LM120QML Series 3-Terminal Negative Regulators

Literature Number: SNVS368

Series 3-Terminal Negative Regulators

General Description

The LM120 series are three-terminal negative regulators with a fixed output voltage of -5V, -12V, and -15V, and up to 1.5A load current capability. Where other voltages are required, the LM137 and LM137HV series provide an output voltage range of -1.2V to -47V.

The LM120 needs only one external component-a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

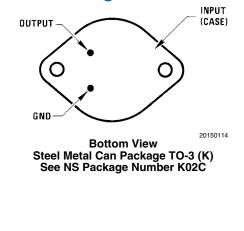
Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

Although primarily intended for fixed output voltage applications, the LM120 Series may be programmed for higher output voltages with a simple resistive divider. The low quiescent drain current of the devices allows this technique to be used with good regulation.

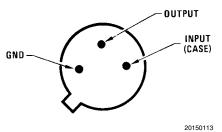
Features

- Preset output voltage error less than ±3%
- Preset current limit
- Internal thermal shutdown
- . Operates with input-output voltage differential down to 1V
- Excellent ripple rejection
- Low temperature drift
- Easily adjustable to higher output voltage

LM120 Series Packages and Power Capability

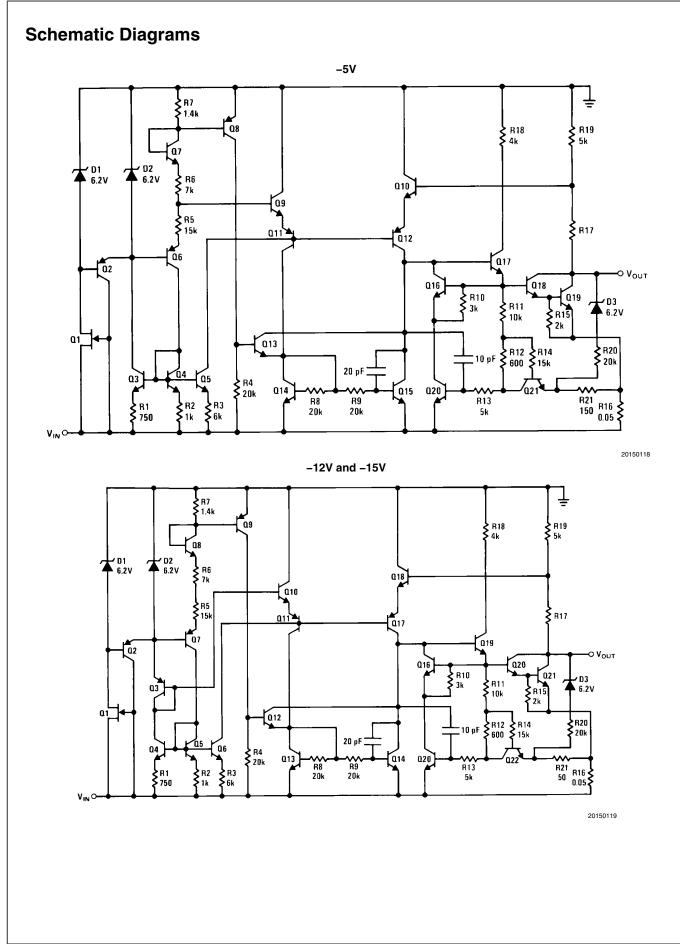

Package	Rated Power Dissipation	Design Load Current
TO-3 (K)	20W	1.5A
TO-39 (H)	2W	0.5A

Ordering Information


NS Part Number	SMD Part Number	NS Package Number	Package Description
LM120H-5.0/883		H03A	3LD T0–39 Metal Can
LM120H-12/883		H03A	3LD T0–39 Metal Can
LM120H-15/883		H03A	3LD T0–39 Metal Can
LM120K-12/883		K02C	2LD T0–3 Metal Can
LM120K-15/883		K02C	2LD T0–3 Metal Can
LM120KG-5 MD8		(Note 1)	Bare Die
LM120KG-12 MD8		(Note 1)	Bare Die
LM120KG-15 MD8		(Note 1)	Bare Die

Note 1: FOR ADDITIONAL DIE INFORMATION, PLEASE VISIT THE HI REL WEB SITE AT: www.national.com/analog/space/level_die

Connection Diagrams



201501

Bottom View Metal Can Package TO-39 (H) See NS Package Number H03A M120QML Series 3-Terminal Negative Regulators

© 2010 National Semiconductor Corporation

Absolute Maximum Ratings (Note 2)

Power Dissipation	LM120-5	LM120-12 Internally Limited	LM120-15		
Input Voltage	–25V	-35V	-40V		
Input-Output Voltage Differential	25V	30V	30V		
Junction Temperatures		150°C			
Storage Temperature Range		$-65^{\circ}C \le T_A \le +150^{\circ}C$			
Operating Temperature Range	–55°C ≤ T₄ ≤ +125°C				
Lead Temperature (Soldering, 10 sec.) Thermal Resistance	300°C				
θ_{JA}					
H-Pkg (Still Air @ 0.5W)		191°C/W			
H-Pkg (500LF/Min Air flow @ 0.5W)		70°C/W			
K-Pkg (Still Air @ 0.5W)		35°C/W			
K-Pkg (500LF/Min Air flow @ 0.5W)		TBD			
θ _{JC}					
H-Pkg		29°C/W			
K-Pkg	3°C/W				
ESD Tolerance (<i>Note 4</i>)	4000V				

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

LM120H-5.0

DC Parameters

The following conditions apply, unless otherwise specified. $~V^{}_{IN}$ = –10V, $I^{}_{L}$ = 5mA

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
1	Quiescent Current	V _{IN} = -7V			2.0	mA	1, 2, 3
l _Q	Quiescent Current	V _{IN} = -25V			2.0	mA	1, 2, 3
		EmA S I S O E A		-0.4	0.4	mA	1
A1	Quiescent Current Change	is contrast to the second sec		-0.5	0.5	mA	2, 3
Δl _Q	Quescent Current Change			-0.4	0.4	mA	1
		$-25V \le V_{IN} \le -7V$		-0.5	0.5	mA	2, 3
				-5.1	-4.9	V	1
		V _{IN} = -7.5V		-5.2	-4.8	V	1, 2, 3
V _{OUT}	Output Voltage	$V_{IN} = -7.5V, I_{L} = 0.5A$		-5.2	-4.8	V	1, 2, 3
		V _{IN} = -25V		-5.2	-4.8	V	1, 2, 3
		$V_{IN} = -25V, I_{L} = 100mA$		-5.2	-4.8	V	1, 2, 3
D	Line Degulation			-25	25	mV	1
R _{Line}	Line Regulation	$-25V \le V_{IN} \le -7V$		-50	50	mV	2, 3
B	Load Regulation	$E_{m} \wedge \leq 1 \leq 0 \leq \Lambda$		-50	50	mV	1
R _{Load}		$5mA \le I_L \le 0.5A$		-100	100	mV	2, 3
I _{os}	Short Circuit Current	V _{IN} = -25V		0.1	1.5	А	1
RR	Ripple Rejection	f = 120Hz, I _L = 125mA, e _I = 1V _{RMS}		54		dB	4

LM120K-5.0

DC Parameters

The following conditions apply, unless otherwise specified. $~V_{IN}=-10V,\,I_{L}=5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
	Quiescent Queent	V _{IN} = -7V			2.0	mA	1, 2, 3
Ι _Q	Quiescent Current	V _{IN} = -25V			2.0	mA	1, 2, 3
		EmA < L < 1 EA		-0.4	0.4	mA	1
A I	Quiescent Current Change	$5mA \le I_L \le 1.5A$		-0.5	0.5	mA	2, 3
Δl _Q	Quiescent Current Change			-0.4	0.4	mA	1
		$-25V \le V_{IN} \le -7V$		-0.5	0.5	mA	2, 3
V _{OUT} Output V				-5.1	-4.9	V	1
		V _{IN} = -7.5V		-5.2	-4.8	V	1, 2, 3
	Output Voltage	V _{IN} = -7.5V, I _L = 1.5A		-5.2	-4.8	V	1, 2, 3
		V _{IN} = -25V		-5.2	-4.8	V	1, 2, 3
		$V_{IN} = -25V, I_{L} = 1A$		-5.2	-4.8	V	1, 2, 3
D	Line Degulation			-25	25	mV	1
R _{Line}	Line Regulation	$-25V \le V_{IN} \le -7V$		-50	50	mV	2, 3
D	Load Pagulation	EmA S L S 1 EA		-75	75	mV	1
R _{Load}	Load Regulation	$5mA \le I_L \le 1.5A$		-100	100	mV	2, 3
I _{os}	Short Circuit Current	V _{IN} = -25V		0.4	3.0	А	1
RR	Ripple Rejection	f = 120Hz, I _L = 350mA, e _I = 1V _{RMS}		54		dB	4

www.national.com

4

LM120H-12

DC Parameters

The following conditions apply, unless otherwise specified. $V_{IN} = -17V$, $I_{L} = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
1	Quiescent Current	$V_{IN} = -14V$			4.0	mA	1, 2, 3
l _Q	Quiescent Current	V _{IN} = -32V			4.0	mA	1, 2, 3
		V _{IN} = -17V,			0.4	mA	1
A I	Quieceent Current Change	$5mA \le I_L \le 200mA$			0.5	mA	2, 3
ΔI _Q	Quiescent Current Change	201/51/5141			0.4	mA	1
		$-32V \le V_{\rm IN} \le -14V$			0.5	mA	2, 3
R _{Load}	Load Regulation	$V_{IN} = -17V, 5mA \le I_L \le 200mA$		-25	25	mV	1
' 'Load				-50	50		2, 3
R _{Line}	Line Regulation	$-32V \le V_{IN} \le -14V$		-10	10	mV	1
Line		$-52^{\circ} = ^{\circ} V_{\rm IN} = -14^{\circ} V_{\rm IN}$		-20	20	mV	2, 3
l _{os}	Short Circuit Current	V _{IN} = -32V		0.1	1.5	А	1
		V _{IN} = -17V		-12.3	-11.7	V	1
		V _{IN} = -32V		-12.5	-11.5	V	1, 2, 3
V _{OUT}	Output Voltage	V _{IN} = -32V, I _L = 100mA		-12.5	-11.5	V	1, 2, 3
		V _{IN} = -14.5V		-12.5	-11.5	V	1, 2, 3
		V _{IN} = -14.5V, I _L = 200mA		-12.5	-11.5	V	1, 2, 3
RR	Ripple Rejection	f = 120Hz, I _L = 125mA, e _i = 1V _{RMS}		56		dB	4

