF max., whichever is larger | After applying (*1) twice of the rated voltage | | | | | | loading | Q | C≥30pF: Q≥350
10pF≤C<30pF: Q≥275+5C/ 2
C<10pF: Q≥200+10C | at a temperature of 125±3°C for 1000+48/ –0 hours, measure the sample after storing 24±2 hours. | | | | | | | IR (*5) | 1,000M Ω or 50M Ω • μF min., whichever is smaller | | | | | | | IR (*5) | | <u> </u> | | | | | | ^{*1} For the CF series, use 1.5 times when the rated voltage is 250V; use/ 1.2 times when the rated voltage exceeds 630V. ^{2 2}N at 0201 Size ^{*3} Apply 500V for 1 minute in case the rated voltage is 630V or higher. ^{*4} Except CF series. ^{*5} The charge and discharge current of the capacitor must not exceed 50mA. # Multilayer Ceramic Chip Capacitors Test Conditions and Standards Online Components.com **▼**KYOCERa # Test Conditions and Specifications for High Dielectric Type (X5R, X7R, Y5V) | Test Items | | Specific | | 111, 101, | Test Conditions | | | | | |--|---|---|--|--|--|---|--|--|--| | | | X7R/ X5R | Y5V | Do provious | s treatment (*8, *14) | | | | | | Capacitance V | alue | Within tolerance | | Capacita | | Vol | | | | | tanδ (%) | | 2.5% max., 3.5% max. (*2), 7.0% max. (*12)
5.0% max. (*3), 7.5% max. (*17) | 5.0% max., 7.0% max. (*13)
9.0% max. (*4), 12.5% max. (*5) | C≤10μ
C>10μ | F 1kHz±10% 1
F 120Hz±10% (| 1.0±0.2Vrms
0.5±0.2Vrms | | | | | Insulation resis | stance (IR) (*15) | 10,000M Ω or 500M Ω • μF min., ν | whichever is less | | r the rated voltage is app
n temperature and humid | | | | | | Dielectric resis | stance (*15) | No problem observed | | (*1) Apply 2.5 ti | mes of the rated voltage f | or 1 to 5 seconds. | | | | | Appearance | | No problem observed | | Microscope | (10×magnification |) | | | | | Termination st | trength (*6) | No problem observed | | Apply a sidew
PCB-mounter | ard force of 500g (5N) (d sample. | *16) to a | | | | | Bending stren | gth test (*6) | No problem observed at 1mm be | ent | | CB (*03, 05 type and CA g: 90mm; for 10 seconds. | Series: T=0.8mm); | | | | | Vibration test Appearance | | No significant change is detecte | d | Vibration fr
Amplitude: | equency: 10 to 55 (| Hz) | | | | | | | Within tolerance | | Sweeping of | condition: 10→55→ | 10Hz/ min. | | | | | | tanδ (%) | Satisfies the initial value | | | Z directions:
ch Total 6 hours | | | | | | Soldering | Appearance | No significant change is detecte | d | Do previous | s treatment (*8) | | | | | | heat resistance ΔC | | Within ±7.5% | Soak the sample in 260°C±5°C solder for 10±0.5 seconds and place in a room at normal tempera | | | | | | | | | tanδ (%) | Satisfies the initial value | | and humidi
(Preheating | ty; measure after 48
g Conditions) | 3±4 hours. | | | | | | IR (*15) | 10,000MΩ or 500MΩ • μF min., ν | Order | Temperature | Time | | | | | | | Withstand voltage (*15) | Resists without problem | 1 2 | 80 to 100°C
150 to 200°C | 2 minutes
2 minutes | | | | | | Solderability | | Ni/ Br termination: 90% min. | 00, | Soaking Condition Sn63 Solder 235±5°C 2±0.5 s Sn-3Ag-0.5Cu 245±5°C 3±0.5 s | | | | | | | Temperature | Appearance | No significant change is detecte | Do previous treatment (*8) | | | | | | | | cycle | | | | (01-) | | | | | | | | ΔC | Within ±7.5% | Within ±20% | 1 | m temperature (3 n | , | | | | | | ΔC tanδ (%) | Within ±7.5% Satisfies the initial value | | Normal roo
Lowest ope | m temperature (3 n
eration temperature
m temperature (3 n | (30 min.) → | | | | | | | | Within ±20% | Normal roo
Lowest ope
Normal roo | ration temperature | $(30 \text{ min.}) \rightarrow$
nin.) \rightarrow | | | | | | tanδ (%) | Satisfies the initial value | Within ±20% | Normal roo
Lowest ope
Normal roo
Highest op | ration temperature
m temperature (3 n | $(30 \text{ min.}) \rightarrow$ $nin.) \rightarrow$ $e (30 \text{ min.}) \rightarrow$ | | | | | Load | tanδ (%) | Satisfies the initial value $10,000 M\Omega \text{ or } 500 M\Omega \boldsymbol{\cdot} \mu \text{F min.,}$ | Within ±20% | Normal roo
Lowest ope
Normal roo
Highest ope
After five cy | eration temperature
m temperature (3 n
eration temperature
/cles, measure afte
s treatment (*9) | $(30 \text{ min.}) \rightarrow$ $\text{nin.}) \rightarrow$ $\text{e} (30 \text{ min.}) \rightarrow$ $\text{r} 48\pm4\text{hours.}$ | | | | | Load
humidity
test (*11) | tan δ (%) IR (*15) Withstand voltage (*15) | Satisfies the initial value $10,000 M\Omega \text{ or } 500 M\Omega \boldsymbol{\cdot} \mu \text{F min., } .$ Resists without problem | Within ±20% | Normal roo
Lowest ope
Normal roo
Highest op
After five cy
Do previous
After applyi | eration temperature
m temperature (3 n
eration temperature
vcles, measure afte | $(30 \text{ min.}) \rightarrow$ $$ | | | | | humidity | tan δ (%) IR (*15) Withstand voltage (*15) Appearance | Satisfies the initial value $10,000M\Omega \text{ or } 500M\Omega \cdot \mu\text{F min., } $ Resists without problem No significant change is detecte | Within ±20% whichever is smaller | Normal roo
Lowest ope
Normal roo
Highest ope
After five cy
Do previous
After apply
40±2°C and
for 500+24/ | eration temperature metemperature (3 neration temperature) voles, measure after streatment (*9) ng rated voltage at d humidty 90 to 95% (*-0 hours and keep | (30 min.) → nin.) → t (30 min.) → t (30 min.) → t 48±4hours. | | | | | humidity | tanδ (%) IR (*15) Withstand voltage (*15) Appearance ΔC | Satisfies the initial value $10,000 M\Omega \text{ or } 500 M\Omega \cdot \mu \text{F min.,}$ Resists without problem No significant change is detecte Within ±12.5% | Within ±20% whichever is smaller d Within ±30% 150% max. of initial value | Normal roo
Lowest ope
Normal roo
Highest ope
After five cy
Do previous
After apply
40±2°C and
for 500+24/
condition for | eration temperature m temperature (3 neration temperature) cles, measure after streatment (*9) ng rated voltage at d humidty 90 to 95% | (30 min.) → nin.) → t (30 min.) → t (30 min.) → t 48±4hours. 6RH, the at room measure | | | | | humidity
test (*11) | $tan\delta$ (%) IR (*15) Withstand voltage (*15) Appearance ΔC $tan\delta$ (%) | Satisfies the initial value 10,000MΩ or 500MΩ • μF min., Resists without problem No significant change is detecte Within ±12.5% 200% max. of initial value | Within ±20% whichever is smaller d Within ±30% 150% max. of initial value hever is smaller | Normal roo
Lowest ope
Normal roo
Highest ope
After five cy
Do previous
After apply
40±2°C and
for 500+24/
condition for
and check | ration temperature m temperature (3 neration temperature) cles, measure after streatment (*9) ng rated voltage at d humidty 90 to 95% (-0 hours and keep or 48±4 hours then the specification lim | (30 min.) → nin.) → t (30 min.) → t (30 min.) → t 48±4hours. 6RH, the at room measure | | | | | humidity
test (*11)
High-
temperature
with | tan δ (%) IR (*15) Withstand voltage (*15) Appearance Δ C tan δ (%) IR (*15) | Satisfies the initial value 10,000MΩ or 500MΩ • μF min., Resists without problem No significant change is detecte Within ±12.5% 200% max. of initial value 500MΩ or 25MΩ • μF min., which | Within ±20% whichever is smaller d Within ±30% 150% max. of initial value hever is smaller | Normal roo
Lowest ope
Normal roo
Highest ope
After five cy
Do previous
After applyi
40±2°C and
for 500+24/
condition for
and check | eration temperature memberature (3 neration temperature (3 neration temperature) and temperature excles, measure after the streatment (*9) and the streatment (*9) and the specification limits treatment (*9) and twice (*7) of the seminature of the specification temperature (*9) and twice (*7) of the seminature of the specification temperature of the seminature of the specification temperature of the seminature semina | (30 min.) → nin.) n | | | | | humidity
test (*11)
High-
temperature | tanδ (%) IR (*15) Withstand voltage (*15) Appearance ΔC tanδ (%) IR (*15) Appearance | Satisfies the initial value 10,000MΩ or 500MΩ • μF min., Resists without problem No significant change is detecte Within ±12.5% 200% max. of initial value 500MΩ or 25MΩ • μF min., which No significant change is detecte | Within ±20% whichever is smaller d Within ±30% 150% max. of initial value hever is smaller | Normal roo
Lowest ope
Normal roo
Highest ope
After five cy
Do previous
After apply
40±2°C and
for 500+24/
condition for
and check | eration temperature metemperature (3 neration temperature) coles, measure after streatment (*9) ng rated voltage at distribution and keep of 48±4 hours then the specification limes treatment (*9) | (30 min.) → nin.) n | | | | - *1 Use 1.5 times when the rated voltage is 250V or over. Use 1.2 times when the rated voltage is 630V or over. - 2 X7R 16V/ 25V type. - *3 Apply to X5R16V/ 25V type, X7R 6.3V/ 10V type. - *4 Apply to Y5V 16V type, CM32Y5V335 to 106 (25V Type). - *5 Apply to Y5V 6.3V/ 10V type. Apply 16% max. to CM21Y5V106/ CM316Y5V226. - *6 Exclude CT series with thickness of less than 0.66mm and CA series. - Use 1.5 times when the rated voltage is 4V/ 6.3V/ 10V/ 250V and 100V (32X7R474/ 43X7R105/ 55X7R105). - Use 1.2 times when the rated voltage is 630V or over. - *8 Keep specimen at 150°C+0/ -10°C for one hour, leave specimen at room ambient for 48 \pm 4 hours. - *9 Apply the same test condition for one hour, then leave the specimen at room ambient for 48±4 hours. - *10 For the CF series over 630V, apply 500V for 1 minute at room ambient. - *11 Except CF series. *12 Apply to X5R 10V type. - *13 Apply to 25V series of CM105Y5V154 over, CM21Y5V105 over, 316Y5V155 over. - *14 Measurement condition 1kHz, 1Vrms for Y5V, C<47μF type. - *15 The charge/ discharge current of the capacitor must not exceed 50mA. - *16 2N at 0201 Size - *17 Apply to X5R 4V and 6.3V type. - st The above test conditions and standards do not apply to products with optional specifications. # **Multilayer Ceramic Chip Capacitors Packaging Options** onlinecomponents.com # **Tape and Reel** • Reel F=2mm (03, 05, 105 Type) F=4mm (105, D11, D12, F12, 21, 316, 32, 42, 52 Type) F=8mm (43, 55 Type) ## **Bulk Cassette** (Unit: mm) ## Reel | | | | (Unit: mm) | |------------------|---------------------|--|---| | Α | В | С | D | | 180 +0 -2.0 | φ60 min. | 12±0.5 | 21+0.8 | | 330 <u>±</u> 2.0 | φ100±1.0 | 13±0.5 | 21±0.6 | | E | W 1 | W ₂ | R | | 2 0+0 5 | 10.0±1.5 | 16.5 may | 1.0 | | 2.0±0.5 | 9.5±1.0 | TO.5 IIIax. | 1.0 | | | 180 ±2.0
330±2.0 | 180 ±0.0 φ60 min. 330±2.0 φ100±1.0 E W1 2.0±0.5 | 180 ±0.0 φ60 min. 330±2.0 φ100±1.0 E W1 W2 2.0±0.5 16.5 max. | For size 42 (1808) or over, Tape width 12mm and W1: 14±1.5, W2: 18.4mm max. ## **Carrier Tape** (Unit: mm) | <u> </u> | | | | |----------------|-----------|-----------|------------------| | Туре | Α | В | F | | 03 (0.6×0.3) | 0.37±0.03 | 0.67±0.03 | 2.0±0.05 | | 05 (1.0×0.5) | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | | 105 (1.6×0.8) | 1.0±0.2 | 1.8±0.2 | 4.0 <u>±</u> 0.1 | | D11 (1.37×1.0) | 1.15±0.2 | 1.55±0.2 | 4.0±0.1 | | D12 (1.25×2.0) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | | F12 (1.25×2.0) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | | 21 (2.0×1.25) | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | | 316 (3.2×1.6) | 2.0±0.2 | 3.6±0.2 | 4.0±0.1 | | 32 (3.2×2.5) | 2.9±0.2 | 3.6±0.2 | 4.0±0.1 | | 42 (4.5×2.0) | 2.4±0.2 | 4.9±0.2 | 4.0 <u>±</u> 0.1 | | 43 (4.5×3.2) | 3.6±0.2 | 4.9±0.2 | 8.0±0.1 | | 52 (5.7×2.0) | 2.4±0.2 | 6.0±0.2 | 4.0 <u>±</u> 0.1 | | 55 (5.7×5.0) | 5.3±0.2 | 6.0±0.2 | 8.0±0.1 | ### (Unit: mm) | F | Carrier Tape | С | D | E | G | Н | J | |---------------------|-----------------|--------------|--------------|--------------|--------------|-------------|-----------------| | 2.0
±0.05 | 8mm
Paper | 8.0 | 3.5 | | | | | | 4.0
+0.1 | 8mm
Plastic | ±0.3 | ±0.05 | 1.75
±0.1 | 2.0
±0.05 | 4.0
±0.1 | 1.5
+0.1/ -0 | | ±0.1
8.0
±0.1 | 12mm
Plastic | 12.0
±0.3 | 5.5
±0.05 | _0 | _0.00 | _0 | | # **Multilayer Ceramic Chip Capacitors Precautions** onlinecomponents.com ## **Circuit Design** - 1. Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance which are provided in both the catalog and the specifications. Use exceeding that which is specified may result in inferior performance or cause a short, open, smoking, or flaming to occur, etc. - 2. Please consult the manufacturer in advance when the capacitor is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highly public orientated; and devices which demand a high standard of liability. Accident or malfunction of devices such as medical devices, space equipment and devices having to do with atomic power could generate grave consequence with respect to human lives or, possibly, a portion of the public. Capacitors used in these devices may require high reliability design different from that of general purpose capacitors. - 3. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed therethrough. As this effect becomes especially pronounced in high frequency circuits, please exercise caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rises remain below 20°C. - 4. Please keep voltage under the rated voltage which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage. In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage. Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worst case situations, may cause the capacitor to smoke or flame. - 5. When the capacitor is to be employed in a circuit in which there is continuous application of a high frequency voltage or a steep pulse voltage, even though it is within the rated voltage, please inquire to the manufacturer. In the situation the capacitor is to be employed using a high frequency AC voltage or a extremely fast rising pulse voltage, even though it is within the rated voltage, it is possible capacitor reliability will deteriorate. - 6. It is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage. Due caution is necessary as the degree of deterioration varies depending on the quality of capacitor materials, capacity, as well as the load voltage at the time of operation. - 7. Do not use the capacitor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications. - In addition, it is a common piezo phenomenon of high dielectric products to have some voltage due to vibration or to have noise due to voltage change. Please contact sales in such case. - 8. If the electrostatic capacity value of the delivered capacitor is within the specified tolerance, please consider this when designing the respective product in order that the assembled product function appropriately. - 9. Please contact us upon using conductive adhesives. ## Storage - 1. If the component is stored in minimal packaging (a heat–sealed or chuck–type plastic bag), the bag should be kept closed. Once the bag has been opened, reseal it or store it in a desiccator. - 2. Keep storage place temperature +5 to +35 degree C, humidity 45 to 70% RH. - 3. The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminals will oxidize and solderability will be effected. - 4. Precautions 1) to 3) apply to chip capacitors packaged in carrier tapes and bulk cases. - 5. The solderability is assured for 12 months from our shipping date (six months for silver palladium) if the above storage precautions are followed. - 6. Chip capacitors may crack if exposed to hydrogen (H₂) gas while sealed or if coated with silicon, which generates hydrogen gas. # Multilayer Ceramic Chip Capacitors Surface Mounting Information onlinecomponents.com # **Dimensions for recommended typical land** When mounting the capacitor to the substrate, it is important to consider carefully that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it is mounted. - a) The greater the amount of solder, the greater the stress to the elements. As this may cause the substrate to break or crack, it is important to establish the appropriate dimensions with regard to the amount of solder when designing the land of the substrate. - b) In the situation where two or more devices are mounted onto a common land, separate the device into exclusive pads by using soldering resist. ## Standard (Unit: mm) | Size | L×W | а | b | С | |------|----------|--------------|--------------|--------------| | 03 | 0.6×0.3 | 0.20 to 0.30 | 0.25 to 0.35 | 0.30 to 0.40 | | 05 | 1.0×0.5 | 0.30 to 0.50 | 0.35 to 0.45 | 0.40 to 0.60 | | 105 | 1.6×0.8 | 0.70 to 1.00 | 0.80 to 1.00 | 0.60 to 0.80 | | 21 | 2.0×1.25 | 1.00 to 1.30 | 1.00 to 1.20 | 0.80 to 1.10 | | 316 | 3.2×1.6 | 2.10 to 2.50 | 1.10 to 1.30 | 1.00 to 1.30 | | 32 | 3.2×2.5 | 2.10 to 2.50 | 1.10 to 1.30 | 1.90 to 2.30 | | 42 | 4.5×2.0 | 2.50 to 3.20 | 1.80 to 2.30 | 1.50 to 1.80 | | 43 | 4.5×3.2 | 2.50 to 3.20 | 1.80 to 2.30 | 2.60 to 3.00 | | 52 | 5.7×2.0 | 4.20 to 4.70 | 2.00 to 2.50 | 1.50 to 1.80 | | 55 | 5.7×5.0 | 4.20 to 4.70 | 2.00 to 2.50 | 4.20 to 4.70 | ^{*} CA series: Please refer applicable page ### **Automotive Series** (Unit: mm) | Size | L×W | а | b | С | |------|----------|--------------|--------------|--------------| | 105 | 1.6×0.8 | 0.60 to 0.90 | 0.80 to 1.00 | 0.70 to 1.00 | | 21 | 2.0×1.25 | 0.90 to 1.20 | 0.80 to 1.20 | 0.90 to 1.40 | | 316 | 3.2×1.6 | 1.40 to 1.90 | 1.00 to 1.30 | 1.30 to 1.80 | ### Ideal Solder Thickness ## Typical mounting problems | Item | Not recommended example | Recommended example/ Separated by solder | |----------------------------------|-------------------------|--| | Multiple parts mount | | Solder resist | | Mount with leaded parts | Leaded parts | Solder resist Leaded parts | | Wire soldering
after mounting | Soldering iron Wire | Solder resist | | Overview | Solder resist | Solder resist | # Multilayer Ceramic Chip Capacitors Surface Mounting Information onlinecomponents.com # **Mounting Design** The chip could crack if the PCB warps during processing after the chip has been soldered. ## Recommended chip position on PCB to minimize stress from PCB warpage ### **Actual Mounting** - 1) If the position of the vacuum nozzle is too low, a large force may be applied to the chip capacitor during mounting, resulting in cracking. - 2) During mounting, set the nozzle pressure to a static load of 100 to 300 gf. - 3) To minimize the shock of the vaccum nozzle, provide a support pin on the back of the PCB to minimize PCB flexture. - 4) Bottom position of pick up nozzle should be adjusted to the top surface of a substrate which camber is corrected. - 5) To reduce the possibility of chipping and cracks, minimize vibration to chips stored in a bulk case. - 6) The discharge pressure must be adjusted to the part size. Verify the pressure during setup to avoid fracturing or cracking the chips capacitors. ## **Resin Mold** - 1) If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin. - 2) The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin. - Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself. # Multilayer Ceramic Chip Capacitors Surface Mounting Information onlinecomponents.com ## **Soldering Method** Reflow - 1) Ceramic is easily damaged by rapid heating or cooling. If some heat shock is unavoidable, preheat enough to limit the temperature difference (Delta T) to within 130 degree Celsius. - 2) The product size 1.0×0.5mm to 3.2×1.6mm can be used in reflow and wave soldering, and the product size of over 3.2×2.5mm, 0.6×0.3mm, and capacitor arrays can be used in reflow. - Circuit shortage and smoking can be created by using capacitors which are used neglecting the above caution. - 3) Please see our recommended soldering conditions. - 4) In case of using Sn-Zn Solder, please contact us in advance. Recommended Temperature Profile (62Sn Solder) ### Sodering iron 1) Temperature of iron chip 380°C max. 2) Wattage 80W max. 3) Tip shape of soldering iron \$\phi 3.0mm max. 4) Soldering Time 3 sec. max. 5) Cautions a) Pre-heating is necessary Rapid heating must be avoided. Delta T≤150°C - b) Avoid direct touching to capacitors. - c) Avoid rapid cooling after soldering. Natural cooling is recommended.