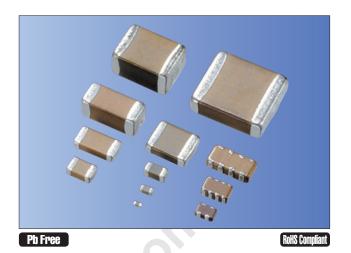
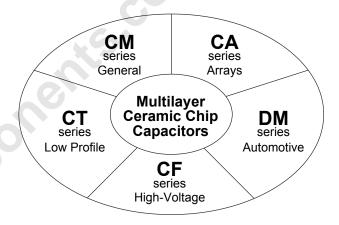
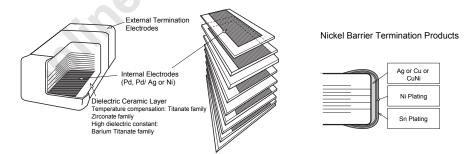
Multilayer Ceramic Chip Capacitors


onlinecomponents.com



Kyocera's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications, including general-purpose CM series, high-voltage CF series, low profile CT series, and DM series for automotive uses.


Features

- We have factories worldwide in order to supply our global customer bases quickly and efficiently and to maintain our reputation as one of the highest-volume producers in the industry.
- All our products are highly reliable due to their monolithic structure of high-purity and superfine uniform ceramics and their integral internal electrodes.
- By combining superior manufacturing technology and materials with high dielectric constants, we produce extremely compact components with exceptional specifications.
- Our stringent quality control in every phase of production from material procurement to shipping ensures consistent manufacturing and super quality.
- Kyocera components are available in a wide choice of dimensions, temperature characteristics, rated voltages, and terminations to meet specific configurational requirements.

Structure

Tape and Reel

Bulk Cassette

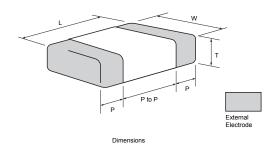
Please contact your local AVX, Kyocera sales office or distributor for specifications not covered in this catalog.

Our products are continually being improved. As a result, the capacitance range of each series is subject to change without notice. Please contact an sales representative to confirm compatibility with your application.

Multilayer Ceramic Chip Capacitors

Kyocera Ceramic Chip Capacitors are available for different applications as classified below:

Series	Dieletric Options	Typical Applications	Features	Terminations	Available Size
СМ	COG (NP0) X5R X7R *X6S *X7S Y5V	General Purpose	Wide Cap Range	Nickel Barrier	0201, 0402, 0603 0805, 1206, 1210 1812
CF	COG (NP0) X7R	High Voltage & Power Circuits	High Voltage 250VDC, 630VDC 1000VDC, 2000VDC 3000VDC, 4000VDC	Nickel Barrier	0805, 1206, 1210 1812, 2208, 1808 2220
ст	COG (NPO) X5R X7R Y5V	PLCC (Decoupling)	Low Profile	Nickel Barrier	0402, 0603, 0805 1206, 1210
DM	X7R	Automotive	Thermal shock Resistivity High Reliability	Nickel Barrier	0603, 0805, 1206
CA	C0G (NP0) X5R, X7R	Digital Signal Pass line	Reduction in Placing Costs	Nickel Barrier	0405, 0508


* option

Multilayer Ceramic Chip Capacitors

onlinecomponents.com

Dimensions

Tape & Reel

Size	EIA CODE	JIS CODE			Dimensio	ons (mm)		
Size	EIA CODE	JIS CODE	L W		P min.	P max.	P to P min.	T max.
03	0201	0603	0.6±0.03	0.3±0.03	0.13	0.23	0.20	0.33
05	0402	1005	1.0±0.05	0.5±0.05	0.15	0.35	0.30	0.55
105	0603	1608	1.6±0.10	0.8±0.10	0.20	0.60	0.50	0.90
21	0805	2012	2.0±0.10	1.25±0.10	0.20	0.75	0.70	1.35
316	1206	3216	3.2±0.20	1.60±0.15	0.30	0.85	1.40	1.75
32	1210	3225	3.2±0.20	2.50±0.20	0.30	1.00	1.40	2.70
42	1808	4520	4.5±0.20	2.00±0.20	0.15	0.85	2.60	2.20
43	1812	4532	4.5±0.30	3.20±0.20	0.30	1.10	2.00	3.00
52	2208	5720	5.7±0.40	2.00±0.20	0.15	0.85	4.20	2.20
55	2220	5750	5.7±0.40	5.00±0.40	0.30	1.40	2.50	2.70

[•]T (Thickness) depends on capacitance value.

Bulk Cassette

Size	EIA CODE	JIS CODE		w	_	ı		P to P
Size	LIA CODE	013 CODE	_	VV		min.	max.	min.
05	0402	1005	1.0±0.05	0.5±0.05	0.5±0.05	0.15	0.35	0.30
105	0603	1608	1.6±0.07	0.8±0.07	0.8±0.07	0.20	0.60	0.50
21	0805	2012	2.0±0.1	1.25±0.1	1.25±0.1	0.20	0.75	0.70

Note) Regarding support for Bulk cases, please contact us for further information.

Standard thickness is shown on the appropriate product pages.

[•] CA series (please refer applicable page)

[•] As for the size of the product specified individually, please contact us.

Multilayer Ceramic Chip Capacitors Ordering Information

onlinecomponents.com

KYOCERA PART NUMBER: CM 21 X7R 104 50 K SERIES CODE -General Purpose CA = Capacitor Arrays CF High Voltage CT = Low Profile DM = Automotive SIZE CODE SIZE EIA (JIS) SIZE EIA (JIS) SIZE EIA (JIS) 03 = 0201 (0603)21 = 0805 (2012)52 = 2208 (5720) 55 = 2220 (5750)05 = 0402 (1005)316 = 1206 (3216)105 = 0603 (1608)32 = 1210 (3225)D11 = 0405 (1012)/2capF12 = 0508 (1220) / 4cap42 = 1808 (4520) D12 = 0508 (1220)/2cap43 = 1812 (4532)DIELECTRIC CODE **CODE EIA CODE** CG = C0G (NPO)X7S = X7S (Option) X6S = X6S (Option) X5R = X5RY5V = Y5VX7R = X7RNegative dielectric types are available on request. CAPACITANCE CODE -Capacitance expressed in pF. 2 significant digits plus number of zeros. For Values < 10pF, Letter R denotes decimal point, 100000pF = 1041.5pF = 1R5 $0.1\mu F = 104$ 0.5pF = R504700pF = 472100μF = 107 TOLERANCE CODE - $D = \pm 0.5pF$ $J = \pm 5\%$ $A = \pm 0.05pF$ (option) Z = -20 to +80% $B = \pm 0.1 pF$ (option) $K = \pm 10\%$ $F = \pm 1pF$ $C = \pm 0.25 pF$ $M = \pm 20\%$ $G = \pm 2\%$ (option) **VOLTAGE CODE** -04 = 4VDC100 = 100VDC1000 = 1000VDC06 = 6.3VDC250 = 250VDC2000 = 2000VDC 10 = 10VDC400 = 400VDC 3000 = 3000VDC16 = 16VDC630 = 630VDC4000 = 4000VDC25 = 25VDC 35 = 35VDC50 = 50VDC**TERMINATION CODE** A = Nickel Barrier PACKAGING CODE L = 13" Reel Taping & 4mm Cavity pitch B = BulkH = 7" Reel Taping & 2mm Cavity pitch C = Bulk Cassette (option) T = 7" Reel Taping & 4mm Cavity pitch N = 13" Reel Taping & 2mm Cavity pitch OPTION

Thickness max. value is indicated in CT series

EX. 125 \rightarrow 1.25mm max. 095 \rightarrow 0.95mm max.

Multilayer Ceramic Chip Capacitors Temperature Characteristics and Tolerance onlinecomponents.com

High Dielectric Constant

EIA Dielectric	Temperature Range	∆C max.			
X5R	−55 to 85°C	+15%			
X7R	–55 to 125°C	±15%			
*X7S	−55 to 125°C	1000/			
*X6S	–55 to 105°C	±22%			
Y5V	−30 to 85°C	-82 to +22%			

^{*} option

Temperature Compensation Type

Electric Code Value (pF)	COG	U∆ N750	SL +350 to -1000
0.5 to 2.7	CK	UK	SL
3.0 to 3.9	CJ	UJ	SL
4.0 to 9.0	СН	UJ	SL
≥10	CG	UJ	SL

K = ± 250 ppm/ °C, J = ± 120 ppm/ °C, H = ± 60 ppm/ °C, G = ± 30 ppm/ °C e.g. CG = 0 ± 30 ppm/ °C

Note: All parts will be marked as "CG" but will conform to the above table.

Available Tolerances

Dielectric materials, capacitance values and tolerances are available in the following combinations only:

EIA Dielectric	Tolerance	Capacitance
	C=±0.25pF	
	D=±0.50pF	*1 <10pF
	F=±1pF	
cog	*3 A=±0.05pF	<0.5pF
COG	B=±0.1pF	≤5pF
	*3 G=±2%	\10xE
	J=±5%	≥10pF
	K=±10%	E12 Series
X5R	*2 K=±10%	F0 Order
X6R X7R	M=±20%	E6 Series
Y5V	Z=-20% to +80%	E3 Series

Note:

E Standard Number

E3	E6	E12	E24 (C	ption)
	1.0	1.0	1.0	1.1
1.0	1.0	1.2	1.2	1.3
1.0	1.5	1.5	1.5	1.6
	1.5	1.8	1.8	2.0
	2.2	2.2	2.2	2.4
2.2	2.2	2.7	2.7	3.0
2.2	2.2	3.3	3.3	3.6
	3.3	3.9	3.9	4.3
	4.7	4.7	4.7	5.1
4.7	4.7	5.6	5.6	6.2
4.7	6.8	6.8	6.8	7.5
	0.6	8.2	8.2	9.1

^{**1} Nominal values below 10pF are available in the standard values of 0.5pF, 1.0pF, 1.5pF, 2.0pF, 3.0pF, 4.0pF, 5.0pF, 6.0pF, 7.0pF, 8.0pF, 9.0pF

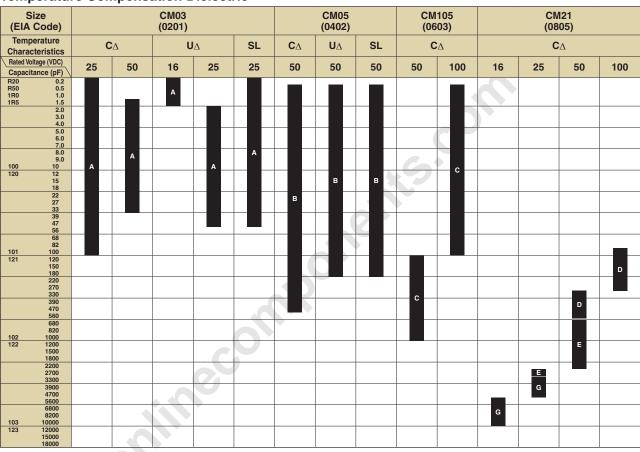
^{*2} J = $\pm 5\%$ for X7R (X5R) is available on request.

^{*3} option

CM Series Nickel Barrier Terminations

onlinecomponents.com

[RoHS Compliant Products]


Features

We offer a diverse product line ranging from ultra–compact (0.6×0.3mm) to large (4.3×3.2mm) components configured for a variety of temperature characteristics, rated voltages, and packages. We offer the choice and flexibility for almost any applications.

Applications

This standard type is ideal for use in a wide range of applications, from commercial to industrial equipment.