LM120K-12

DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified. $V_{IN} = -17V$, $I_{L} = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
	Quiescent Current	V _{IN} = -14V			4.0	mA	1, 2, 3
l _Q	Quiescent Current	V _{IN} = -32V			4.0	mA	1, 2, 3
		$V = 17V 5mA \leq I \leq 1A$			0.4	mA	1
ΔΙ	Quiescent Current Change	$V_{IN} = -17V, 5mA \le I_L \le 1A$			0.5	mA	2, 3
ΔI _Q	Quescent Ourient Onlinge	$-32V \le V_{IN} \le -14V$			0.4	mA	1
		$-32V \leq V_{\rm IN} \leq -14V$			0.5	mA	2, 3
R _{Load}	Load Regulation	$V_{IN} = -17V, 5mA \le I_L \le 1A$		-80	80	mV	1, 2, 3
B	Line Regulation	-32V ≤ V _{IN} ≤ -14V		-10	10	mV	1
R _{Line}		-32 V 3 V _{IN} 3 - 14 V		-20	20	mV	2, 3
I _{OS}	Short Circuit Current	V _{IN} = -32V		0.4	3.0	А	1
		V _{IN} = -17V		-12.3	-11.7	V	1
		V _{IN} = -32V		-12.5	-11.5	V	1, 2, 3
V _{OUT}	Output Voltage	$V_{IN} = -32V, I_{L} = 1A$		-12.5	-11.5	V	1, 2, 3
		V _{IN} = -14.5V		-12.5	-11.5	V	1, 2, 3
		V _{IN} = -14.5V, I _L = 1A		-12.5	-11.5	V	1, 2, 3
RR	Ripple Rejection	f = 120Hz, I _L = 350mA, e _i = 1V _{RMS}		56		dB	4

LM120H-15

DC Parameters

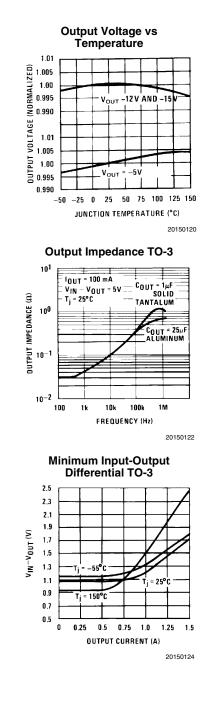
The following conditions apply to all the following parameters, unless otherwise specified. $V_{IN} = 20V$, $I_{L} = 5mA$

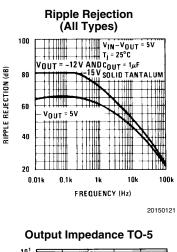
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
1	Quiescent Current	V _{IN} = -17V			4.0	mA	1, 2, 3
l _Q	Quiescent Current	V _{IN} = -35V			4.0	mA	1, 2, 3
		V _{IN} = -17V,			0.4	mA	1
A1	Quiescent Current Change	$5mA \le I_L \le 200mA$			0.5	mA	2, 3
ΔI _Q	Al _Q Quiescent Current Change	251/51/51/517/			0.4	mA	1
		$-35V \le V_{\rm IN} \le -17V$			0.5	mA	2, 3
R	Load Regulation	V _{IN} = -20V,		-25	25	mV	1
R _{Load}		$5mA \leq I_L \leq 200mA$		-50	50	mV	2, 3
R _{Line}	Line Regulation	251/51/51/517/		-10	10	mV	1
Line		$-35V \le V_{IN} \le -17V$		-20	20	mV	2, 3
I _{OS}	Short Circuit Current	V _{IN} = -35V		0.1	1.5	Α	1
		V _{IN} = -20V		-15.3	-14.7	V	1
		V _{IN} = -35V		-15.5	-14.5	V	1, 2, 3
V _{OUT}	Output Voltage	V _{IN} = -35V, I _L = 100mA		-15.5	-14.5	V	1, 2, 3
		V _{IN} = -17.5V		-15.5	-14.5	V	1, 2, 3
		V _{IN} = -17.5V, I _L = 200mA		-15.5	-14.5	V	1, 2, 3
RR	Ripple Rejection	f = 120Hz, I _L = 125mA, e _i = 1V _{BMS}		56		dB	4

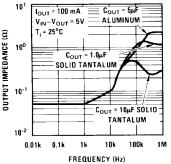
LM120K-15

DC Parameters

The following conditions apply, unless otherwise specified. $V_{IN} = 20V$, $I_{L} = 5mA$

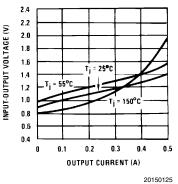

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
1	Outers and Ourmant	V _{IN} = -17V			4.0	mA	1, 2, 3
l _Q	Quiescent Current	V _{IN} = -35V			4.0	mA	1, 2, 3
		V _{IN} = -17V,			0.4	mA	1
A 1	Ourissont Current Change	$5mA \le I_L \le 1A$			0.5	mA	2, 3
Δl _Q	Quiescent Current Change				0.4	mA	1
		-35V ≤ V _{IN} ≤ -17V			0.5	mA	2, 3
D	Lood Degulation	V _{IN} = -20V,		-80	80	mV	1, 2, 3
R _{Load}	Load Regulation	$5mA \le I_L \le 1A$					
D	Line Degulation			-10	10	mV	1
R _{Line}	Line Regulation	-35V ≤ V _{IN} ≤ -17V		-20	20	mV	2, 3
l _{os}	Short Circuit Current	V _{IN} = -35V		0.4	3.0	А	1
		V _{IN} = -20V		-15.3	-14.7	V	1
		V _{IN} = -35V		-15.5	-14.5	V	1, 2, 3
V _{OUT}	Output Voltage	$V_{IN} = -35V, I_{L} = 1A$		-15.5	-14.5	V	1, 2, 3
		V _{IN} = -17.5V		-15.5	-14.5	V	1, 2, 3
		V _{IN} = -17.5V, I _L = 1.5A		-15.5	-14.5	V	1, 2, 3
ΔV _O / Δt	Long Term Stability		(<i>Note 3</i>)		150	mV	1
RR	Ripple Rejection	f = 120Hz, I _L = 350mA, e _I = 1V _{BMS}		56		dB	4

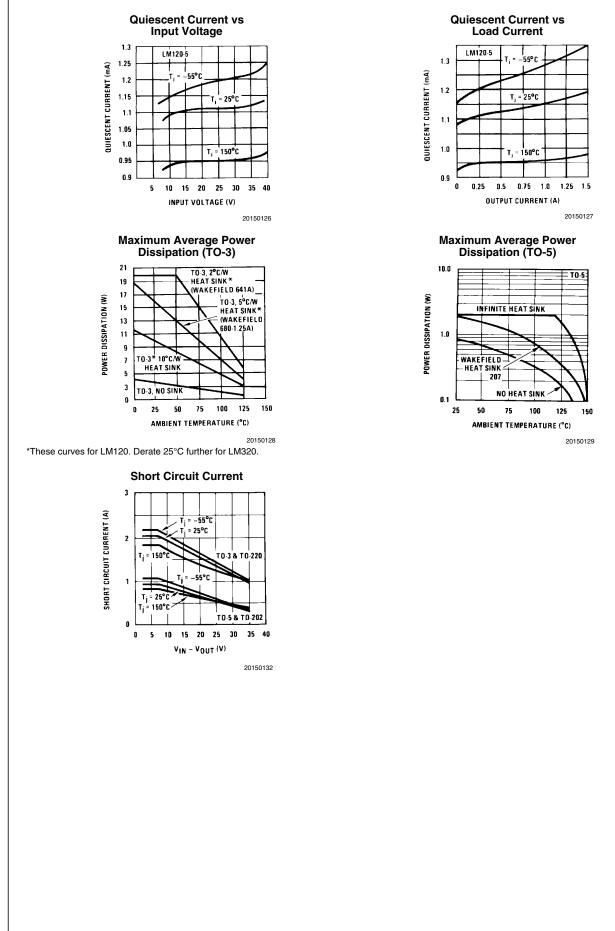

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

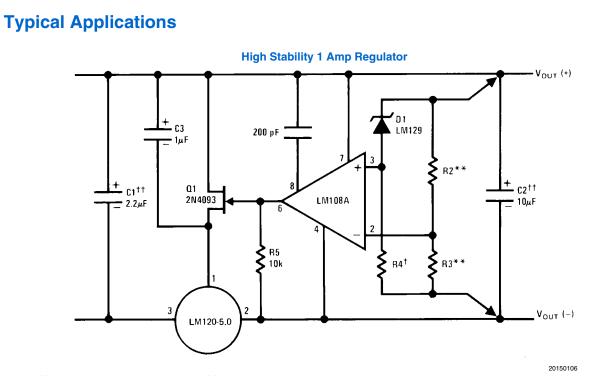

Note 3: Guaranteed parameter, not tested

Note 4: Human body model, 1.5 k Ω in seriew with 100 pF.

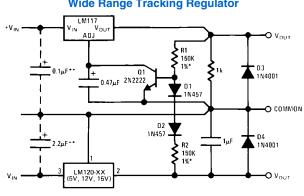
Typical Performance Characteristics



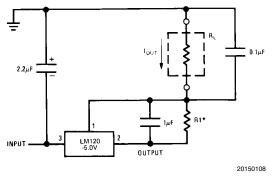

20150123



LM120QML

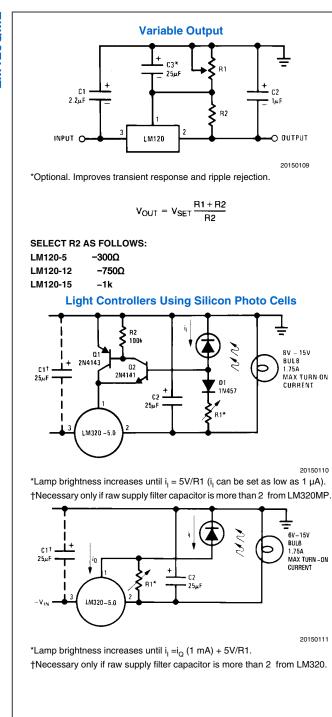


Lead and line regulation — 0.01% temperature stability — 0.2%


†Determines Zener current.

††Solid tantalum.

An LM120-12 or LM120-15 may be used to permit higher input voltages, but the regulated output voltage must be at least -15V when using the LM120-12 and -18V for the LM120-15.



²⁰¹⁵⁰¹⁰⁷ * Resistor tolerance of R1 and R2 determine matching of (+) and (-) inputs. **Necessary only if raw supply capacitors are more than 3 from regulators An LM3086N array may substitute for Q1, D1 and D2 for better stability and tracking. In the array diode transistors Q5 and Q4 (in parallel) make up D2; similarly, Q1 and Q2 become D1 and Q3 replaces the 2N2222. **Current Source**

$$*I_{OUT} = 1 \text{ mA} + \frac{5.0 \text{V}}{\text{R1}}$$

An LM120-12 or LM120-15 may be used to permit higher input voltages, but -18V for the LM120-15. **Select resistors to set output voltage. 2 ppm/°C tracking suggested. Wide Range Tracking Regulator

Dual Trimmed Supply

1k

O +5.0V

D1 1N4001

D2

1N4001

O -5.2V

20150103

<u>+</u> c2†

1μF

О ОПТРОТ

20150102

LM340-05

240

33

33

+

3

INPUT O

may be substituted.

without limit.

shorts.

C1*

2.2µF

LM320-5.0

A70

Fixed Regulator

LM120

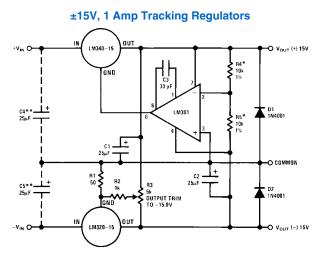
*Required if regulator is separated from filter capacitor by more than 3 . For value given, capacitor must be solid tantalum. 25 μ F aluminum electrolytic

 \dagger Required for stability. For value given, capacitor must be solid tantalum. 25 μ F aluminum electrolytic may be substituted. Values given may be increased

