

1.0GHz 3-Wire Bus Controlled Synthesizer

Data Sheet

SP5026

Features

- Complete 1.OGHz Single Chip System
- Dual Standard 62.5kHz or 31.25 kHz Step Size
- Low power Consumption (5V 40mA)
- Function Compatible with Toshiba TD6380 and TD6381*
- Pin Compatible with SP5510[†]
- Low Radiation
- · Varactor Drive Amplifier Disable
- Charge Pump Disable
- Single Port 18/19 Bit Serial Data Entry
- Four Controllable Outputs
- ESD Protection[‡]
- † See notes on pin compatibility
- ‡ Normal ESD handling procedures should be observed

Applications

- Satellite TV when combined with SP4902 2.5GHz
 Prescaler
- Cable tuning systems
- VCRs

December 2002

Ordering Information

SP5026 DP 18-lead plastic package) SP5026S MP (16-lead miniature plastic package)

Issue 2

Description

DS5776

The SP5026 is a programming variant of the SP5510, allowing the design of one tuner with either 1²C bus or 3-wire bus format depending on which device is inserted. The SP5026, when used with a TV varicap tuner, forms a complete phase locked loop tuning system. The circuit consists of a divider-by-8 prescaler with its own preamplifier and at 5-bit programmable divider controlled by a serially-loaded data register. Four open-collector outputs, each independently programmable, are included. The device has two modes of operation, selected by the "mode select" input. In mode 1, the comparison frequency is 7.8125kHz and the programmable divider MSB is bypassed; mode 2 comparison frequency is 3.90625kHz. The comparison frequencies are both obtained from a 4MHz crystal controlled on-chip oscillator.

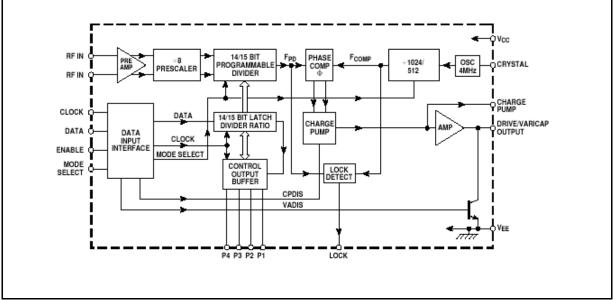


Figure 1 - Block Diagram

The comparator has a charge pump output with an amplifier stage around which feedback may be applied. Only one external transistor is required for varicap line driving.

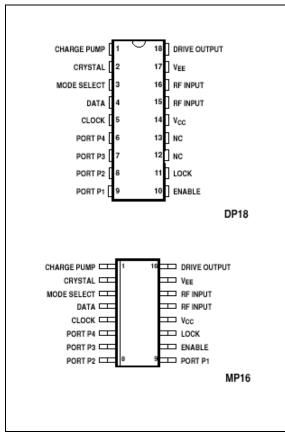


Figure 2 - Pin Connections - Top View

Functional Description

The SP5026 contains all the elements necessary, with the exception of reference crystal, loop filter and external high voltage transistor to control a voltage controlled local oscillator, so forming a PLL frequency synthesized source.

The system is controlled by a microprocessor via a standard data, clock enable three-wire bus. The data load normally consists of a single word, which contains the frequency and port information and is only transferred to the internal data shift register during an enable high period. The clock input is disabled during enable low periods. New data words are only accepted by the internal data buffers from the shift register on a negative transition of the enable, so giving improved fine tune facility for digital AFC etc.

The data sequence and timing follows the format shown in Figure 3.

The frequency is set by loading the programmable divider with the required 14/15 bit divisor word. The output of the divider, F_{PD} , is fed to the phase comparator where it is compared in phase and frequency domain to the internal generated comparison frequency, F_{COMP} .

The FC_{COMP} is obtained by dividing the output of an on-chip crystal controlled oscillator. The crystal frequency used is generally 4MHz, which gives an F_{COMP} of 3.90625kHz/7.815kHz and, when multiplied back up to the synthesized LO, gives a minimum step size of 31.25kHz/62.5kHz, respectively.

The programmable divider is preceded by an input RF preamplifier and high speed, low radiation prescaler. The preamplifier is arranged to be self oscillating, so giving excellent input sensitivity. The input sensitivity and impedance are shown in Figure 5 and Figure 7 respectively.

The SP5026 contains an improved lock detect circuit which generates a flag when the loop has attained lock. "Out of Lock" is indicated by high impedance state.

