

May 1999

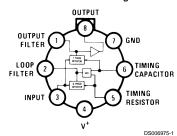
LM567/LM567C Tone Decoder

General Description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

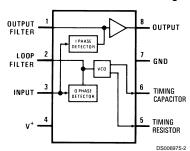
Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14%


- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

Applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders


Connection Diagrams

Metal Can Package

Top View
Order Number LM567H or LM567CH
See NS Package Number H08C

Dual-In-Line and Small Outline Packages

Top View
Order Number LM567CM
See NS Package Number M08A
Order Number LM567CN
See NS Package Number N08E

© 1999 National Semiconductor Corporation

DS006975

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 Operating Temperature Range

Soldering Information

Dual-In-Line Package

Soldering (10 sec.) 260°C

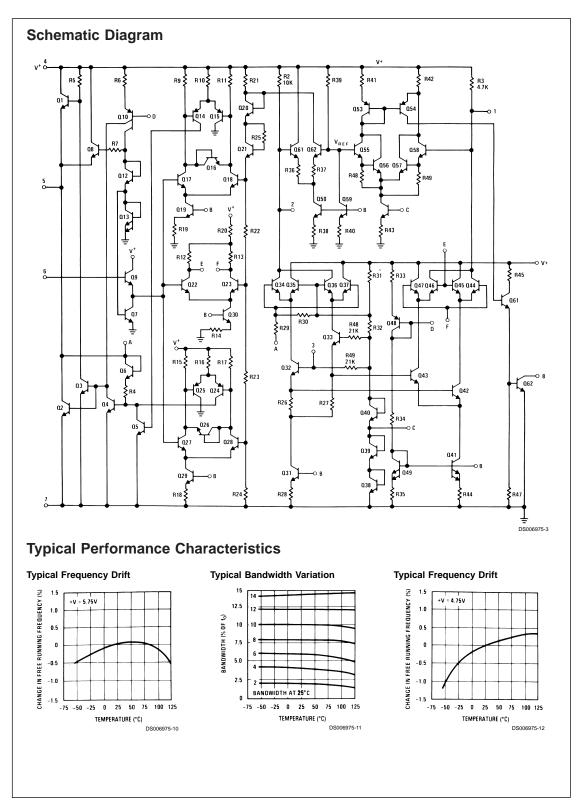
Small Outline Package

Vapor Phase (60 sec.) 215°C

Infrared (15 sec.) 220°C

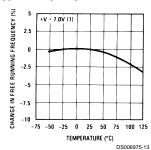
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

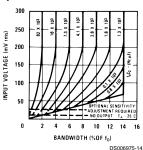

AC Test Circuit, $T_A = 25^{\circ}C$, $V^+ = 5V$

Parameters	Conditions	LM567			LM567C/LM567CM			11
		Min	Тур	Max	Min	Тур	Max	Units
Power Supply Voltage Range		4.75	5.0	9.0	4.75	5.0	9.0	V
Power Supply Current Quiescent	R _L = 20k		6	8		7	10	mA
Power Supply Current Activated	R _L = 20k		11	13		12	15	mA
Input Resistance		18	20		15	20		kΩ
Smallest Detectable Input Voltage	$I_{L} = 100 \text{ mA}, f_{i} = f_{o}$		20	25		20	25	mVrms
Largest No Output Input Voltage	$I_{\rm C} = 100 \text{ mA}, f_{\rm i} = f_{\rm o}$	10	15		10	15		mVrms
Largest Simultaneous Outband Signal to Inband Signal Ratio			6			6		dB
Minimum Input Signal to Wideband Noise Ratio	B _n = 140 kHz		-6			-6		dB
Largest Detection Bandwidth		12	14	16	10	14	18	% of f _o
Largest Detection Bandwidth Skew			1	2		2	3	% of f _o
Largest Detection Bandwidth Variation with Temperature			±0.1			±0.1		%/°C
Largest Detection Bandwidth Variation with Supply Voltage	4.75-6.75V		±1	±2		±1	±5	%V
Highest Center Frequency		100	500		100	500		kHz
Center Frequency Stability (4.75–5.75V)	0 < T _A < 70 -55 < T _A < +125		35 ± 60 35 ± 140			35 ± 60 35 ± 140		ppm/°C ppm/°C
Center Frequency Shift with Supply Voltage	4.75V-6.75V 4.75V-9V		0.5	1.0 2.0		0.4	2.0 2.0	%/V %/V
Fastest ON-OFF Cycling Rate			f _o /20			f _o /20		
Output Leakage Current	V ₈ = 15V		0.01	25		0.01	25	μΑ
Output Saturation Voltage	$e_i = 25 \text{ mV}, I_8 = 30 \text{ mA}$ $e_i = 25 \text{ mV}, I_8 = 100 \text{ mA}$		0.2 0.6	0.4 1.0		0.2 0.6	0.4 1.0	V
Output Fall Time	-		30			30		ns
Output Rise Time			150			150		ns

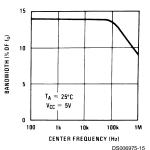
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

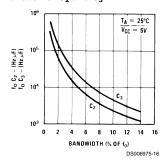

Note 2: The maximum junction temperature of the LM567 and LM567C is 150°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 110°C/W, junction to ambient. For the Small Outline package, the device must be derated based on a thermal resistance of 160°C/W, junction to ambient.

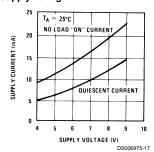
Note 3: Refer to RETS567X drawing for specifications of military LM567H version.

