

HCPL-2530, HCPL-2531, HCPL-4534
HCPL-0530, HCPL-0531, HCPL-0534

Description

These dual channel optocouplers contain a pair of light emitting diodes and integrated photodetectors with electrical insulation between input and output.
Separate connection for the photodiode bias and output transistor collectors increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the basecollector capacitance.

Functional Diagram

Applications

- Line receivers - high common mode transient immunity ($>1000 \mathrm{~V} / \mu \mathrm{s}$) and low input-output capacitance (0.6 pF)
- High speed logic ground isolation TTL/ TLL, TLL/ LTL, TTL CM OS, TTL/ LSTLL
- Replace pulse transformers save board space and weight
- Analog signal ground isolation integrated photon detector provides improved linearity over phototransistor type
- Polarity sensing
- Isolated analog amplifier dual channel packaging enhances thermal tracking
TRUTH TABLE
(POSITIVE LOGIC)

LED	$\mathrm{V}_{\mathbf{O}}$
ON	LOW
OFF	HIGH

A $0.1 \mu \mathrm{~F}$ bypass capacitor between pins 5 and 8 is recommended.

Features

- $15 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode transient immunity at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ (HCPL-4534/ 0534)
- High speed: $1 \mathrm{Mb} / \mathrm{s}$
- TTL compatible
- Available in 8 pin DIP, SO-8, and 8 pin DIP - gull wing surface mount (option 020) packages
- High density packaging
- 3 MHz bandwidth
- Open collector outputs
- Guaranteed performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Safety approval UL Recognized - 3750 V rms for 1 minute (5000 V rms for 1 minute for Option 020) per UL1577
CSA Approved
IEC/ EN/ DIN EN 60747-5-2
- $V_{\text {IORM }}=630$ Vpeak for

HCPL-2530/ 2531/4534
Option 060

- $\mathrm{V}_{\text {IORM }}=560$ Vpeak for

HCPL-0530/ 0531/ 0534
Option 060

- Single channel version available (4502/ 3, 0452/3)
- MIL-PRF- 38534 hermetic version available (55XX/ 65XX/ 4N55)

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

These dual channel optocouplers are available in an 8 Pin DIP and in an industry standard SO-8 package. The following is a cross reference table listing the 8 Pin DIP part number and the electrically equivalent SO-8 part number.

SO-8

8 Pin DIP	Package
HCPL-2530	HCPL-0530
HCPL-2531	HCPL-0531
HCPL-4534	HCPL-0534

The SO-8 does not require "through holes" in a PCB. This package occupies approximately one-third the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

The HCPL-2530/0530 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the HCPL-2530/0530 is 7\% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The HCPL-2531/0531 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR of the HCPL-2531/0531 is 19% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The HCPL-4534/0534 is an HCPL2531/0531 with increased common mode transient immunity of $15,000 \mathrm{~V} / \mu$ s minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ guaranteed.

Selection Guide

Minimum CMR		Current Transfer Ratio (\%)	8 -pin DIP (300 Mil)		Small-Outline S0-8		Widebody (400 Mil) Single Channel Package*	Hermetic Single and Dual Channel Packages*
$\begin{aligned} & \mathrm{dV} / \mathrm{dt} \\ & (\mathrm{~V} / \mu \mathbf{s}) \end{aligned}$	$\begin{aligned} & V_{C M} \\ & (V) \end{aligned}$		Dual Channel Package	Single Package*	Dual Channel Package	Single Package*		
1,000	10	7	HCPL-2530	6N135	HCPL-0530	HCPL-0500	HCNW 135	
		19	HCPL-2531	$\begin{gathered} \text { 6N } 136 \\ \text { HCPL-4502 } \end{gathered}$	HCPL-0531	$\begin{aligned} & \hline \text { HCPL-0501 } \\ & \text { HCPL-0452 } \end{aligned}$	HCNW 136 HCNW 4502	
15,000	1500	19	HCPL-4534	HCPL-4503	HCPL-0534	HCPL-0453	HCNW 4503	
1,000	10	9						$\begin{aligned} & \text { HCPL-55XX } \\ & \text { HCPL-65XX } \\ & 4 N 55 \end{aligned}$

*Technical data for these products are on separate A gilent publications.

Ordering Information

Specify Part Number followed by Option Number (if desired).

Example:

HCPL-2531\# $\underline{X X X X}$

```
- \(020=\mathrm{UL} 5000 \mathrm{~V}\) rms/ 1 Minute Option*
\(060=\) IEC/EN/DIN EN 60747-5-2 Option
\(300=\) Gull Wing Surface Mount Option \(\dagger\)
- \(500=\) Tape and Reel Packaging Option
— XXXE = Lead Free Option
```

Option data sheets available. Contact your Agilent sales representative or authorized distributor for information.

[^0]
Schematic

HCPL-4534/0534 SHIELD
USE OF A $0.1 \mu \mathrm{~F}$ BYPASS CAPACITOR CONNECTED BETWEEN PINS 5 AND 8 IS RECOMMENDED.

Package Outline Drawings

8-Pin DIP Package (HCPL-2530/ 2531/ 4534)

Package Outline Drawings, continued

8-Pin DIP Package with Gull W ing Surface M ount Option 300 (HCPL-2530/ 2531/ 4534)

Small Outline S0-8 Package (HCPL-0530/ 0531/ 0534)

* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH) 5.207 ± 0.254 (0.205 ± 0.010)

DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $\mathbf{= 0 . 1 0 ~} \mathbf{~ m m}$ (0.004 INCHES) MAX.

NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

Solder Reflow Thermal Profile

Recommended Pb-Free IR Profile

NOTES:
THE TIME FROM $25^{\circ} \mathrm{C}$ to PEAK TEMPERATURE $=8$ MINUTES MAX.
$\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}, \mathrm{T}_{\text {smin }}=150^{\circ} \mathrm{C}$

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:

UL

Recognized under UL 1577,
Component Recognition Program, File E55361.

CSA
Approved under CSA Component Acceptance Notice \#5, File CA 88324.

IEC/EN/DIN EN 60747-5-2
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884
Teil 2):2003-01.
(Option 060 only)

Insulation and Safety Related Specifications

Parameter	Symbol	Value	8-Pin DIP (300 Mil) Value	SO-8 Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	mm	M easured from input terminals to output to to output terminals, shortest distance through air.
M inimum External Tracking (External Creepage)	L(102)	7.4	4.8	mm	M easured from input terminals to output terminals, shortest distance path along body.
M inimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	mm	M easured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	Volts	DIN IEC 112/ VDE 0303 Part 1
Isolation Group		IIIa	IIIa		M aterial Group (DIN VDE 0110, 1/ 89, Table 1)

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/ EN/ DIN EN 60747-5-2 Insulation Characteristics (Option 060)

Absolute Maximum Ratings					
Parameter	Symbol	Device	Min.	Max.	Units

Electrical Specifications (DC)
Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ unless otherwise specified. See note 9 .

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units		est Condition	Fig.	Note	
Current	CTR	HCPL-2530/	7	18	50	\%	$\mathrm{T}_{\text {A }}$	$5^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$,	1,2	1,2
			5						$\mathrm{V}_{0}=0.5 \mathrm{~V}$		
		$\begin{aligned} & \text { HCPL-2531/ } \\ & \hline 531 \end{aligned}$	19	24	50	\%	T_{A}	$25^{\circ} \mathrm{C}$			
		$\begin{gathered} \text { HCPL-4534/ } \\ 0534 \end{gathered}$	15								
Logic Low	V_{0}	HCPL-2530/		0.1	0.5	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1 \mathrm{I}_{0}=1.1 \mathrm{~mA}$	$I_{\mathrm{F}}=16 \mathrm{~mA},$	1	1
Voltage					0.5			$\mathrm{I}_{0}=0.8 \mathrm{~mA}$			
		HCPL-2531/		0.1	0.5	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$10=3.0 \mathrm{~mA}$			
		$\begin{gathered} \text { HCPL-4534/ } \\ 0534 \end{gathered}$			0.5			$\mathrm{I}_{0}=2.4 \mathrm{~mA}$			
Logic High Output	I_{OH}			0.003	0.5	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{0}=\text { Open } \\ & \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	6	1
					50			$\begin{aligned} & V_{0}=\text { Open } \\ & V_{C C}=15.0 \mathrm{~V} \end{aligned}$			
Logic Low Supply Current	$I_{\text {ccl }}$			100	400	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	$V_{0}=O p e n,$			
Logic High Supply Current	$\mathrm{I}_{\mathrm{CCH}}$			0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	$V_{0}=\text { Open, }$			
	V_{F}			1.5	1.7	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	16 mA		3	1
Voltage					1.8						
Input Reverse Breakdown Voltage	$B V_{\text {R }}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$				1
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.6		$\begin{gathered} \mathrm{mV} / \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$				
Input Capacitance	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		1	

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Sw itching Specifications (AC)

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$ unless otherwise specified.

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Package Characteristics

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Input-Output	$\mathrm{V}_{\text {ISO }}$		3750			V rms	$\begin{aligned} & \mathrm{RH}<50 \%, \\ & \mathrm{t}=1 \mathrm{~min} . \end{aligned}$	$\begin{array}{\|c\|} \hline 3,10 \\ \hline 3,11 \\ \hline \end{array}$	
Momentary Withstand Voltage**		$\begin{aligned} & \text { HCPL-2530/ } \\ & 2531 / 4534 \end{aligned}$	5000						
Resistance (Input-Output)	R_{1-0}	Option 020		10^{12}		Ω	$\begin{aligned} & \mathrm{RH} \leq 45 \% \\ & V_{\mathrm{I}-0}=500 \mathrm{Vdc}, \\ & \mathrm{t}=5 \mathrm{~s} \end{aligned}$		3
Capacitance (Input-Output)	Cl_{1-0}			0.6		pF	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		12
Input-Input Insulation Leakage Current	$I_{\text {I-I }}$			0.005		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{RH} \leq 45 \%, \\ & \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{l}-\mathrm{I}}=500 \mathrm{Vdc} \end{aligned}$		4
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{I}-\mathrm{I}}$			10^{11}		Ω			4
Capacitance (Input-Input)	C_{1-1}	$\begin{array}{r} \hline \text { HCPL-2530/ } \\ 2531 / 4534 \\ \hline \text { HCPL-0530/ } \\ 0531 / 0534 \end{array}$		0.03 0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$		4

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
**The Input-Output M omentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/ EN/ DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

Notes:

1. Each channel.
2. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100\%.
3. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins $5,6,7$, and 8 shorted together.
4. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
5. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the rising edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{0}>2.0 \mathrm{~V}$). Common mode

V_{O} - OUTPUT VOLTAGE - V

Figure 1. DC and pulsed transfer characteristics.

Figure 4. Current transfer ratio vs. temperature.
transient immunity in a Logic Low level is the maximum tolerable (negative) $d V_{C M} / d t$ on the falling edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{0}<0.8 \mathrm{~V}$).

6 . The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
7. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and the $6.1 \mathrm{k} \Omega$ pull-up resistor.
8. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
9. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.

Figure 2. Current transfer ratio vs. input current.

Figure 5. Propagation delay vs. temperature.
10. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $\left.l_{1-0} \leq 5 \mu \mathrm{~A}\right)$.
11. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $\left.\left.\right|_{1-0} \leq 5 \mu \mathrm{~A}\right)$.
12. M easured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.
13. Derate linearly above $90^{\circ} \mathrm{C}$ free-air temperature at a rate of $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the SOIC-8 package.

Figure 3. Input current vs. forw ard voltage.

Figure 6. Logic high output current vs. temperature.

Figure 7. Small-signal current transfer ratio vs. quiescent input current.

Figure 8. Frequency response.

Figure 9. Switching test circuit.

Figure 10. Test circuit for transient immunity and typical waveforms.

Figure 11. Propagation delay time vs. load resistance.
w w w.agilent.com/ semic onductors
For product information and a complete list of distributors, please go to our web site.
For technical assistance call:
Americas/ Canada: +1 (800) 235-0312 or (916) 788-6763

Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (+65) 67562394
India, Australia, New Zealand: (+65) 67551939
J apan: (+81 3) 3335-8152 (Domestic/ Interna-
tional), or 0120-61-1280 (Domestic Only)
Korea: (+65) 67551989
Singapore, M alaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 67552044
Taiwan: (+65) 67551843
Data subject to change.
Copyright © 2004-2005 Agilent Technologies, Inc.
Obsoletes 5989-2115EN
J une 17, 2005
5989-3350EN

[^0]: *For HCPL-2530/1 and HCPL-4534 only.
 \dagger Gull wing surface mount option applies to through hole parts only.
 Remarks: The notation "\#" is used for existing products, while (new) products launched since 15th July 2001 and lead free option will use "-"