The SP5026 contains 4 general purpose open collector outputs, ports P1-P4, which are capable of sinking at least 10mA. These outputs are set by the remaining four bits within the normal data word.

Pin Compatibility

The SP5026 may by used in SP5510 applications which require 3-wire bus as opposed to 1²C bus data format. In SP5510 applications where the reference crystal is connected to pin 3, a small modification is required to ground the crystal as shown in Figure 4.

Appropriate connections to the mode select input (pin 3) must also be made.

In mode 1 (pin 3 "HIGH") the SP5026 is programming and step size compatible with the Toshiba TD6380, and in mode 2 (pin 3 "LOW") it is compatible with the TD6381.

Figure 3 - Data Format and Timing

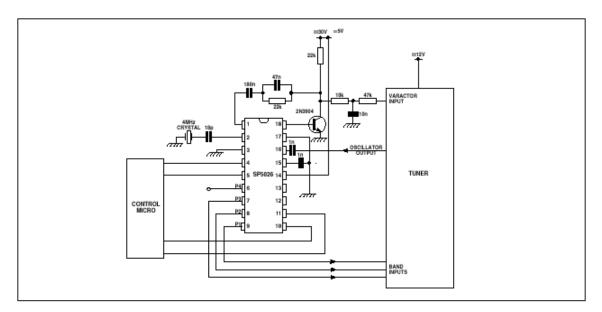


Figure 4 - Typical Application (F_{STEP} = 31.25kHz)

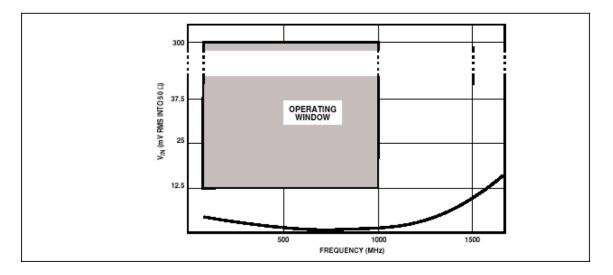


Figure 5 - Typical Input Sensitivity

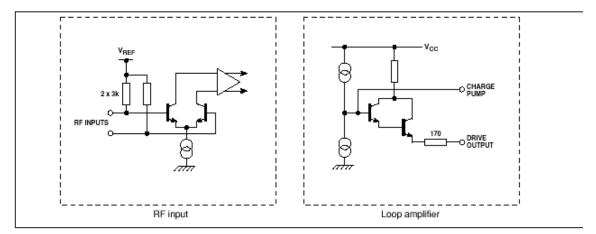
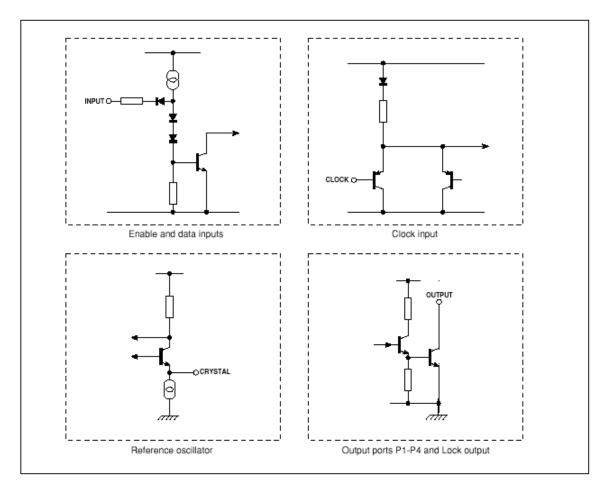



Figure 6 - Input/Output Interface Circuits

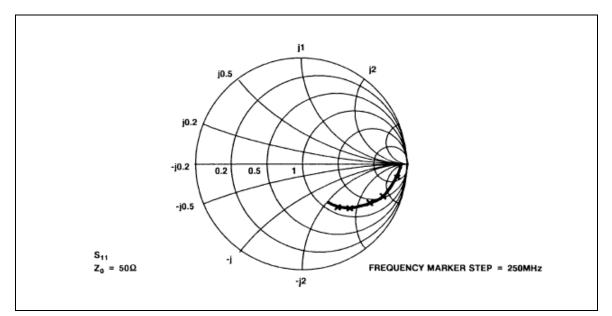


Figure 8 - Typical Input Impedance

Electrical Characteristics

Electrical Characteristics Table[†]

Characteristics	Symbol	Pin	Value			Units	Conditions	
			Min.	Тур.	Max.	Units	Conditions	
Supply current	I _{CC}	14		40	55	mA	VCC = 5V	
Prescaler input voltage		15,16	12.5		300	mV _{RMS}	50MHz to 1GHz sinewave	
Prescaler input impedance		15,16		50		Ω		
Input capacitance				2		pF		
High level input voltage		4,5,10	3		V _{CC}	V		
High level input voltage		3	4		V_{CC}	V		
Low level input voltage		3,4,5,10	0		0.7	V		
High level input current		4,5,10			1	μA	V _{IN} = 5.5V, V _{CC} = 5.5V	
Low level input current		5			5	μA	V _{IN} = 0V, V _{CC} = 5.5V	
Low level input current		4,10			250	μA	V _{IN} = 0V, V _{CC} = 5.5V	
High level input current		3			150	μA	V _{IN} = 5.5V, V _{CC} = 5.5V	
Low level input current		3			1	μA	V _{IN} = 0V, V _{CC} = 5.5V	

Electrical Characteristics Table[†] (continued)

Characteristics	Symbol	Pin	Value			11	O and distance	
			Min.	Тур.	Max.	Units	Conditions	
Clock input hysteresis		5		0.4		V		
Clock rate		5			0.5	MHz		
Data set up time	t ₂	4	300			ns	See Figure 3	
Data hold time	t ₃	4	600			ns	See Figure 3	
Enable set up time	t ₁	10	300			ns	See Figure 3	
Enable hold time	t ₅	10	600			ns	See Figure 3	
Clock-to-enable time	t ₄	10	300			ns	See Figure 4	
Charge pump output current		1		<u>+</u> 150		μA	V pin 1= 2.0V	
Charge pump output leakage current		1			<u>+</u> 5	nA	V pin 1= 2.0V	
Drift due to leakage					5	mV/s	At collector of external varicap drive transistor	
Charge pump drive output current		18	1			mA	V pin 18 = 0.7V	
Charge pump amplifier gain				6400			Pin 18 Current 100µA	
Oscillator temperature stability					2	ppm/ ^o C		
Oscillator stability with supply voltage					2	ppm/V		
Recommended crystal series resistance			10		200	Ω	"Parallel resonant" crystal	
Crystal oscillator drive level		2		40		mV p-p		
Crystal oscillator source impedance		2		-400		Ω	Nominal spread = <u>+</u> 15%	
Port leakage current		6-9			10	μA	V _{OUT} = 13.2V	
Lock leakage current		11			10	μA	V _{OUT} = V _{CC}	
Varactor Drive Amp Disable		10	-350			μA	V _{IN} = <0V	
Charge Pump Disable		4	-350			μA	V _{IN} = <0V	

[†] T_{amb}=-20⁰C to +80⁰C, V_{CC} = +4.5V to +5.5V. Reference frequency = 4MHz. Pin numbers refer to SP5026 (DP package). These characteristics are guaranteed by either test or design. They apply within the specified ambient temperature and supply voltage unless otherwise stated.

Absolute Maximum Ratings

Absolute Maximum Ratings Table[†]

D	Pin	Pin	, ,	Value	Units	Conditions
Parameter	SP5024	SP5024S	Min	Max		
Supply voltage	14	12	-0.3	-6	V	
Prescaler inputs	15,16	13,14		2.5	Vp-p	
Output ports	6-9	6-9	-0.3 -0.3	14 6	V V	Port in off state Port in on state
Total port output current	6-9	6-9		50	mA	
Prescaler DC offset	15,16	13,14	-0.3	V _{CC} +0.3	V	
Loop amplifier DC offset	1,18	1,16	-0.3	V _{CC} +0.3	V	
Crystal oscillator DC offset	2	2	-0.3	V _{CC} +0.3	V	
Data bus inputs	4,5,10	4,5,10	-0.7	V _{CC} +0.3	V	With V_{CC} applied
Storage temperature			-55	+125	0 ⁰ C	
Junction temperature				+150	⁰ C	
DP 18 thermal resistance, chip-to-ambient				78	⁰ C/W	
DP 18 thermal resistance, chip-to-case				24	⁰ C/W	
MP 16 thermal resistance, chip-to-ambient				111	⁰ C/W	
MP 16 thermal resistance, chip-to-case				41	⁰ C/W	
Power consumption at 5V				275	mW	All ports off.

 $\dagger\,$ All voltages are referred to V_EE = 0V.

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in an I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE