May 1999

_M140/LM340A/LM340/LM7800C Series

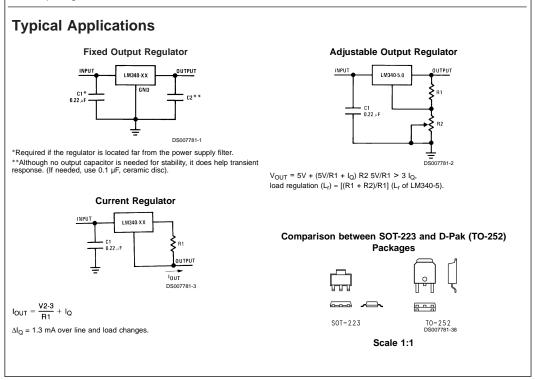
3-Terminal Positive Regulators

National Semiconductor

LM140/LM340A/LM340/LM7800C Series 3-Terminal Positive Regulators

General Description

The LM140/LM340A/LM340/LM7800C monolithic 3-terminal positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1.0A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.


Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

The 5V, 12V, and 15V regulator options are available in the steel TO-3 power package. The LM340A/LM340/LM7800C series is available in the TO-220 plastic power package, and the LM340-5.0 is available in the SOT-223 package, as well as the LM340-5.0 and LM340-12 in the surface-mount TO-263 package.

Features

- Complete specifications at 1A load
- Output voltage tolerances of ±2% at T_j = 25°C and ±4% over the temperature range (LM140A/LM340A)
- \blacksquare Line regulation of 0.01% of V_OUT/V of $\Delta V_{\rm IN}$ at 1A load (LM140A/LM340A)
- Load regulation of 0.3% of V_{OUT}/A (LM140A/LM340A)
- Internal thermal overload protection
- Internal short-circuit current limit
- Output transistor safe area protection
- P⁺ Product Enhancement tested

Device	e Output Voltages	Packages
LM140	5, 12, 15	ТО-3 (К)
LM340A/LI	M340 5, 12, 15	TO-3 (K), TO-220 (T), SOT-223 (MP), TO-263 (S) (5V and 12V only)
LM7800C	5, 8, 12 15	TO-220 (T)

^{© 1999} National Semiconductor Corporation DS007781

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 5)

DC Input Voltage		0
All Devices except LM7824/LM7824C	35V	Ter
LM7824/LM7824C	40V	L
Internal Power Dissipation (Note 2)	Internally Limited	L
Maximum Junction Temperature	150°C	L
Storage Temperature Range	–65°C to +150°C	

Lead Temperature (Soldering, 10 sec.)	
TO-3 Package (K)	300°C
TO-220 Package (T), TO-263 Package (S)	230°C
ESD Susceptibility (Note 3)	2 kV

Operating Conditions (Note 1)

Temperature Range (T _A) (Note 2)	
LM140A, LM140	–55°C to +125°C
LM340A, LM340, LM7805C,	
LM7812C, LM7815C, LM7808C	0°C to +125°C

LM340A Electrical Characteristics

•

 $I_{OUT}\text{= 1A, -55}^{\circ}\text{C} \leq \text{T}_{J}\text{\leq}+150^{\circ}\text{C} \text{ (LM140A), or } 0^{\circ}\text{C} \leq \text{T}_{J}\text{\leq}+125^{\circ}\text{C} \text{ (LM340A) unless otherwise specified (Note 4)}$

	Output Voltage Input Voltage (unless otherwise noted)				5V			12V		15V			·
Symbol	· ·	<u> </u>	,		10V			19V		23V			Units
	Parameter		Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	V
Vo	Output Voltage	T _J = 25°C		4.9	5	5.1	11.75	12	12.25	14.7	15	15.3	V
		$P_{D} \le 15W, 5 \text{ mA} \le I_{O} \le 1A$		4.8		5.2	11.5		12.5	14.4 15.6			V
		$V_{MIN} \le V_{IN} \le V_{IN}$	/ _{MAX}	(7.5	$\leq V_{\text{IN}}$	≤ 20)	(14.8	$\leq V_{\text{IN}}$	≤ 27)	(17.	$9 \le V_{IN}$	≤ 30)	V
ΔV_O	Line Regulation	I _O = 500 mA			10			18			22	mV	
		ΔV_{IN} T _J = 25°C			$\leq V_{\text{IN}}$	≤ 20)	(14.8	$\leq V_{\text{IN}}$	≤ 27)	(17.	$9 \le V_{IN}$	≤ 30)	V
					3	10		4	18		4	22	mV
		ΔV_{IN}		(7.5	$\leq V_{\text{IN}}$	≤ 20)	(14.5	$\leq V_{\text{IN}}$	≤ 27)	(17.	$5 \le V_{IN}$	≤ 30)	V
		T _J = 25°C				4			9			10	mV
		Over Temperature ΔV_{IN}			$12 \label{eq:VIN} (8 \leq V_{IN} \leq 12)$		30 $(16 \le V_{IN} \le 22)$		30 (20 \leq V _{IN} \leq 26)			mV	
				(8 :								V	
ΔV_O	Load Regulation	T _J = 25°C	$5 \text{ mA} \le \text{I}_{O} \le 1.5 \text{A}$		10	25		12	32		12	35	mV
			$250~\text{mA} \leq \text{I}_{\text{O}} \leq 750~\text{mA}$			15			19			21	mV
		Over Tempera	Over Temperature,			25			60			75	mV
		$5 \text{ mA} \leq I_O \leq 1 \text{A}$											
Ι _Q	Quiescent Current	T _J = 25°C				6			6			6	mA
		Over Tempera	ature			6.5			6.5			6.5	mA
ΔI_Q	Quiescent Current	5 mA ≤ I _O ≤ 1	$5 \text{ mA} \le I_O \le 1 \text{A}$			0.5			0.5			0.5	mA
Change	Change $T_J = 25^{\circ}C, I_O = 1A$				0.8			0.8			0.8	mA	
		$V_{MIN} \leq V_{IN} \leq V_{MAX}$		(7.5	$\leq V_{IN}$	≤ 20)	(14.8	$\leq V_{\text{IN}}$	≤ 27)	(17.	$9 \le V_{IN}$	≤ 30)	V
		I _O = 500 mA				0.8			0.8			0.8	mA
		$V_{MIN} \le V_{IN} \le V_{IN}$	/ _{MAX}	(8 ±	≤ V _{IN} ≤	≤ 25)	(15 :	≤ V _{IN} :	≤ 30)	(17.	$9 \le V_{IN}$	≤ 30)	V
V _N	Output Noise Voltage	T _A = 25°C, 10) Hz ≤ f ≤ 100 kHz		40			75			90		μV
ΔV _{IN}	Ripple Rejection	T _J = 25°C, f =	= 120 Hz, I _O = 1A	68	80		61	72		60	70		dB
ΔV _{OUT}		or f = 120 Hz	, I _O = 500 mA,	68			61			60			dB
Δl _Q Qu Ch V _N Ou _ΔV _{IN} Rij		Over Tempera	ature,										
		$V_{MIN} \le V_{IN} \le V_{IN}$	/ _{MAX}	(8 :	≤ V _{IN} ≤	≦ 18)	(15 :	≤ V _{IN} :	≤ 25)	(18.5	$\leq V_{IN} \leq$	≦ 28.5)	V
R _O	Dropout Voltage	T _J = 25°C, I _O	= 1A		2.0			2.0			2.0		V
	Output Resistance	f = 1 kHz			8			18			19		mΩ
	Short-Circuit Current	T _J = 25°C			2.1			1.5			1.2		A
	Peak Output Current	T _J = 25°C			2.4			2.4			2.4		A
	Average TC of Vo	Min, $T_J = 0^{\circ}C$, I _O = 5 mA		-0.6			-1.5			-1.8		mV/°C
V _{IN}	Input Voltage	T _J = 25°C											
	Required to Maintain			7.5			14.5			17.5			v
	Line Regulation												

	Output Voltage			5V			12V						
Symbol	Input Voltage (unless otherwise noted)				10V		19V		23V			Unit	
	Parameter		Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
Vo	Output Voltage	T _J = 25°C, 5 m	-	4.8	5	5.2	11.5	12	12.5	14.4	15	15.6	V
		P _D ≤ 15W, 5 m	-	4.75		5.25	11.4		12.6	14.25		15.75	V
		$V_{MIN} \le V_{IN} \le V_{IN}$		(8		,	(15.5			(18.5			V
ΔV _O	Line Regulation	I _O = 500 mA	-										m
				(/	≤ V _{IN} ≤		(14.5	≤ V _{IN}		(17.5	≤ V _{IN}		V m'
			-	(8	< \/		(15	< V		(18.5	< V		
		I ₀ ≤ 1A		(0	• IN -	50	(10)	- • IN		(10.0	• • IN	150	m
		0		(7.5	$\leq V_{IN}$	≤ 20)	(14.6	≤ V _{IN}		(17.7	≤ V _{IN}	≤ 30)	
			$-55^{\circ}C \le T_{J} \le +150^{\circ}C$			25			60			75	m
			ΔV _{IN}	(8	≤ V _{IN} s	≤ 12)	(16	≤ V _{IN}	≤ 22)	(20	≤ V _{IN} ≤	≦ 26)	1
ΔV _O	Load Regulation	T _J = 25°C	$5 \text{ mA} \le \text{I}_{\text{O}} \le 1.5\text{A}$		10	50		12	120		12	150	m
			$250 \text{ mA} \leq I_P \leq 750 \text{ mA}$			25			60			75	m
		$-55^{\circ}C \le T_{J} \le +$				50			120			150	m
		$5 \text{ mA} \le I_0 \le 1A$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
IQ	Quiescent Current	I _O ≤ 1A											m
Ale	Quiescent Current	5 mA ≤ I _O ≤ 1A											m
ΔiQ	Change	$T_{J} = 25^{\circ}C, I_{O} \le$											m
		-		(8	≤ V _{IN} ±		(15	≤ V _{IN}		(18.5	$\leq V_{IN}$		
	$\label{eq:relation} \begin{split} \frac{V_{MIN} \leq V_{IN} \leq V_{MAX}}{I_0 = 500 \text{ mA}, -55^\circ\text{C} \leq T_J \leq +150^\circ\text{C}} & (8 \leq V_{IN} \leq 20) & (15 \leq V_{IN} \leq 27) & (18, 10 \leq 100 \text{ m}) \\ \hline V_{MIN} \leq V_{IN} \leq V_{MAX} & (8 \leq V_{IN} \leq 25) & (15 \leq V_{IN} \leq 30) & (18, 10 \leq 100 \text{ m}) \\ \hline \text{Output Noise Voltage} & T_A = 25^\circ\text{C}, \ 10 \ \text{Hz} \leq f \leq 100 \ \text{kHz} & 40 & 75 & \text{cm} \\ \hline \text{Ripple Rejection} & I_0 \leq 1A, \ T_J = 25^\circ\text{C or} & 68 & 80 & 61 & 72 & 60 & \text{cm} \\ \hline \end{array}$			0.8	m								
		$V_{MIN} \le V_{IN} \le V_{IN}$	MAX	(8	≤ V _{IN} s	≤ 25)	(15	≤ V _{IN}	≤ 30)	(18.5	$\leq V_{\rm IN}$	≤ 30)	\
V _N	Output Noise Voltage	T _A = 25°C, 10	Hz ≤ f ≤ 100 kHz		40			75			90		μ
ΔV_{IN}	Ripple Rejection		$I_{O} \leq 1A, T_{J} = 25^{\circ}C \text{ or}$		80		61	72		60	70		d
		f = 120 Hz		68			61			60			d
					- 11	< 10)	45	- 11	< 05)	(40.5	- 11	(00.5)	Ι,
Re	Dropout Voltage	$V_{MIN} \le V_{IN} \le V_{I}$ $T_{,I} = 25^{\circ}C, I_{O} =$		(8		≤ 16)	(15)			(18.5		28.5)	
10	Output Resistance	f = 1 kHz											_ m
	Short-Circuit Current	T _{.1} = 25°C									1.2		A
	Peak Output Current	T _J = 25°C			2.4			2.4			2.4		A
	Average TC of V _{OUT}		0°C, I _O = 5 mA		-0.6			-1.5	5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV		
V _{IN}	Input Voltage	T _J = 25°C, I _O ≤	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\frac{\Delta V_{IN}}{\Delta V_{OUT}}$	Required to Maintain			7.5			14.6			17.7			\
	Line Regulation												

	≤ +125°C unless othe												
	Output Voltage Input Voltage (unless otherwise noted)			5V			12V			15V			
Symbol	Parameter		Conditions	Min	10V	Max	Min	19V	Max	Min	23V Typ	Max	Units
Vo	Output Voltage	T _{.1} = 25°C, 5 n		4.8	Тур 5	5.2	11.5	Typ 12	12.5	14.4	1 ур 15	15.6	V
۷O	Output Voltage	$P_{\rm D} \le 15W, 5 \text{ n}$	-	4.75	5	5.25	11.4	12	12.5	14.25	15	15.75	v
		$V_{MIN} \le V_{IN} \le V$	-		≤ V _{IN} ≤			≤ V _{IN} ≤			< V		v
ΔV _O	Line Regulation	$I_0 = 500 \text{ mA}$		(1.0	3	50	(4	120	$(17.5 \le V_{\rm IN} \le 30)$ 4 150			mV
1.0	Line regulation			(7 •	(7 ≤ V _{IN} ≤ 25)			≤ V _{IN} ≤		(17.5	≤ V _{IN}		V
			0°C ≤ T ₁ ≤ +125°C	(114 -	50	(114 -	120	(114	150	mV
			ΔVIN	(8 ≤ V _{IN} ≤ 20)			(15 ≤ V _{IN} ≤ 27)			(18.5 ≤ V _{IN} ≤ 30)			v
		I _O ≤ 1A	T _{.1} = 25°C			50			120	Ì		150	mV
		-	ΔV _{IN}	(7.5	≤ V _{IN} ≤	≤ 20)	(14.6	≤ V _{IN} ≤	27)	(17.7	$\leq V_{IN}$	≤ 30)	V
			$0^{\circ}C \le T_{J} \le +125^{\circ}C$		25			60			75		
			ΔV _{IN}	(8 :	≤ V _{IN} ≤	12)	(16 :	≤ V _{IN} ≤	22)	(20 :	≤ V _{IN} ≤	≦ 26)	V
ΔV_{O}	Load Regulation	$T_J = 25^{\circ}C$	$5 \text{ mA} \le \text{I}_{O} \le 1.5\text{A}$		10	50	12 120			12 150			mV
			$250~mA \leq I_O \leq 750~mA$			25			60			75	mV
		$5 \text{ mA} \le I_0 \le 1/2$	A, $0^{\circ}C \leq T_{J} \leq +125^{\circ}C$			50			120			150	mV
IQ	Quiescent Current	$I_O \le 1A$	T _J = 25°C			8			8			8	mA
			$0^{\circ}C \leq T_{J} \leq +125^{\circ}C$			8.5			8.5			8.5	mA
ΔI_Q	Quiescent Current	$5 \text{ mA} \le I_0 \le 1/2$				0.5			0.5			0.5	mA
	Change	$T_J = 25^{\circ}C, I_O \le 1A$		1.0 (7.5 \leq V _{IN} \leq 20) 1.0 (7.5 \leq V(1.0) \leq 25)			$ \begin{array}{c} 1.0 \\ (14.8 \le V_{\rm IN} \le 27) \\ 1.0 \\ (14.5 \le V_{\rm I} \le 20) \end{array} $			$ \begin{array}{c} 1.0 \\ (17.9 \le V_{\text{IN}} \le 30) \\ 1.0 \\ (17.9 \le 100 \\ 1.0 \\ $			mA
		$V_{MIN} \le V_{IN} \le V$	V										
		$I_{O} \le 500 \text{ mA}, 0$	mA										
		$V_{MIN} \le V_{IN} \le V$		(7 -	≤ V _{IN} ≤	25)	(14.5 ≤ V _{IN} ≤ 30)			$(17.5 \le V_{IN} \le 30)$			V
V _N	Output Noise Voltage	$I_A = 25^{\circ}C, 10$	$Hz \le f \le 100 \text{ kHz}$		40			75		54	90		μV
ΔV_{IN}	Ripple Rejection	6 - 400 11-	$I_0 \le 1A, T_J = 25^{\circ}C$	62	80		55	72		54	70		dB
ΔV _{OUT}		f = 120 Hz	or I _O ≤ 500 mA,	62			55			54			dB
		$V_{MIN} \le V_{IN} \le V$	$0^{\circ}C \le T_{J} \le +125^{\circ}C$	(8 :	≤ V _{IN} ≤	18)	(15 ±	≤ V _{IN} ≤	25)	(18	.5 ≤ V _I 28.5)	IN ≤	v
Ro	Dropout Voltage	T _J = 25°C, I _O :	= 1A		2.0			2.0			2.0		V
-	Output Resistance	f = 1 kHz		8			18			19			mΩ
	Short-Circuit Current	T _J = 25°C			2.1			1.5			1.2		A
	Peak Output Current	$T_J = 25^{\circ}C$			2.4			2.4			2.4		A
	Average TC of V _{OUT}		25°C, I _O = 5 mA		-0.6			-1.5			-1.8		mV/°
V _{IN}	Input Voltage	$T_{J} = 25^{\circ}C, I_{O}$	≤ 1A										
	Required to Maintain			7.5			14.6			17.7			V
	Line Regulation												1

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Conditions are conditions under which the device functions but the specifications might not be guaranteed. For guaranteed specifications and test conditions see the Electrical Characteristics.

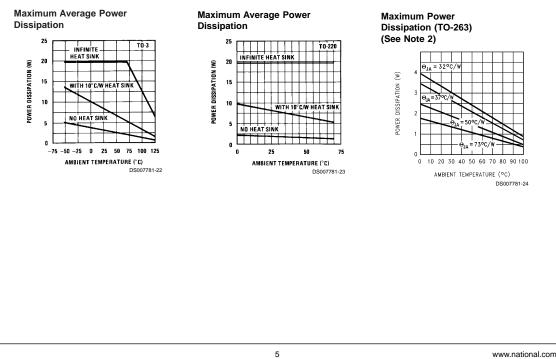
Note 2: The maximum allowable power dissipation at any ambient temperature is a function of the maximum junction temperature for operation ($T_{JMAX} = 125$ °C or 150°C), the junction-to-ambient thermal resistance (θ_{JA}), and the ambient temperature (T_A). $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above T_{JMAX} and the electrical specifications do not apply. If the die temperature rises above 150°C, the device will go into thermal shutdown. For the TO-3 package (K, KC), the junction-to-ambient thermal resistance (θ_{JA}) is 39°C/W. When using a heatsink, θ_{JA} is the sum of the 4°C/W junction-to-case thermal resistance (θ_{JC}) of the TO-3 package and the case-to-ambient thermal resistance of the heatsink. For the TO-220 package (T), θ_{JA} is 54°C/W and θ_{JC} is 4°C/W. If SOT-223 is used, the junction-to-ambient thermal resistance is 174°C/W and can be reduced by a heatsink (see Applications Hints on heatsinking).

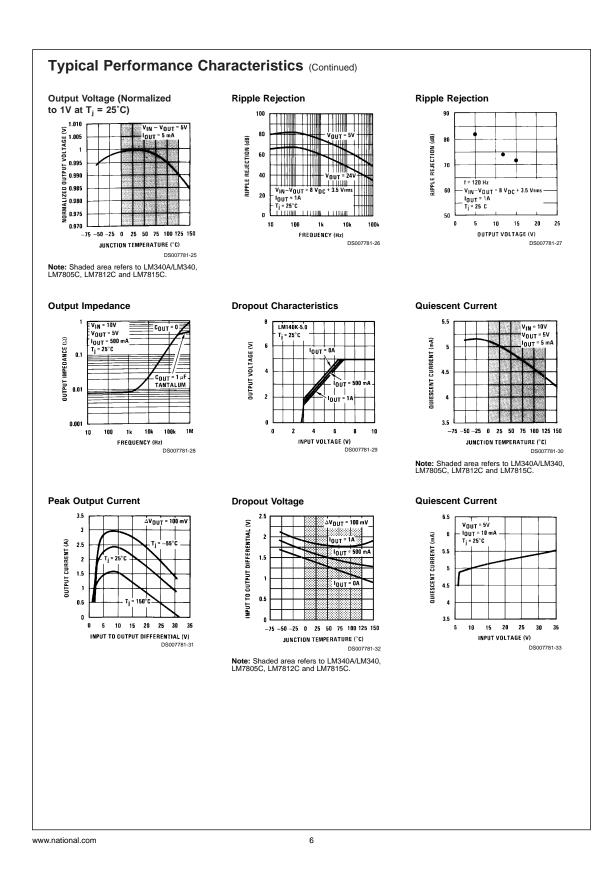
If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package: Using 0.5 square inches of copper area, θ_{JA} is 50°C/W; with 1 square inch of copper area, θ_{JA} is 37°C/W; and with 1.6 or more inches of copper area, θ_{JA} is 32°C/W.

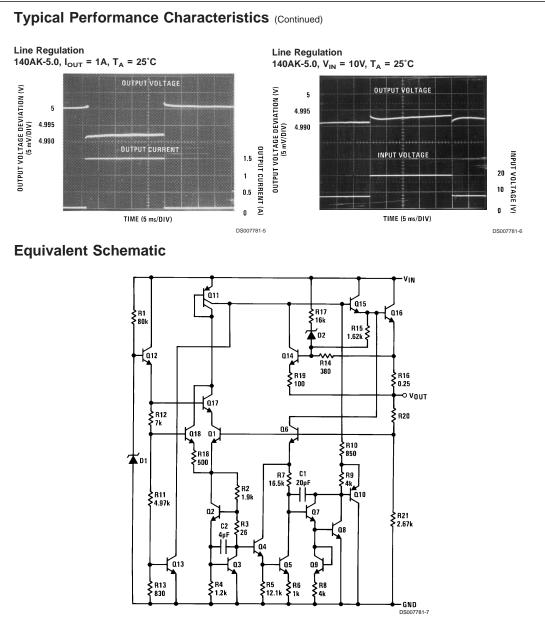
Note 3: ESD rating is based on the human body model, 100 pF discharged through 1.5 k\Omega.

Note 4: All characteristics are measured with a 0.22 μ F capacitor from input to ground and a 0.1 μ F capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w \leq 10 ms, duty cycle \leq 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

Note 5: A military RETS specification is available on request. At the time of printing, the military RETS specifications for the LM140AK-5.0/883, LM140AK-12/883, and LM140AK-15/883 complied with the min and max limits for the respective versions of the LM140A. At the time of printing, the military RETS specifications for the LM140K-5.0/883, LM140K-12/883, and LM140K-15/883 complied with the min and max limits for the respective versions of the LM140A. The LM140K-883, LM140AK-15/883, LM140AK-15/883, and LM140K-15/883, and LM140AK-15/883, and LM140K-15/883, and LM140K-1


www.national.com


.


Symbol	Paramet	er	Cond	itions (Note 6)		LM7808C			
					Min	Тур	Max	1	
Vo	Output Voltage		$T_J = 25^{\circ}C$			8.0	8.3	V	
ΔV_{O}	Line Regulation		T _J = 25°C	$10.5V \le V_1 \le 25V$		6.0	160	mV	
				$11.0V \le V_I \le 17V$		2.0	80]	
ΔV_{O}	Vo Load Regulation		T _J = 25°C	5.0 mA ≤ I _O ≤ 1.5A		12	160	mV	
				$\begin{array}{c} 250 \text{ mA} \leq \text{I}_{\text{O}} \leq 750 \\ \text{mA} \end{array}$		4.0	80]	
Vo	Output Voltage		$11.5V \le V_I \le 23V, 5.0 \text{ mA} \le I_O \le 1.0A, P \le 15W$				8.4	V	
Ι _Q	Quiescent Current		$T_J = 25^{\circ}C$		4.3	8.0	mA		
ΔI_Q	Quiescent	With Line	$11.5V \le V_I \le 25V$	$11.5V \le V_1 \le 25V$			1.0	mA	
	Current Change	With Load	$5.0 \text{ mA} \le I_O \le 1.0 \text{A}$				0.5]	
V _N	Noise		T _A = 25°C, 10 Hz ≤	f ≤ 100 kHz		52		μV	
$\Delta V_{I} / \Delta V_{O}$	Ripple Rejection		f = 120 Hz, I _O = 350	0 mA, T _J = 25°C	56	72		dB	
V _{DO}	Dropout Voltage		$I_{O} = 1.0A, T_{J} = 25^{\circ}C$			2.0		V	
Ro	Output Resistance		f = 1.0 kHz			16		mΩ	
l _{os}	Output Short Circuit Current $T_J = 25^{\circ}C, V_I = 35V$		1		0.45		A		
I _{PK}	Peak Output Currer	nt	T _J = 25°C			2.2		A	
$\Delta V_O / \Delta T$	Average Temperatu	ire	l _o = 5.0 mA			0.8		mV/°0	
	Coefficient of Outpu	ut Voltage							

Note 6: All characteristics are measured with a 0.22 μ F capacitor from input to ground and a 0.1 μ F capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w \leq 10 ms, duty cycle \leq 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

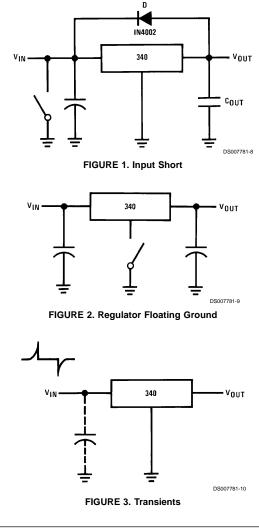
Typical Performance Characteristics

Application Hints

The LM340/LM78XX series is designed with thermal protection, output short-circuit protection and output transistor safe area protection. However, as with *any* IC regulator, it becomes necessary to take precautions to assure that the regulator is not inadvertently damaged. The following describes possible misapplications and methods to prevent damage to the regulator.

Shorting the Regulator Input: When using large capacitors at the output of these regulators, a protection diode connected input to output (*Figure 1*) may be required if the input is shorted to ground. Without the protection diode, an input

short will cause the input to rapidly approach ground potential, while the output remains near the initial V_{OUT}because of the stored charge in the large output capacitor. The capacitor will then discharge through a large internal input to output diode and parasitic transistors. If the energy released by the capacitor is large enough, this diode, low current metal and the regulator will be destroyed. The fast diode in *Figure 1* will shunt most of the capacitors discharge current around the regulator. Generally no protection diode is required for values of output capacitance \leq 10 µF.

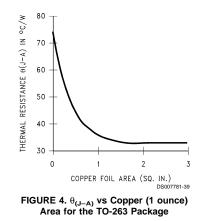

Raising the Output Voltage above the Input Voltage: Since the output of the device does not sink current, forcing

Application Hints (Continued)

the output high can cause damage to internal low current paths in a manner similar to that just described in the "Shorting the Regulator Input" section.

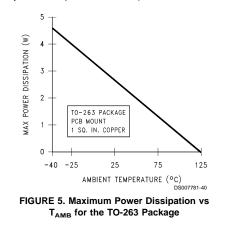
Regulator Floating Ground (*Figure 2*): When the ground pin alone becomes disconnected, the output approaches the unregulated input, causing possible damage to other circuits connected to V_{OUT} . If ground is reconnected with power "ON", damage may also occur to the regulator. This fault is most likely to occur when plugging in regulators or modules with on card regulators into powered up sockets. Power should be turned off first, thermal limit ceases operating, or ground should be connected first if power must be left on.

Transient Voltages: If transients exceed the maximum rated input voltage of the device, or reach more than 0.8V below ground and have sufficient energy, they will damage the regulator. The solution is to use a large input capacitor, a series input breakdown diode, a choke, a transient suppressor or a combination of these.

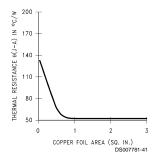

When a value for $\theta_{(H-A)}$ is found using the equation shown, a heatsink must be selected that has a value that is less than or equal to this number.

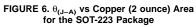
 $\theta_{(H-A)}$ is specified numerically by the heatsink manufacturer in this catalog, or shown in a curve that plots temperature rise vs power dissipation for the heatsink.

HEATSINKING TO-263 AND SOT-223 PACKAGE PARTS


Both the TO-263 ("S") and SOT-223 ("MP") packages use a copper plane on the PCB and the PCB itself as a heatsink. To optimize the heat sinking ability of the plane and PCB, solder the tab of the plane.

shows for the TO-263 the measured values of $\theta_{(J-A)}$ for different copper area sizes using a typical PCB with 1 ounce copper and no solder mask over the copper area used for heatsinking.


As shown in the figure, increasing the copper area beyond 1 square inch produces very little improvement. It should also be observed that the minimum value of $\theta_{(J-A)}$ for the TO-263 package mounted to a PCB is 32°C/W.

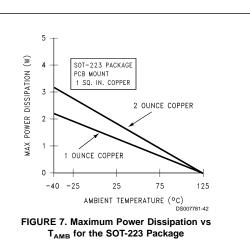

As a design aid, *Figure 5* shows the maximum allowable power dissipation compared to ambient temperature for the TO-263 device (assuming $\theta_{(J-A)}$ is 35°C/W and the maximum junction temperature is 125°C).

Application Hints (Continued)

Figures 6, 7 show the information for the SOT-223 package. Figure 6 assumes a $\theta_{(J-A)}$ of 74°C/W for 1 ounce copper and 51°C/W for 2 ounce copper and a maximum junction temperature of 125°C.

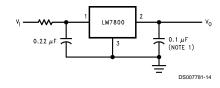
Fixed Output Regulator

LM7800

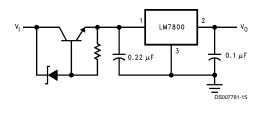

0.1 μF

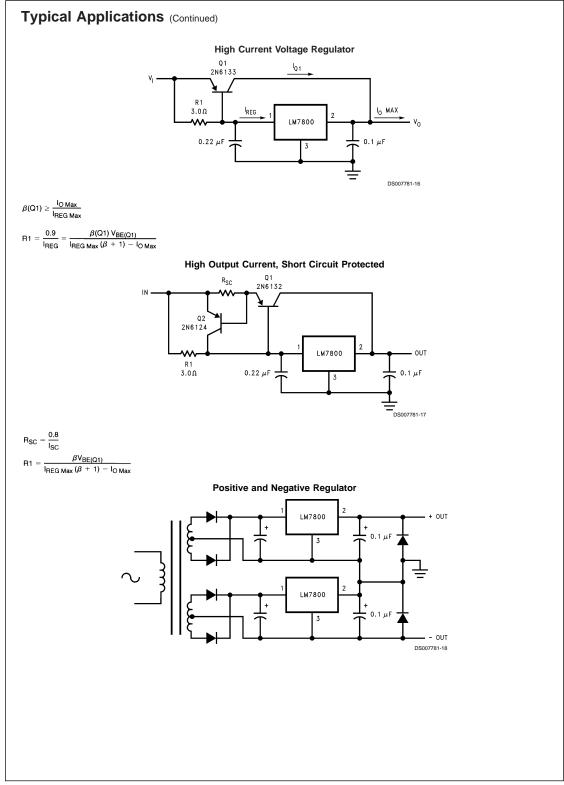
DS007781-13

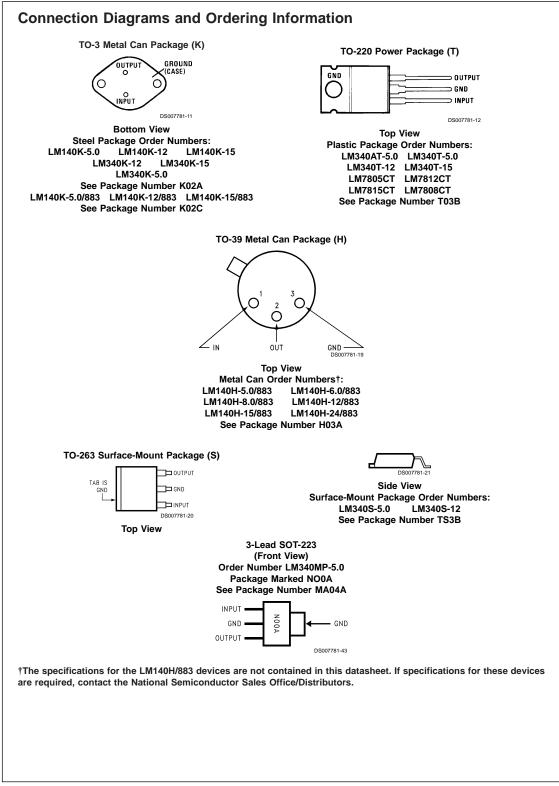
Typical Applications

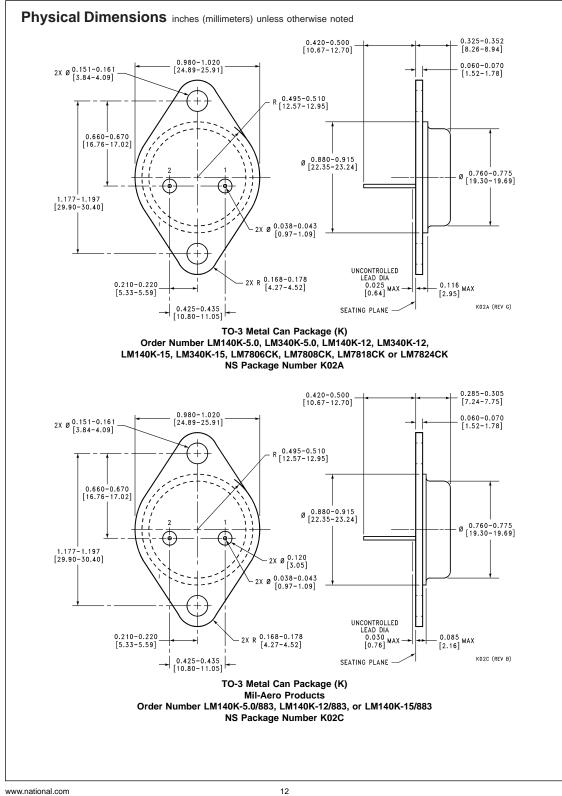

÷

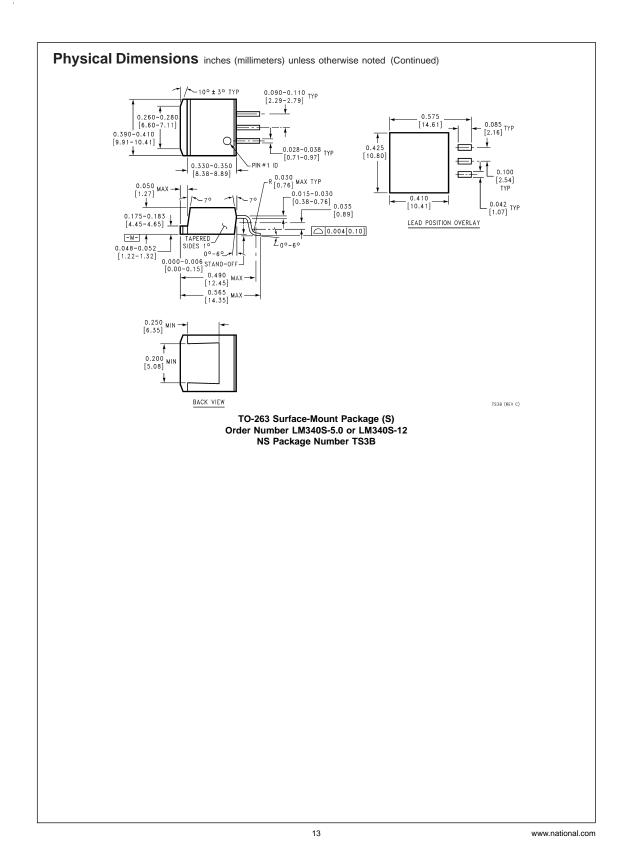
0.22 μF

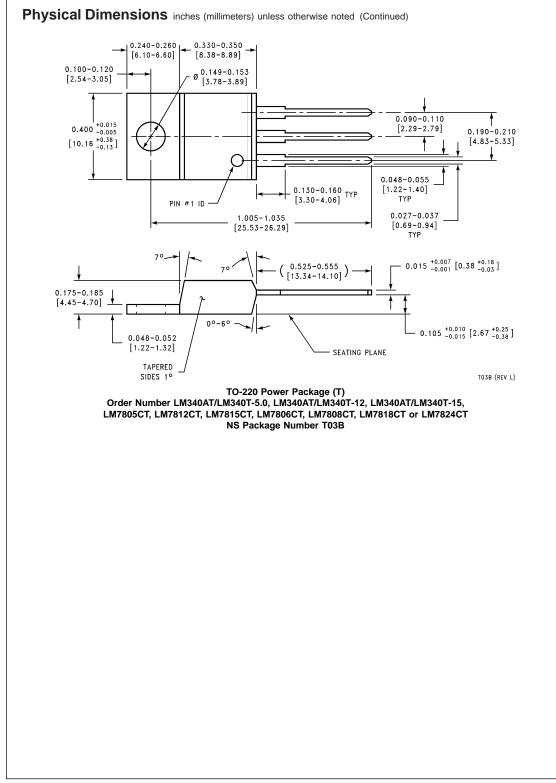


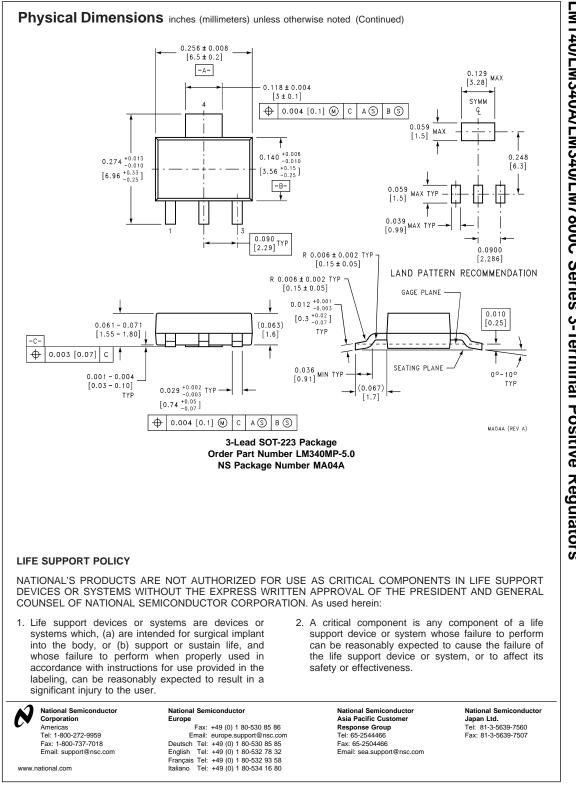

Please see AN-1028 for power enhancement techniques to be used with the SOT-223 package.






www.national.com


10


12

www.national.com

14