Temperature Compensation Dielectric

Thickness and standard package quantity

			P 0. 0	3 - 4	,								
Size	*03	*05	105	*105				2	21, 316, 3	2			
Thickness	Α	В	С	С	D	Е	F	G	Н	I	J	K	L
(mm)	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.6±0.1	0.85±0.1	1.15±0.1	1.25±0.1	1.4 max.	1.6 max.	1.6±0.15	2.0±0.2	2.5±0.2
Taping (180 dia reel)	15kp (P8)	10kp (P8)	4kp (P8)	8kp (P8)	4kp (P8)	4kp (P8)	3kp (E8)	3kp (E8)	3kp (E8)	2.5kp (E8)	2.5kp (E8)	2kp (E8)	1kp (E8)
Taping (330 dia reel)	50kp (P8)	50kp (P8)	10kp (P8)	20kp (P8)	10kp (P8)	10kp (P8)	10kp (E8)	10kp (E8)	10kp (E8)	5kp (E8)	5kp (E8)	5kp (E8)	_

Size	43									
Thickness	J	K	L	M						
(mm)	1.6±0.15	2.0±0.2	2.5±0.2	2.8±0.2						
Taping (180 dia reel)	1kp (E12)	1kp (E12)	0.5kp (E12)	0.5kp (E12)						
Taping (330 dia reel)	_	_	_							

Note: P8 = 8mm width paper tape E8 = 8mm width plastic tape E12 = 12mm width plastic tape

* Carrier tape 2mm pitch from one capacitor to another.

CM Series Nickel Barrier Terminations

onlinecomponents.com

[RoHS Compliant Products]

X5R Dielectric

	Size Code)			CM03 (0201)					CN (04						CM (06	105 03)				CM21 (0805)				
	/oltage (VDC)	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	50	4	6.3	10	16	25	50
101	100																							
151	150 220 330					A																		
102 152	470 680 1000											В												
152	1500 2200 3300 4700			A	A																			
103 153	6800 10000 15000		<i>V///</i> //								В							С						
153	22000 33000																							D E
104	47000 68000 100000									В							С	С						G
154	150000 220000 330000							В															G	
105	470000 680000 1000000														С	С			·			G		<i>777</i> 3
155	1500000 2200000 3300000																				G	G		
106	4700000 6800000 10000000														6					G	G			
156	15000000 22000000																		7///					
476	33000000 47000000																							

	Size (Code)	Code) (1206)						CM32 (1210)						CM43 (1812)	
	/oltage (VDC)	6.3	10	16	25	50	4	6.3	10	16	25	50	6.3	50	
104	100000														
105	220000 470000 1000000				F	F					Н	H K			
106	2200000 4700000 10000000	J	J	J	J				К	ı	K L	, ,		L	
107	22000000 47000000 100000000				VIIII				L	L			М		

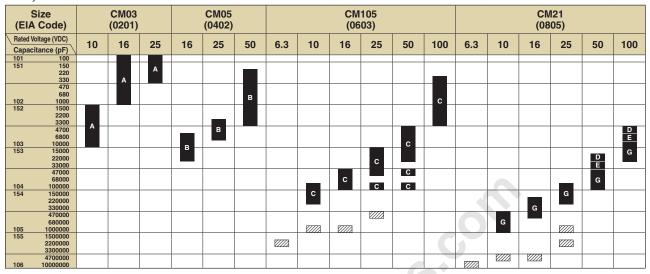
Optional Spec.

Thickness and standard package quantity

Size	*03	*05	105	*105		21, 316, 32								
Thickness	Α	В	С	С	D	Е	F	G	Н	I	J	K	L	
(mm)	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.6±0.1	0.85 ± 0.1	1.15±0.1	1.25±0.1	1.4 max.	1.6 max.	1.6±0.15	2.0±0.2	2.5±0.2	
Taping (180 dia ree) 15kp (P8)	10kp (P8)	4kp (P8)	8kp (P8)	4kp (P8)	4kp (P8)	3kp (E8)	3kp (E8)	3kp (E8)	2.5kp (E8)	2.5kp (E8)	2kp (E8)	1kp (E8)	
Taping (330 dia ree) 50kp (P8)	50kp (P8)	10kp (P8)	20kp (P8)	10kp (P8)	10kp (P8)	10kp (E8)	10kp (E8)	10kp (E8)	5kp (E8)	5kp (E8)	5kp (E8)	_	

Size		4	3	
Thickness	J	K	L	M
(mm)	1.6±0.15	2.0±0.2	2.5±0.2	2.8±0.2
Taping (180 dia reel)	1kp (E12)	1kp (E12)	0.5kp (E12)	0.5kp (E12)
Taping (330 dia reel)	_	_	_	_

Note: P8 = 8mm width paper tape E8 = 8mm width plastic tape E12 = 12mm width plastic tape


* Carrier tape 2mm pitch from one capacitor to another.

onlinecomponents.com

[RoHS Compliant Products]

X7R, Dielectric

	ze Code)		CM316 (1206)						CM32 (1210)					CM43 (1812)	
Rated Volt Capacita	age (VDC)	6.3	10	16	25	50	100	10	16	25	50	100	50	100	
103	10000														
	22000														
104	47000 100000					E	F					н			
104	220000					F	J					K			
	470000				F						Н	L L			
105	1000000			F	J					Н	K		K		
	2200000		J							K			L		
106	4700000 10000000							L	L						
	22000000														

Optional Spec.

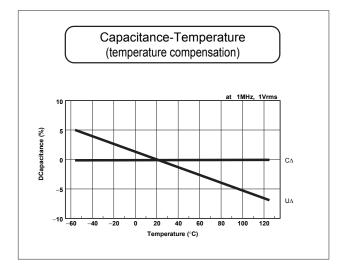
Y5V Dielectric

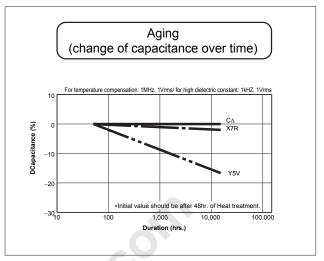
	Size Code)	_	103 (01)			105 02)				105 03)			CN (08	121 05)			CM316 (1206)			CM32 (1210)	
	oltage (VDC)	6.3	10	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	10	16	25
102	1000 2200 4700		А				В														
103 473	10000 22000 47000	А			В	В	P -				С										
104 474	100000 220000 470000			В					С	С			Е	D E	G						
105 475	1000000 2200000 4700000							С				G	G	G			F	F			
106 476	10000000 22000000 47000000															J	J		К	ı	ı

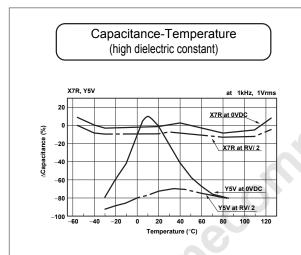
Thickness and standard package quantity

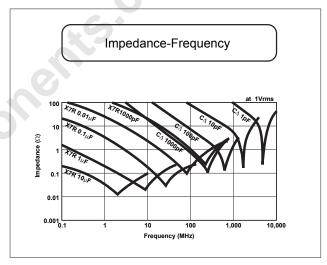
Size	*03	*05	105	*105				2	21, 316, 32	2			
Thickness	Α	В	С	С	D	Е	F	G	Н	1	J	K	L
(mm)	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.6±0.1	0.85±0.1	1.15±0.1	1.25±0.1	1.4 max.	1.6 max.	1.6±0.15	2.0±0.2	2.5±0.2
Taping (180 dia reel)	15kp (P8)	10kp (P8)	4kp (P8)	8kp (P8)	4kp (P8)	4kp (P8)	3kp (E8)	3kp (E8)	3kp (E8)	2.5kp (E8)	2.5kp (E8)	2kp (E8)	1kp (E8)
Taping (330 dia reel)	50kp (P8)	50kp (P8)	10kp (P8)	20kp (P8)	10kp (P8)	10kp (P8)	10kp (E8)	10kp (E8)	10kp (E8)	5kp (E8)	5kp (E8)	5kp (E8)	_

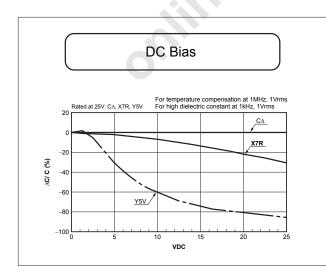
	Size		4	3	
	Thickness	J	K	L	M
ĺ	(mm)	1.6±0.15	2.0±0.2	2.5±0.2	2.8±0.2
	Taping (180 dia reel)	1kp (E12)	1kp (E12)	0.5kp (E12)	0.5kp (E12)
ĺ	Taping (330 dia reel)	_	_	_	_

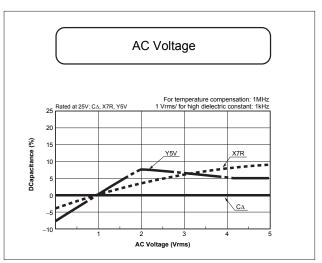

Note: P8 = 8mm width paper tape E8 = 8mm width plastic tape E12 = 12mm width plastic tape


* Carrier tape 2mm pitch from one capacitor to another.


Multilayer Ceramic Chip Capacitors Electrical Characteristics


onlinecomponents.com





Please verify individual characteristics at the design stage to ensure total suitability.

Multilayer Ceramic Chip Capacitors Test Conditions and Standards onlinecomponents.com

Test Conditions and Specifications for Temperature Compensation type (C∆ to U∆ ⋅ SL Characteristics)

Test	Items	Specifications (C: nominal capacitance)	Test Conditions				
Capacitance \	/alue	Within tolerance	C≤1000pF 1MHz±10% 0.5 to				
Q		C≥30pF: Q≥1000 C<30pF: Q≥400+20C	C>1000pF 1MHZ±10% 0.5 to 5Vrms				
Insulation res	istance (IR) (*5)	10,000M Ω or 500M Ω • μF min., whichever is less	Measured after the rated voltage is applied for one minute at normal room temperature and humidity. (*3)				
Dielectric resi	stance (*5)	No problem observed	(*1) Apply 3 times of the rated voltage for 1 to 5 seconds.				
Appearance		No problem observed	Microscope (10×magnification)				
Termination strength Bending strength Vibration test ΔC Q Soldering heat resistance ΔC Q IR (*5) Withstand voltage(*5)		No problem observed	Apply a sideward force of 500g (5N) (*2) to a PCB-mounted sample.				
		No mechanical damage at 1mm bent	Glass epoxy PCB (t=1.6mm); fulcrum Spacing: 90mm; for 10 seconds.				
		No significant change is detected	Vibration frequency: 10 to 55 (Hz)				
		Within tolerance	Amplitude: 1.5mm Sweeping condition: 10→55→10Hz/ min.				
		C≥30pF: Q≥1000 C<30pF: Q≥400+20C	In X, Y and Z directions: 2 hours each Total 6 hours				
		No significant change is detected	Soak the sample in 260°C±5°C solder for 10±0.5 seconds				
		±2.5% or ±0.25pF max., whichever is larger	and place in a room at normal temperature				
		C≥30pF: Q≥1000 C<30pF: Q≥400+20C	and humidity; measure after 24±2 hours. (Preheating Conditions)				
		10,000M Ω or 500M Ω • μF min., whichever is smaller	1 80 to 100°C 2 minutes				
		Resists without problem	2 150 to 200°C 2 minutes				
Solderability		Ni/ Br termination: 90% min.	Soaking Condition Sn63 Solder 235±5°C 2±0.5 sec. Sn-3Ag-0.5Cu 245±5°C 3±0.5 sec.				
Temperature	Appearance	No significant change is detected	(Cycle)				
cycle	ΔC	±2.5% or ±0.25pF max., whichever is larger	(Cycle)Normal room temperature (3 min.) →				
	Q	C≥30pF: Q≥1000 C<30pF: Q≥400+20C	Lowest operation temperature (30 min.) → Normal room temperature (3 min.) → Highest operation temperature (30 min.) →				
	IR (*5)	10,000M Ω or 500M Ω • μF min., whichever is smaller					
	Withstand voltage(*5)	Resists without problem	After five cycles, measure after 24±2 hours.				
Load	Appearance	No significant change is detected	After conding yets divisite se for				
humidity test (*4)	ΔC	±7.5% or ±0.75pF max., whichever is larger	After appling rated voltage for 500+24/ -0 hours in pre-condition at				
Q Q		C≥30pF: Q≥200 C<30pF: Q≥100+10C/3	40±2°C, humidity 90 to 95%RH allow parts to stabilize for 48±4 hours, at room temperature before making measurements.				
	IR (*5)	500MΩ or 25MΩ • μF min., whichever is smaller	temperature before making measurements.				
High-	Appearance	No significant change is detected					
temperature with	ΔC	±3% or ±0.3pF max., whichever is larger	After applying (*1) twice of the rated voltage				
loading	Q	C≥30pF: Q≥350 10pF≤C<30pF: Q≥275+5C/ 2 C<10pF: Q≥200+10C	at a temperature of 125±3°C for 1000+48/ –0 hours, measure the sample after storing 24±2 hours.				
	IR (*5)	1,000M Ω or 50M Ω • μF min., whichever is smaller					
IR (*5)		<u> </u>					