For output capacitance in excess of 100 μ F, a high current diode from input

to output (1N4001, etc.) will protect the regulator from momentary input

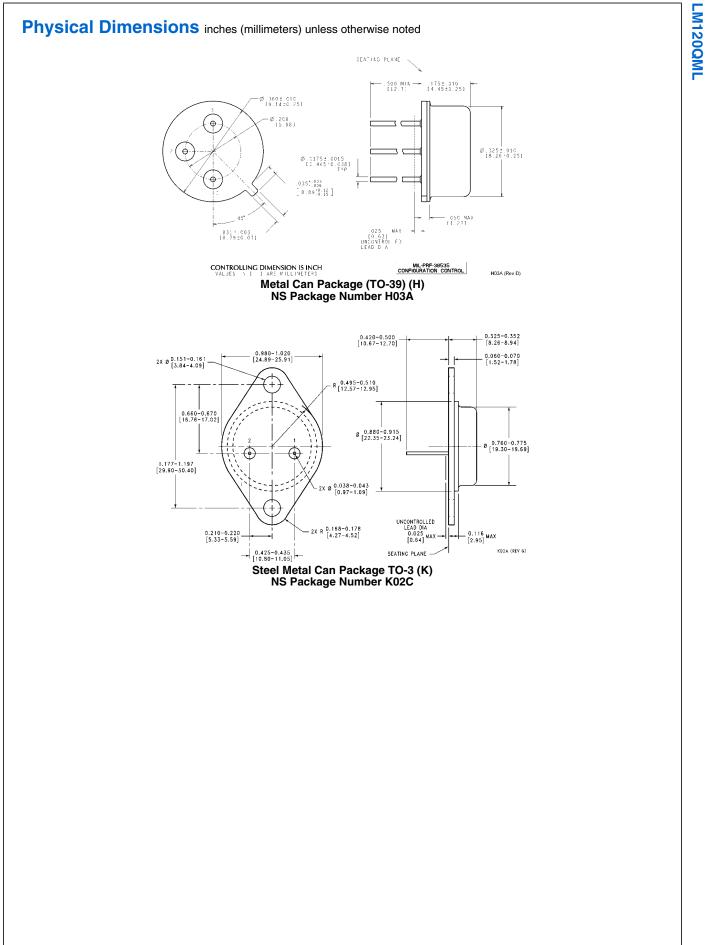
+ INPUT O


0.22µF

O

2.2µF

- INPUT O


Performance (Typical)

Load Regulation at $\Delta I_L = 1A$	10 mV	1 mV
Output Ripple, C _{IN} = 3000 µF,	100 µVRMS	100 µVRMS
I _L = 1A		
Temperature Stability	+50 mV	+50 mV
Output Noise 10 Hz ≤ f ≤ 10 kHz	150 µVRMS	150 µVRMS

*Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs. **Necessary only if raw supply filter capacitors are more than 2 from regulators.

20150112

Revision History							
Date Released	Revision	Section	Changes				
12/15/2010	A	New release to the corporate format	6 MDS datasheets were converted and merged into one datasheet compliant to corporate format. Drift endpoints removed since note used on 883 product. MDS MNLM120-5.0-K Rev OBL, MNLM120-5.0-H Rev 0BL, MNLM120-12-K Rev OBL, MNLM120-12- H Rev 0BL, MNLM120-15-K Rev OBL, & MNLM120-15-H Rev 0BL will be archived.				

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Products		Applications	
	Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
	Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
	Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
	DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
	DSP	dsp.ti.com	Industrial	www.ti.com/industrial
	Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
	Interface	interface.ti.com	Security	www.ti.com/security
	Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
	Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
	Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
	RFID	www.ti-rfid.com		
	OMAP Mobile Processors	www.ti.com/omap		
	Wireless Connectivity	www.ti.com/wirelessconnectivity		
		TI FOF Community Home Done		-0- #

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated