64K X28HC64 8K x 8 Bit # 5 Volt, Byte Alterable E²PROM #### **FEATURES** - 55ns Access Time - Simple Byte and Page Write - —Single 5V Supply - —No External High Voltages or V_{PP} Control Circuits - -Self-Timed - -No Erase Before Write - -No Complex Programming Algorithms - -No Overerase Problem - Low Power CMOS - -40 mA Active Current Max. - -200 μA Standby Current Max. - Fast Write Cycle Times - -64 Byte Page Write Operation - -Byte or Page Write Cycle: 2ms Typical - -Complete Memory Rewrite: 0.25 sec. Typical - -Effective Byte Write Cycle Time: 32µs Typical - Software Data Protection - End of Write Detection - —DATA Polling - —Toggle Bit High Reliability Endurance: 100,000 CyclesData Retention: 100 Years JEDEC Approved Byte-Wide Pinout #### **DESCRIPTION** The X28HC64 is an 8K x 8 E²PROM, fabricated with Xicor's proprietary, high performance, floating gate CMOS technology. Like all Xicor programmable non-volatile memories the X28HC64 is a 5V only device. The X28HC64 features the JEDEC approved pinout for byte-wide memories, compatible with industry standard RAMs. The X28HC64 supports a 64-byte page write operation, effectively providing a 32μ s/byte write cycle and enabling the entire memory to be typically written in 0.25 seconds. The X28HC64 also features \overline{DATA} Polling and Toggle Bit Polling, two methods providing early end of write detection. In addition, the X28HC64 includes a user-optional software data protection mode that further enhances Xicor's hardware write protect capability. Xicor E²PROMs are designed and tested for applications requiring extended endurance. Inherent data retention is greater than 100 years. #### PIN CONFIGURATIONS 32 A₃ A₄ \bigcirc 30 A5 29 A6 29 A6 28 A7 27 A12 26 NC 25 NC 24 VCC 23 NC PLASTIC DIP FLAT PACK **PLCC CERDIP** V CC Vss 🗀 X28HC64 1/03 1/0₄ H 1/0₅ H 1/0₆ H 1/0₇ H 22 WE 21 NC 20 A₈ 19 A₉ ⊐ v_{cc} NC [28 32 31 30 27 □ WE 29 □A₈ $A_6 \square$ 26 ☐ NC A₅ □ 28 $\Box A_9$ □ A₈ A₆ [□A₁₁ $A_4 \square$ 27 \square A₉ 24 26 □ NC $A_3 \square$ 3857 ILL F22 X28HC64 **PGA** 25 OE 6 23 A₁₁ 1/O₂ □A₁₀ 10 24 22 □ Œ A₃ □ X28HC64 □ CE $A_0 \square$ ⊐ A₁₀ 21 8 NC□ 12 □ I/O₇ 20 🗀 Œ 1/O₄ 1/O₇ 9 Vss 1/00 🖂 1/06 19 🗀 1/07 10 15 16 17 18 19 $A_0 \square$ CE 18 1/06 (9)^A1 (8)^A2 (21)^A10 I/O₀ 🗀 11 (20) 1/0₁ 1/0₂ 1/0₃ NC 0 ŌE 22 □ I/O₅ 1/0₁ □ 12 17 23^A11 □ 1/04 13 1/02 □ 16 3857 FHD F03 Vss 14 15 □ I/O₃ (25)^A8 3857 FHD F02 1 WE NC (26) (27) 3857 FHD F04 BOTTOM VIEW 1 #### **PIN DESCRIPTIONS** # Addresses (A₀-A₁₂) The Address inputs select an 8-bit memory location during a read or write operation. ## Chip Enable (CE) The Chip Enable input must be LOW to enable all read/write operations. When $\overline{\text{CE}}$ is HIGH, power consumption is reduced. # Output Enable (OE) The Output Enable input controls the data output buffers and is used to initiate read operations. # Data In/Data Out (I/O₀-I/O₇) Data is written to or read from the X28HC64 through the I/O pins. # Write Enable (WE) The Write Enable input controls the writing of data to the X28HC64. #### **PIN NAMES** | Symbol | Description | |------------------------------------|-------------------| | A ₀ -A ₁₂ | Address Inputs | | I/O ₀ –I/O ₇ | Data Input/Output | | WE | Write Enable | | CE | Chip Enable | | ŌĒ | Output Enable | | V _{CC} | +5V | | V _{SS} | Ground | | NC | No Connect | 3857 PGM T01 ### **FUNCTIONAL DIAGRAM**