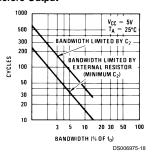


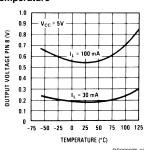
Typical Performance Characteristics (Continued)

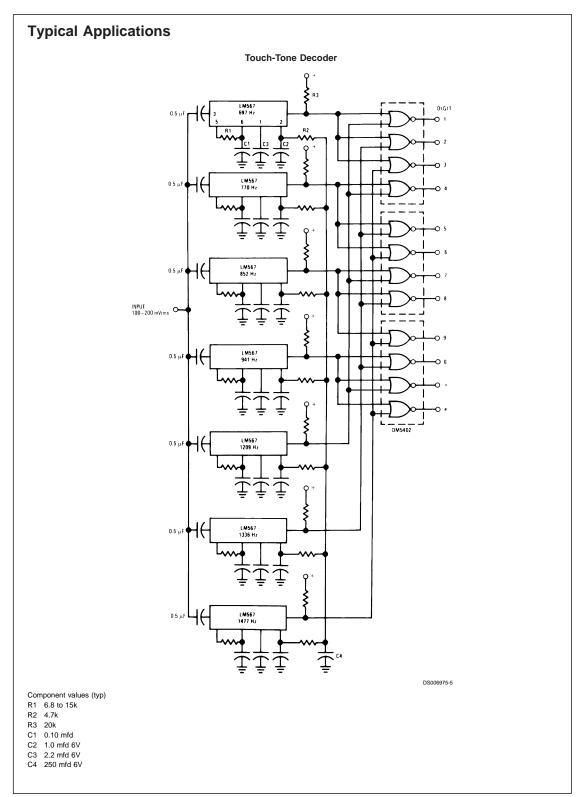

Typical Frequency Drift


Bandwidth vs Input Signal Amplitude

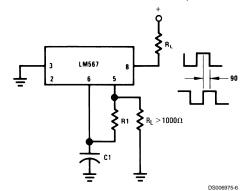

Largest Detection Bandwidth

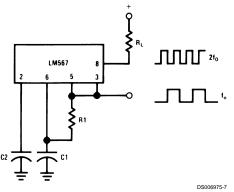

Detection Bandwidth as a Function of ${\bf C_2}$ and ${\bf C_3}$


Typical Supply Current vs Supply Voltage



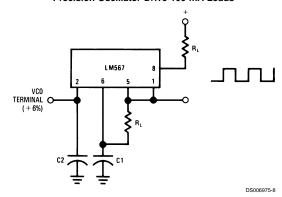
Greatest Number of Cycles Before Output


Typical Output Voltage vs Temperature

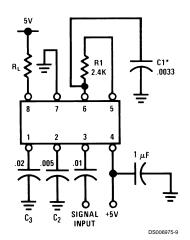


Typical Applications (Continued)

Oscillator with Quadrature Output



Oscillator with Double Frequency Output



Connect Pin 3 to 2.8V to Invert Output

Precision Oscillator Drive 100 mA Loads

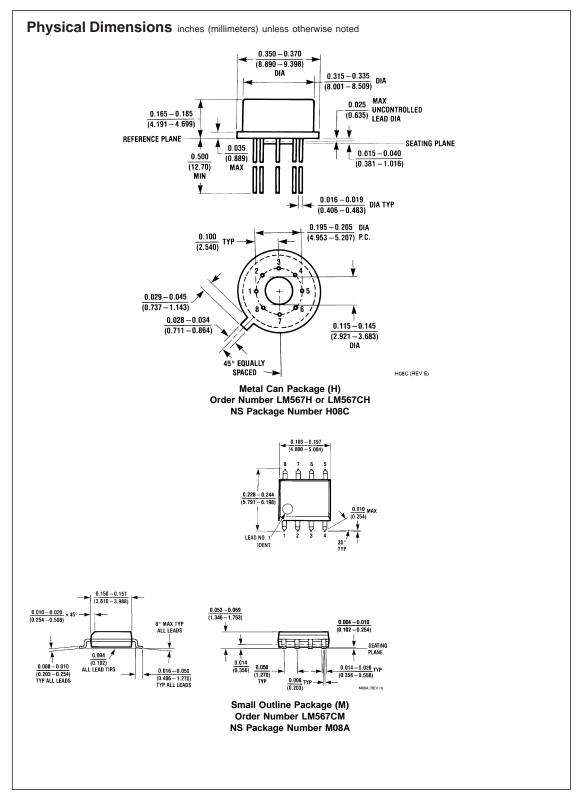
AC Test Circuit

 f_i = 100 kHz + 5V *Note: Adjust for f_o = 100 kHz.

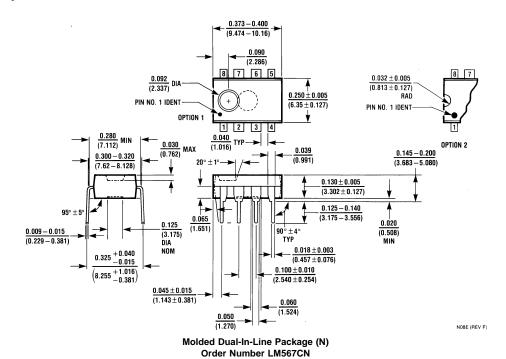
Applications Information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$f_o \cong \frac{1}{1.1 R_1 C_1}$$


The bandwidth of the filter may be found from the approximation

BW = 1070
$$\sqrt{\frac{V_i}{f_o C_2}}$$
 in % of f_o


Where:

 V_i = Input voltage (volts rms), $V_i \le 200 \text{ mV}$

C₂ = Capacitance at Pin 2 (µF)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Europe Fax: +49 (0) 1 80-530 85 86

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.