^{*1} For the CF series, use 1.5 times when the rated voltage is 250V; use/ 1.2 times when the rated voltage exceeds 630V.

^{2 2}N at 0201 Size

^{*3} Apply 500V for 1 minute in case the rated voltage is 630V or higher.

^{*4} Except CF series.

^{*5} The charge and discharge current of the capacitor must not exceed 50mA.

Multilayer Ceramic Chip Capacitors Test Conditions and Standards Online Components.com

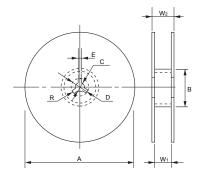
▼KYOCERa

Test Conditions and Specifications for High Dielectric Type (X5R, X7R, Y5V)

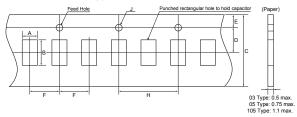
Test Items		Specific		111, 101,	Test Conditions				
		X7R/ X5R	Y5V	Do provious	s treatment (*8, *14)				
Capacitance V	alue	Within tolerance		Capacita		Vol			
tanδ (%)		2.5% max., 3.5% max. (*2), 7.0% max. (*12) 5.0% max. (*3), 7.5% max. (*17)	5.0% max., 7.0% max. (*13) 9.0% max. (*4), 12.5% max. (*5)	C≤10μ C>10μ	F 1kHz±10% 1 F 120Hz±10% (1.0±0.2Vrms 0.5±0.2Vrms			
Insulation resis	stance (IR) (*15)	10,000M Ω or 500M Ω • μF min., ν	whichever is less		r the rated voltage is app n temperature and humid				
Dielectric resis	stance (*15)	No problem observed		(*1) Apply 2.5 ti	mes of the rated voltage f	or 1 to 5 seconds.			
Appearance		No problem observed		Microscope	(10×magnification)			
Termination st	trength (*6)	No problem observed		Apply a sidew PCB-mounter	ard force of 500g (5N) (d sample.	*16) to a			
Bending stren	gth test (*6)	No problem observed at 1mm be	ent		CB (*03, 05 type and CA g: 90mm; for 10 seconds.	Series: T=0.8mm);			
Vibration test Appearance		No significant change is detecte	d	Vibration fr Amplitude:	equency: 10 to 55 (Hz)			
		Within tolerance		Sweeping of	condition: 10→55→	10Hz/ min.			
	tanδ (%)	Satisfies the initial value			Z directions: ch Total 6 hours				
Soldering	Appearance	No significant change is detecte	d	Do previous	s treatment (*8)				
heat resistance ΔC		Within ±7.5%	Soak the sample in 260°C±5°C solder for 10±0.5 seconds and place in a room at normal tempera						
	tanδ (%)	Satisfies the initial value		and humidi (Preheating	ty; measure after 48 g Conditions)	3±4 hours.			
	IR (*15)	10,000MΩ or 500MΩ • μF min., ν	Order	Temperature	Time				
	Withstand voltage (*15)	Resists without problem	1 2	80 to 100°C 150 to 200°C	2 minutes 2 minutes				
Solderability		Ni/ Br termination: 90% min.	00,	Soaking Condition Sn63 Solder 235±5°C 2±0.5 s Sn-3Ag-0.5Cu 245±5°C 3±0.5 s					
Temperature	Appearance	No significant change is detecte	Do previous treatment (*8)						
cycle				(01-)					
	ΔC	Within ±7.5%	Within ±20%	1	m temperature (3 n	,			
	ΔC tanδ (%)	Within ±7.5% Satisfies the initial value		Normal roo Lowest ope	m temperature (3 n eration temperature m temperature (3 n	(30 min.) →			
			Within ±20%	Normal roo Lowest ope Normal roo	ration temperature	$(30 \text{ min.}) \rightarrow$ nin.) \rightarrow			
	tanδ (%)	Satisfies the initial value	Within ±20%	Normal roo Lowest ope Normal roo Highest op	ration temperature m temperature (3 n	$(30 \text{ min.}) \rightarrow$ $nin.) \rightarrow$ $e (30 \text{ min.}) \rightarrow$			
Load	tanδ (%)	Satisfies the initial value $10,000 M\Omega \text{ or } 500 M\Omega \boldsymbol{\cdot} \mu \text{F min.,}$	Within ±20%	Normal roo Lowest ope Normal roo Highest ope After five cy	eration temperature m temperature (3 n eration temperature /cles, measure afte s treatment (*9)	$(30 \text{ min.}) \rightarrow$ $\text{nin.}) \rightarrow$ $\text{e} (30 \text{ min.}) \rightarrow$ $\text{r} 48\pm4\text{hours.}$			
Load humidity test (*11)	tan δ (%) IR (*15) Withstand voltage (*15)	Satisfies the initial value $10,000 M\Omega \text{ or } 500 M\Omega \boldsymbol{\cdot} \mu \text{F min., } .$ Resists without problem	Within ±20%	Normal roo Lowest ope Normal roo Highest op After five cy Do previous After applyi	eration temperature m temperature (3 n eration temperature vcles, measure afte	$(30 \text{ min.}) \rightarrow$ $$			
humidity	tan δ (%) IR (*15) Withstand voltage (*15) Appearance	Satisfies the initial value $10,000M\Omega \text{ or } 500M\Omega \cdot \mu\text{F min., } $ Resists without problem No significant change is detecte	Within ±20% whichever is smaller	Normal roo Lowest ope Normal roo Highest ope After five cy Do previous After apply 40±2°C and for 500+24/	eration temperature metemperature (3 neration temperature) voles, measure after streatment (*9) ng rated voltage at d humidty 90 to 95% (*-0 hours and keep	(30 min.) → nin.) → t (30 min.) → t (30 min.) → t 48±4hours.			
humidity	tanδ (%) IR (*15) Withstand voltage (*15) Appearance ΔC	Satisfies the initial value $10,000 M\Omega \text{ or } 500 M\Omega \cdot \mu \text{F min.,}$ Resists without problem No significant change is detecte Within ±12.5%	Within ±20% whichever is smaller d Within ±30% 150% max. of initial value	Normal roo Lowest ope Normal roo Highest ope After five cy Do previous After apply 40±2°C and for 500+24/ condition for	eration temperature m temperature (3 neration temperature) cles, measure after streatment (*9) ng rated voltage at d humidty 90 to 95%	(30 min.) → nin.) → t (30 min.) → t (30 min.) → t 48±4hours. 6RH, the at room measure			
humidity test (*11)	$tan\delta$ (%) IR (*15) Withstand voltage (*15) Appearance ΔC $tan\delta$ (%)	Satisfies the initial value 10,000MΩ or 500MΩ • μF min., Resists without problem No significant change is detecte Within ±12.5% 200% max. of initial value	Within ±20% whichever is smaller d Within ±30% 150% max. of initial value hever is smaller	Normal roo Lowest ope Normal roo Highest ope After five cy Do previous After apply 40±2°C and for 500+24/ condition for and check	ration temperature m temperature (3 neration temperature) cles, measure after streatment (*9) ng rated voltage at d humidty 90 to 95% (-0 hours and keep or 48±4 hours then the specification lim	(30 min.) → nin.) → t (30 min.) → t (30 min.) → t 48±4hours. 6RH, the at room measure			
humidity test (*11) High- temperature with	tan δ (%) IR (*15) Withstand voltage (*15) Appearance Δ C tan δ (%) IR (*15)	Satisfies the initial value 10,000MΩ or 500MΩ • μF min., Resists without problem No significant change is detecte Within ±12.5% 200% max. of initial value 500MΩ or 25MΩ • μF min., which	Within ±20% whichever is smaller d Within ±30% 150% max. of initial value hever is smaller	Normal roo Lowest ope Normal roo Highest ope After five cy Do previous After applyi 40±2°C and for 500+24/ condition for and check	eration temperature memberature (3 neration temperature (3 neration temperature) and temperature excles, measure after the streatment (*9) and the streatment (*9) and the specification limits treatment (*9) and twice (*7) of the seminature of the specification temperature (*9) and twice (*7) of the seminature of the specification temperature of the seminature of the specification temperature of the seminature of the semina	(30 min.) → nin.) → n			
humidity test (*11) High- temperature	tanδ (%) IR (*15) Withstand voltage (*15) Appearance ΔC tanδ (%) IR (*15) Appearance	Satisfies the initial value 10,000MΩ or 500MΩ • μF min., Resists without problem No significant change is detecte Within ±12.5% 200% max. of initial value 500MΩ or 25MΩ • μF min., which No significant change is detecte	Within ±20% whichever is smaller d Within ±30% 150% max. of initial value hever is smaller	Normal roo Lowest ope Normal roo Highest ope After five cy Do previous After apply 40±2°C and for 500+24/ condition for and check	eration temperature metemperature (3 neration temperature) coles, measure after streatment (*9) ng rated voltage at distribution and keep of 48±4 hours then the specification limes treatment (*9)	(30 min.) → nin.) → n			

- *1 Use 1.5 times when the rated voltage is 250V or over. Use 1.2 times when the rated voltage is 630V or over.
- 2 X7R 16V/ 25V type.
- *3 Apply to X5R16V/ 25V type, X7R 6.3V/ 10V type.
- *4 Apply to Y5V 16V type, CM32Y5V335 to 106 (25V Type).
- *5 Apply to Y5V 6.3V/ 10V type. Apply 16% max. to CM21Y5V106/ CM316Y5V226.
- *6 Exclude CT series with thickness of less than 0.66mm and CA series.
- Use 1.5 times when the rated voltage is 4V/ 6.3V/ 10V/ 250V and 100V (32X7R474/ 43X7R105/ 55X7R105).
 - Use 1.2 times when the rated voltage is 630V or over.
- *8 Keep specimen at 150°C+0/ -10°C for one hour, leave specimen at room ambient for 48 \pm 4 hours.
- *9 Apply the same test condition for one hour, then leave the specimen at room ambient for 48±4 hours.

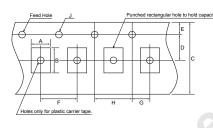
- *10 For the CF series over 630V, apply 500V for 1 minute at room ambient.
- *11 Except CF series. *12 Apply to X5R 10V type.
- *13 Apply to 25V series of CM105Y5V154 over, CM21Y5V105 over, 316Y5V155 over.
- *14 Measurement condition 1kHz, 1Vrms for Y5V, C<47μF type.
- *15 The charge/ discharge current of the capacitor must not exceed 50mA.
- *16 2N at 0201 Size
- *17 Apply to X5R 4V and 6.3V type.
- st The above test conditions and standards do not apply to products with optional specifications.

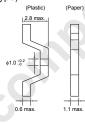

Multilayer Ceramic Chip Capacitors Packaging Options

onlinecomponents.com

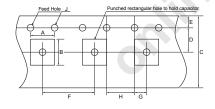


Tape and Reel

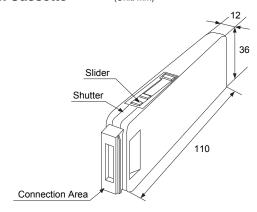

• Reel



F=2mm (03, 05, 105 Type)



F=4mm (105, D11, D12, F12, 21, 316, 32, 42, 52 Type)


F=8mm (43, 55 Type)

Bulk Cassette

(Unit: mm)

Reel

			(Unit: mm)
Α	В	С	D
180 +0 -2.0	φ60 min.	12±0.5	21+0.8
330 <u>±</u> 2.0	φ100±1.0	13±0.5	21±0.6
E	W 1	W ₂	R
2 0+0 5	10.0±1.5	16.5 may	1.0
2.0±0.5	9.5±1.0	TO.5 IIIax.	1.0
	180 ±2.0 330±2.0	180 ±0.0 φ60 min. 330±2.0 φ100±1.0 E W1 2.0±0.5	180 ±0.0 φ60 min. 330±2.0 φ100±1.0 E W1 W2 2.0±0.5 16.5 max.

For size 42 (1808) or over, Tape width 12mm and W1: 14±1.5, W2: 18.4mm max.

Carrier Tape

(Unit: mm)

<u> </u>			
Туре	Α	В	F
03 (0.6×0.3)	0.37±0.03	0.67±0.03	2.0±0.05
05 (1.0×0.5)	0.65±0.1	1.15±0.1	2.0±0.05
105 (1.6×0.8)	1.0±0.2	1.8±0.2	4.0 <u>±</u> 0.1
D11 (1.37×1.0)	1.15±0.2	1.55±0.2	4.0±0.1
D12 (1.25×2.0)	1.5±0.2	2.3±0.2	4.0±0.1
F12 (1.25×2.0)	1.5±0.2	2.3±0.2	4.0±0.1
21 (2.0×1.25)	1.5±0.2	2.3±0.2	4.0±0.1
316 (3.2×1.6)	2.0±0.2	3.6±0.2	4.0±0.1
32 (3.2×2.5)	2.9±0.2	3.6±0.2	4.0±0.1
42 (4.5×2.0)	2.4±0.2	4.9±0.2	4.0 <u>±</u> 0.1
43 (4.5×3.2)	3.6±0.2	4.9±0.2	8.0±0.1
52 (5.7×2.0)	2.4±0.2	6.0±0.2	4.0 <u>±</u> 0.1
55 (5.7×5.0)	5.3±0.2	6.0±0.2	8.0±0.1

(Unit: mm)

F	Carrier Tape	С	D	E	G	Н	J
2.0 ±0.05	8mm Paper	8.0	3.5				
4.0 +0.1	8mm Plastic	±0.3	±0.05	1.75 ±0.1	2.0 ±0.05	4.0 ±0.1	1.5 +0.1/ -0
±0.1 8.0 ±0.1	12mm Plastic	12.0 ±0.3	5.5 ±0.05	_0	_0.00	_0	

Multilayer Ceramic Chip Capacitors Precautions

onlinecomponents.com

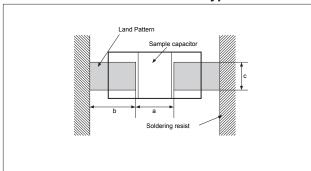
Circuit Design

- 1. Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance which are provided in both the catalog and the specifications. Use exceeding that which is specified may result in inferior performance or cause a short, open, smoking, or flaming to occur, etc.
- 2. Please consult the manufacturer in advance when the capacitor is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highly public orientated; and devices which demand a high standard of liability.
 Accident or malfunction of devices such as medical devices, space equipment and devices having to do with atomic power could generate grave consequence with respect to human lives or, possibly, a portion of the public. Capacitors used in these devices may require high reliability design different from that of general purpose capacitors.
- 3. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications.

 Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed therethrough. As this effect becomes especially pronounced in high frequency circuits, please exercise caution.

 When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rises remain below 20°C.
- 4. Please keep voltage under the rated voltage which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage.
 In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage.
 Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worst case situations, may cause the capacitor to smoke or flame.
- 5. When the capacitor is to be employed in a circuit in which there is continuous application of a high frequency voltage or a steep pulse voltage, even though it is within the rated voltage, please inquire to the manufacturer.
 In the situation the capacitor is to be employed using a high frequency AC voltage or a extremely fast rising pulse voltage, even though it is within the rated voltage, it is possible capacitor reliability will deteriorate.
- 6. It is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage. Due caution is necessary as the degree of deterioration varies depending on the quality of capacitor materials, capacity, as well as the load voltage at the time of operation.
- 7. Do not use the capacitor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications.
 - In addition, it is a common piezo phenomenon of high dielectric products to have some voltage due to vibration or to have noise due to voltage change. Please contact sales in such case.
- 8. If the electrostatic capacity value of the delivered capacitor is within the specified tolerance, please consider this when designing the respective product in order that the assembled product function appropriately.
- 9. Please contact us upon using conductive adhesives.

Storage


- 1. If the component is stored in minimal packaging (a heat–sealed or chuck–type plastic bag), the bag should be kept closed. Once the bag has been opened, reseal it or store it in a desiccator.
- 2. Keep storage place temperature +5 to +35 degree C, humidity 45 to 70% RH.
- 3. The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminals will oxidize and solderability will be effected.
- 4. Precautions 1) to 3) apply to chip capacitors packaged in carrier tapes and bulk cases.
- 5. The solderability is assured for 12 months from our shipping date (six months for silver palladium) if the above storage precautions are followed.
- 6. Chip capacitors may crack if exposed to hydrogen (H₂) gas while sealed or if coated with silicon, which generates hydrogen gas.

Multilayer Ceramic Chip Capacitors Surface Mounting Information

onlinecomponents.com

Dimensions for recommended typical land

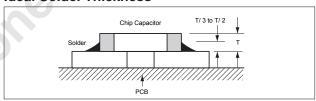
When mounting the capacitor to the substrate, it is important to consider carefully that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it is mounted.

- a) The greater the amount of solder, the greater the stress to the elements. As this may cause the substrate to break or crack, it is important to establish the appropriate dimensions with regard to the amount of solder when designing the land of the substrate.
- b) In the situation where two or more devices are mounted onto a common land, separate the device into exclusive pads by using soldering resist.

Standard

(Unit: mm)

Size	L×W	а	b	С
03	0.6×0.3	0.20 to 0.30	0.25 to 0.35	0.30 to 0.40
05	1.0×0.5	0.30 to 0.50	0.35 to 0.45	0.40 to 0.60
105	1.6×0.8	0.70 to 1.00	0.80 to 1.00	0.60 to 0.80
21	2.0×1.25	1.00 to 1.30	1.00 to 1.20	0.80 to 1.10
316	3.2×1.6	2.10 to 2.50	1.10 to 1.30	1.00 to 1.30
32	3.2×2.5	2.10 to 2.50	1.10 to 1.30	1.90 to 2.30
42	4.5×2.0	2.50 to 3.20	1.80 to 2.30	1.50 to 1.80
43	4.5×3.2	2.50 to 3.20	1.80 to 2.30	2.60 to 3.00
52	5.7×2.0	4.20 to 4.70	2.00 to 2.50	1.50 to 1.80
55	5.7×5.0	4.20 to 4.70	2.00 to 2.50	4.20 to 4.70


^{*} CA series: Please refer applicable page

Automotive Series

(Unit: mm)

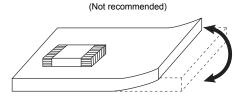
Size	L×W	а	b	С
105	1.6×0.8	0.60 to 0.90	0.80 to 1.00	0.70 to 1.00
21	2.0×1.25	0.90 to 1.20	0.80 to 1.20	0.90 to 1.40
316	3.2×1.6	1.40 to 1.90	1.00 to 1.30	1.30 to 1.80

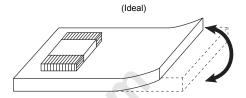
Ideal Solder Thickness

Typical mounting problems

Item	Not recommended example	Recommended example/ Separated by solder
Multiple parts mount		Solder resist
Mount with leaded parts	Leaded parts	Solder resist Leaded parts
Wire soldering after mounting	Soldering iron Wire	Solder resist
Overview	Solder resist	Solder resist

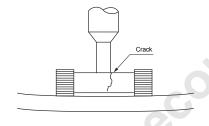
Multilayer Ceramic Chip Capacitors Surface Mounting Information

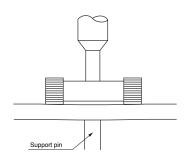

onlinecomponents.com



Mounting Design

The chip could crack if the PCB warps during processing after the chip has been soldered.


Recommended chip position on PCB to minimize stress from PCB warpage



Actual Mounting

- 1) If the position of the vacuum nozzle is too low, a large force may be applied to the chip capacitor during mounting, resulting in cracking.
- 2) During mounting, set the nozzle pressure to a static load of 100 to 300 gf.
- 3) To minimize the shock of the vaccum nozzle, provide a support pin on the back of the PCB to minimize PCB flexture.

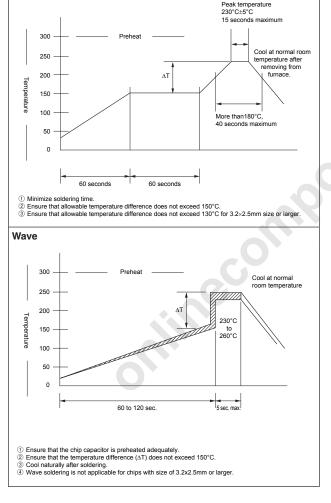
- 4) Bottom position of pick up nozzle should be adjusted to the top surface of a substrate which camber is corrected.
- 5) To reduce the possibility of chipping and cracks, minimize vibration to chips stored in a bulk case.
- 6) The discharge pressure must be adjusted to the part size. Verify the pressure during setup to avoid fracturing or cracking the chips capacitors.

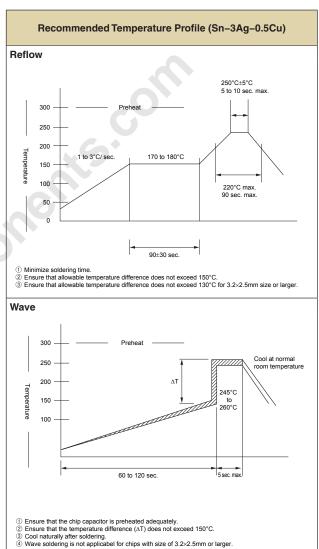
Resin Mold

- 1) If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin.
- 2) The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin.
- Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage.
 Such gases may crack the chip capacitor or damage the device itself.

Multilayer Ceramic Chip Capacitors Surface Mounting Information

onlinecomponents.com




Soldering Method

Reflow

- 1) Ceramic is easily damaged by rapid heating or cooling. If some heat shock is unavoidable, preheat enough to limit the temperature difference (Delta T) to within 130 degree Celsius.
- 2) The product size 1.0×0.5mm to 3.2×1.6mm can be used in reflow and wave soldering, and the product size of over 3.2×2.5mm, 0.6×0.3mm, and capacitor arrays can be used in reflow.
 - Circuit shortage and smoking can be created by using capacitors which are used neglecting the above caution.
- 3) Please see our recommended soldering conditions.
- 4) In case of using Sn-Zn Solder, please contact us in advance.

Recommended Temperature Profile (62Sn Solder)

Sodering iron

1) Temperature of iron chip 380°C max. 2) Wattage 80W max. 3) Tip shape of soldering iron \$\phi 3.0mm max.

4) Soldering Time 3 sec. max.

5) Cautions

a) Pre-heating is necessary Rapid heating must be avoided.
 Delta T≤150°C

- b) Avoid direct touching to capacitors.
- c) Avoid rapid cooling after soldering. Natural cooling is recommended.