Low Power, Fully Differential Input/Output Amplifier/Driver Family

feATURES

- Adjustable Gain and Fixed Gain Blocks of 1, 2, 5 and 10
- $\pm 0.3 \%$ (Max) Gain Error from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- $3.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Gain Temperature Coefficient
- 5ppm Gain Long Term Stability
- Fully Differential Input and Output
- C $_{\text {LOAD }}$ Stable up to $10,000 \mathrm{pF}$
- Adjustable Output Common Mode Voltage
- Rail-to-Rail Output Swing
- Low Supply Current: 1mA (Max)
- High Output Current: 10mA (Min)
- Specified on a Single 2.7 V to $\pm 5 \mathrm{~V}$ Supply
- DC Offset Voltage <2.5mV (Max)
- Available in 8-Lead MSOP Package

APPLICATIONS

- Differential Driver/Receiver
- Differential Amplification
- Single-Ended to Differential Conversion
- Level Shifting
- Trimmed Phase Response for Multichannel Systems

DESCRIPTIOn

The LTC ${ }^{\circledR} 1992$ product family consists of five fully differential, low power amplifiers. The LTC1992 is an unconstrained fully differential amplifier. The LTC1992-1, LTC1992-2, LTC1992-5 and LTC1992-10 are fixed gain blocks (with gains of 1, 2, 5 and 10 respectively) featuring precision on-chip resistors for accurate and ultrastable gain. All of the LTC1992 parts have a separate internal common mode feedback path for outstanding output phase balancing and reduced second order harmonics. The $V_{\text {OCM }}$ pin sets the output common mode level independent of the input common mode level. This feature makes level shifting of signals easy.
The amplifiers' differential inputs operate with signals ranging from rail-to-rail with a common mode level from the negative supply up to 1.3 V from the positive supply. The differential input DC offset is typically $250 \mu \mathrm{~V}$. The rail-to-rail outputs sink and source 10 mA . The LTC1992 is stable for all capacitive loads up to $10,000 \mathrm{pF}$.
The LTC1992 can be used in single supply applications with supply voltages as low as 2.7 V . It can also be used with dual supplies up to $\pm 5 \mathrm{~V}$. The LTC1992 is available in an 8-pin MSOP package.

TYPICAL APPLICATION

Single-Supply, Single-Ended to Differential Conversion

LTC 1992 Family

ABSOLUTE MAXIMUMM RATINGS (Note 1)

Total Supply Voltage $\left(+V_{S}\right.$ to $\left.-V_{S}\right)$ \qquad 12V
Maximum Voltage on any Pin \qquad $\left(-V_{S}-0.3 \mathrm{~V}\right) \leq V_{\text {PIN }} \leq\left(+V_{S}+0.3 \mathrm{~V}\right)$ Output Short-Circuit Duration (Note 3) Operating Temperature Range (Note 5) LTC1992CMS8/LTC1992-XCMS8/ LTC1992IMS8/LTC1992-XIMS8 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ LTC1992HMS8/LTC1992-XHMS8 $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Specified Temperature Range (Note 6)
LTC1992CMS8/LTC1992-XCMS8/

$$
\text { LTC1992IMS8/LTC1992-XIMS8 }-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}
$$

LTC1992HMS8/LTC1992-XHMS8 $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InfORmATION

$\begin{gathered} -1 N_{0} \\ v_{0 c M}+V_{s} \\ +004 \end{gathered}$ $\stackrel{8}{\mathrm{~T}_{\mathrm{JMA}}-2}$			
ORDER PART NUMBER	MS8 PART MARKING	ORDER PART NUMBER	MS8 PART MARKING
LTC1992CMS8 LTC1992IMS8 LTC1992HMS8	LTYU LTZC LTAGR	LTC1992-1CMS8 LTC1992-1IMS8 LTC1992-1HMS8 LTC1992-2CMS8 LTC1992-2IMS8 LTC1992-2HMS8 LTC1992-5CMS8 LTC1992-5IMS8 LTC1992-5HMS8 LTC1992-10CMS8 LTC1992-10IMS8 LTC1992-10HMS8	LTACJ LTACM LTAFZ LTYV LTZD LTAGA LTACK LTACN LTAJH LTACL LTACP LTAJJ

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICPL CHPRPCTERISTIS The o denotes specifications which apply over the full operating

 temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} .+\mathrm{V}_{S}=5 \mathrm{~V},-\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{~V}_{\text {INCM }}=\mathrm{V}_{\text {OUTCM }}=\mathrm{V}_{0 C M}=2.5 \mathrm{~V}$, unless otherwise noted. $V_{\text {OCM }}$ is the voltage on the $V_{\text {OCM }}$ pin. $V_{\text {OUTCM }}$ is defined as $\left(+V_{\text {OUT }}+-V_{\text {OUT }}\right) / 2$. $V_{\text {INCM }}$ is defined as $\left(+V_{\text {IN }}+-V_{\text {IN }}\right) / 2 . V_{\text {INDIFF }}$ is defined as $\left(+V_{\text {IN }}--V_{\text {IN }}\right)$. $V_{\text {OUTDIFF }}$ is defined as $\left(+V_{\text {OUT }}--V_{\text {OUT }}\right)$. Specifications applicable to all parts in the LTC1992 family.

LTC 1992 Family

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} .+\mathrm{V}_{S}=5 \mathrm{~V},-\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{~V}_{\text {INCM }}=\mathrm{V}_{\text {OUTCM }}=\mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V}$, unless otherwise noted. $V_{\text {OCM }}$ is the voltage on the $V_{\text {OCM }}$ pin. $V_{\text {OUTCM }}$ is defined as $\left(+V_{\text {OUT }}+-V_{\text {OUT }}\right) / 2$. $V_{\text {INCM }}$ is defined as $\left(+V_{\text {IN }}+-V_{\text {IN }}\right) / 2 . V_{\text {INDIFF }}$ is defined as ($+V_{\text {IN }}--V_{\text {IN }}$). $V_{\text {OUTDIFF }}$ is defined as ($+V_{\text {OUT }}--V_{\text {OUT }}$). Specifications applicable to all parts in the LTC1992 family.

SYMBOL	PARAMETER	CONDITIONS		ALL C AND I GRADE			ALL H GRADE			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
ISC	Output Short-Circuit Current Sourcing (Notes 2,3)	$\begin{aligned} & V_{S}=2.7 \mathrm{~V}, V_{\text {OUT }}=1.35 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, V_{\text {OUT }}=2.5 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
	Output Short-Circuit Current Sinking (Notes 2,3)	$\begin{aligned} & V_{S}=2.7 \mathrm{~V}, V_{\text {Out }}=1.35 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, V_{\text {Out }}=2.5 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{\text {Out }}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\bullet \cdot$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Avol	Large-Signal Voltage Gain		\bullet		80			80		dB

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $+V_{S}=5 \mathrm{~V},-V_{S}=0 \mathrm{~V}, \mathrm{~V}_{\text {INCM }}=V_{\text {OUTCM }}=V_{\text {OCM }}=2.5 \mathrm{~V}$, unless otherwise noted. $\mathrm{V}_{\text {OCM }}$ is the voltage on the $V_{\text {OCM }}$ pin. $V_{\text {OUTCM }}$ is defined as $\left(+V_{\text {OUT }}+-V_{\text {OUT }}\right) / 2$. $V_{\text {INCM }}$ is defined as $\left(+V_{\text {IN }}+-V_{\text {IN }}\right) / 2$. $V_{\text {INDIFF }}$ is defined as $\left(+V_{\text {IN }}--V_{\text {IN }}\right)$. $V_{\text {OUTDIFF }}$ is defined as ($+V_{\text {OUT }}--V_{\text {OUT }}$). Specifications applicable to the LTC1992 only.

SYMBOL	PARAMETER	CONDITIONS		LTC1992CMS8 LTC1992ISM8			LTC1992HMS8			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
I_{B}	Input Bias Current	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet		2	250		2	400	pA
Ios	Input Offset Current	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet		0.1	100		0.1	150	pA
$\mathrm{R}_{\text {IN }}$	Input Resistance		\bullet		500			500		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		\bullet		3			3		pF
e_{n}	Input Referred Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$			35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			1			1		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
$\mathrm{V}_{\text {INCMR }}$	Input Signal Common Mode Range		\bullet	$\left(-V_{S}\right)-0$	V	S) -1.3 V	$\left(-V_{S}\right)$	V	S) -1.3 V	V
CMRR	Common Mode Rejection Ratio (Input Referred)	$\mathrm{V}_{\text {INCM }}=-0.1 \mathrm{~V}$ to 3.7 V	\bullet		90		69	90		dB
SR	Slew Rate (Note 4)		\bullet	0.5	1.5		0.5	1.5		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain-Bandwidth Product $\text { (fteSt }=100 \mathrm{kHz} \text {) }$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ LTC1992CMS8 LTC1992IMS8/ LTC1992HMS8	\bullet		$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.9 \end{aligned}$	3.2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	MHz MHz MHz

SYMBOL	PARAMETER	CONDITIONS		$\begin{aligned} & \text { LTC1992-1CMS8 } \\ & \text { LTC1992-1IMS8 } \end{aligned}$			LTC1992-1HMS8			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
GIIFF	Differential Gain Differential Gain Error Differential Gain Nonlinearity Differential Gain Temperature Coefficient		\bullet		$\begin{gathered} 1 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$	± 0.3		$\begin{gathered} 1 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$	± 0.35	$\begin{array}{r} \mathrm{V} / \mathrm{V} \\ \% \\ \mathrm{ppm} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$
e_{n}	Input Referred Noise Voltage Density (Note 7)	$\mathrm{f}=1 \mathrm{kHz}$			45			45		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance, Single-Ended +IN, -IN Pins		\bullet	22.5	30	37.5	22	30	38	k Ω
$\mathrm{V}_{\text {INCMR }}$	Input Signal Common Mode Range	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$			V to			V to		V
CMRR	Common Mode Rejection Ratio (Amplifier Input Referred) (Note 7)	$\mathrm{V}_{\text {INCM }}=-0.1 \mathrm{~V}$ to 3.7 V	\bullet	55	60		55	60		dB
SR	Slew Rate (Note 4)		\bullet	0.5	1.5		0.5	1.5		$\mathrm{V} / \mathrm{\mu S}$
GBW	Gain-Bandwidth Product	$\mathrm{f}_{\text {TEST }}=180 \mathrm{kHz}$			3			3		MHz

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $+V_{S}=5 \mathrm{~V},-V_{S}=0 \mathrm{~V}, \mathrm{~V}_{\text {INCM }}=\mathrm{V}_{\text {OUTCM }}=\mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V}$, unless otherwise noted. $\mathrm{V}_{\text {OCM }}$ is the voltage on the $\mathrm{V}_{\text {OCM }}$ pin. $\mathrm{V}_{\text {OUTCM }}$ is defined as $\left(+V_{\text {OUT }}+-V_{\text {OUT }}\right) / 2$. $V_{\text {INCM }}$ is defined as $\left(+V_{\text {IN }}+-V_{\text {IN }}\right) / 2$. $V_{\text {INDIFF }}$ is defined as $\left(+V_{\text {IN }}--V_{\text {IN }}\right) . V_{\text {OUTDIFF }}$ is defined as ($+V_{\text {OUT }}--V_{\text {OUT }}$). Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Specifications apply to the LTC1992-2 only.

SYMBOL	PARAMETER	CONDITIONS		LTC1992-2CMS8 LTC1992-2IMS8			LTC1992-2HMS8			UNITS
				MIN			MIN	TYP	MAX	
GIIFF	Differential Gain Differential Gain Error Differential Gain Nonlinearity Differential Gain Temperature Coefficient		\bullet		$\begin{gathered} 2 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$			$\begin{gathered} 2 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$	± 0.35	$\begin{array}{r} \mathrm{V} / \mathrm{V} \\ \% \\ \mathrm{ppm} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$
e_{n}	Input Referred Noise Voltage Density (Note 7)	$\mathrm{f}=1 \mathrm{kHz}$			45			45		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance, Single-Ended +IN, -IN Pins		\bullet	22.5	30	37.5	22	30	38	k Ω
$\mathrm{V}_{\text {INCMR }}$	Input Signal Common Mode Range	$V_{S}=5 \mathrm{~V}$			V to			V to		V
CMRR	Common Mode Rejection Ratio (Amplifier Input Referred) (Note 7)	$\mathrm{V}_{\text {INCM }}=-0.1 \mathrm{~V}$ to 3.7 V	\bullet	55	60		55	60		dB
SR	Slew Rate (Note 4)		\bullet	0.7	2		0.7	2		V/us
GBW	Gain-Bandwidth Product	$\mathrm{f}_{\text {TEST }}=180 \mathrm{kHz}$			4			4		MHz

SYMBOL	PARAMETER	CONDITIONS		LTC1992-5CMS8 LTC1992-5IMS8			LTC1992-5HMS8			UNITS			
				MIN	TYP	MAX							
$\mathrm{G}_{\text {DIFF }}$	Differential Gain Differential Gain Error Differential Gain Nonlinearity Differential Gain Temperature Coefficient		\bullet					$\begin{gathered} 5 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$	± 0.3		$\begin{gathered} 5 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$	± 0.35	$\begin{array}{r} \mathrm{V} / \mathrm{V} \\ \% \\ \mathrm{ppm} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$
e_{n}	Input Referred Noise Voltage Density (Note 7)	$\mathrm{f}=1 \mathrm{kHz}$			45			45		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			
$\underline{\mathrm{IIN}^{\prime}}$	Input Resistance, Single-Ended +IN, -IN Pins		\bullet	22.5	30	37.5	22	30	38	k Ω			
VINCMR	Input Signal Common Mode Range	$V_{S}=5 \mathrm{~V}$			V to			V to		V			
CMRR	Common Mode Rejection Ratio (Amplifier Input Referred) (Note 7)	$\mathrm{V}_{\text {INCM }}=-0.1 \mathrm{~V}$ to 3.7V	\bullet	55	60		55	60		dB			
SR	Slew Rate (Note 4)		\bullet	0.7	2		0.7	2		V/us			
GBW	Gain-Bandwidth Product	$\mathrm{f}_{\text {TEST }}=180 \mathrm{kHz}$			4			4		MHz			

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $+V_{S}=5 \mathrm{~V},-V_{S}=0 \mathrm{~V}, \mathrm{~V}_{\text {INCM }}=V_{\text {OUTCM }}=V_{O C M}=2.5 \mathrm{~V}$, unless otherwise noted. $\mathrm{V}_{\text {OCM }}$ is the voltage on the $V_{\text {OCM }}$ pin. $V_{\text {OUTCM }}$ is defined as $\left(+V_{\text {OUT }}+-V_{\text {OUT }}\right) / 2$. $V_{\text {INCM }}$ is defined as $\left(+V_{\text {IN }}+-V_{\text {IN }}\right) / 2 . V_{\text {INDIFF }}$ is defined as $\left(+V_{\text {IN }}--V_{\text {IN }}\right) . V_{\text {OUTDIFF }}$ is defined as $\left(+V_{\text {OUT }}--V_{\text {OUT }}\right)$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Specifications apply to the LTC1992-10 only.

SYMBOL	PARAMETER	CONDITIONS		LTC1992-10CMS8 LTC1992-10IMS8			LTC1992-10HMS8			UNITS
				MIN	TYP		MIN	TYP	MAX	
$\mathrm{G}_{\text {DIFF }}$	Differential Gain Differential Gain Error Differential Gain Nonlinearity Differential Gain Temperature Coefficient		\bullet		$\begin{gathered} 10 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$	± 0.3		$\begin{gathered} 10 \\ \pm 0.1 \\ 50 \\ 3.5 \end{gathered}$	± 0.35	$\begin{array}{r} \mathrm{V} / \mathrm{V} \\ \% \\ \mathrm{ppm} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$
$\underline{e_{n}}$	Input Referred Noise Voltage Density (Note 7)	$f=1 \mathrm{kHz}$			45			45		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
R IN	Input Resistance, Single-Ended +IN, -IN Pins		\bullet	11.3	15	18.8	11	15	19	k Ω
$V_{\text {INCMR }}$	Input Signal Common Mode Range	$V_{S}=5 \mathrm{~V}$			V to			V to		V
CMRR	Common Mode Rejection Ratio (Amplifier Input Referred) (Note 7)	$\mathrm{V}_{\text {INCM }}=-0.1 \mathrm{~V}$ to 3.7V	-	55	60		55	60		dB
SR	Slew Rate (Note 4)		\bullet	0.7	2		0.7	2		V/us
GBW	Gain-Bandwidth Product	$\mathrm{f}_{\text {TEST }}=180 \mathrm{kHz}$			4			4		MHz

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Output load is connected to the midpoint of the $+V_{S}$ and $-V_{S}$ potentials. Measurement is taken single-ended, one output loaded at a time.
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum when the output is shorted indefinitely.
Note 4: Differential output slew rate. Slew rate is measured single ended and doubled to get the listed numbers.
Note 5: The LTC1992C/LTC1992-XC/LTC1992I/LTC1992-XI are guaranteed functional over an operating temperature of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LTC1992H/LTC1992-XH are guaranteed functional over the extended operating temperature of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Note 6: The LTC1992C/LTC1992-XC are guaranteed to meet the specified performance limits over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range and are designed, characterized and expected to meet the specified performance limits over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range but are not tested or QA sampled at these temperatures. The LTC1992I/LTC1992-XI are guaranteed to meet the specified performance limits over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range. The LTC1992H/LTC1992-XH are guaranteed to meet the specified performance limits over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range.
Note 7: Differential offset voltage, differential offset voltage drift, CMRR, noise voltage density and PSRR are referred to the internal amplifier's input to allow for direct comparison of gain blocks with discrete amplifiers.

TYPICAL PERFORMARCE CHARACTERISTICS Applicable to all parts in the LTc1992 family.

LTC 1992 Family

TYPICAL PGRFORMANC CHARACTERISTICS Applicalal it a al pants in the LTc亻192z amily.

TYPICAL PERFORMANCE CHARACTERISTICS Applicable to the LTc 1992 only.

LTC 1992 Family

TYPICAL PERFORMANCE CHARACTERISTICS Applicable to the LTC 1992 only.

Differential Input Large-Signal Step Response

Single-Ended Input Large-Signal Step Response

Differential Input Small-Signal Step Response

Differential Input Large-Signal
Step Response

Single-Ended Input Large-Signal Step Response

Differential Input Small-Signal
Step Response

TYPICAL PERFORMANCE CHARACTERISTICS Applicable to the LTci992 only.

LTC 1992 Family

TYPICAL PERFORMARCE CHARACTERISTICS Applicale to the LTci992-1 only.

TYPICAL PGRFORMANCE CHARACTERISTICS Applicable to the LTcC $1992-1$ only.

LTC 1992 Family

TYPICAL PERFORMARCE CHARACTERISTICS Applicale to the e ITci992-1 only.

TYPICAL PGRFORMANCE CHARACTERISTICS Applicable to the LTC $1992-2$ only.

Differential Input Differential Gain vs Frequency, $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$

1992 G60

Single-Ended Input Differential
Gain vs Frequency, $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$

Differential Phase Response vs Frequency

Differential Gain Error vs Temperature
992 G63

Differential Input Offset Voltage vs Input Common Mode Voltage (Note 7)

Differential Input Offset Voltage vs Input Common Mode Voltage (Note 7)

$V_{o c m}$ Gain vs Frequency,

$$
V_{S}= \pm 2.5 \mathrm{~V}
$$

Differential Input Offset Voltage vs Input Common Mode Voltage (Note 7)

LTC 1992 Family

TYPICAL PERFORMARCE CHARACTERISTICS Applicale to the LTci992-2 only.

Single-Ended Input Large-Signal Step Response

Differential Input Small-Signal Step Response

Differential Input Large-Signal Step Response

Single-Ended Input Large-Signal Step Response

Differential Input Small-Signal Step Response

Common Mode Rejection Ratio vs Frequency (Note 7)

1992 G70
Power Supply Rejection Ratio vs Frequency (Note 7)

1992 G73

Output Balance vs Frequency

LTC 1992 Family

TYPICAL PGRFORMANCG CHARACTERISTICS Applicable to the LTCC992-2 only.

LTC 1992 Family

TYPICAL PERFORMARCE CHARACTERISTICS Applicale to the LTci992-5 only.

TYPICAL PERFORMANCE CHARACTERISTICS Applicable to the LTC1992-5 only.

LTC 1992 Family

TYPICAL PERFORMARCE CHARACTERISTICS Applicale to the ITcicig2-5 only.

1992 G103

TYPICAL PGRFORMANCE CHARACTERISTICS Applicable to the LTC1992-10 only.

LTC 1992 Family

TYPICAL PERFORMANCE CHARACTERISTICS Applicale e tolte LTc亻192-10 only.

Single-Ended Input Large-Signal Step Response

Differential Input Small-Signal Step Response

Differential Input Large-Signal Step Response

Single-Ended Input Large-Signal Step Response

Differential Input Small-Signal Step Response

Common Mode Rejection Ratio vs Frequency (Note 7)

19926114
Power Supply Rejection Ratio vs Frequency (Note 7)

1992 G117

Output Balance vs Frequency

LTC 1992 Family

TYPICAL PGRFORMANCE CHARACTERISTICS Applicable to the LTc1992-10 only.

LTC 1992 Family

PIn functions

-IN, +IN (Pins 1, 8): Inverting and Noninverting Inputs of the Amplifier. For the LTC1992 part, these pins are connected directly to the amplifier's P-channel MOSFET input devices. The fixed gain LTC1992-X parts have precision, on-chip gain setting resistors. The input resistors are nominally 30k for the LTC1992-1, LTC1992-2 and LTC1992-5 parts. The input resistors are nominally 15k for the LTC1992-10 part.
$V_{\text {OCM }}$ (Pin 2): Output Common Mode Voltage Set Pin. The voltage on this pin sets the output signal's common mode voltage level. The output common mode level is set independent of the input common mode level. This is a high impedance input and must be connected to a known and controlled voltage. It must never be left floating.
$+V_{S},-V_{S}$ (Pins 3, 6): The $+V_{S}$ and $-V_{S}$ power supply pins should be bypassed with $0.1 \mu \mathrm{~F}$ capacitors to an adequate analog ground or ground plane. The bypass capacitors should be located as closely as possible to the supply pins.
+OUT, -OUT (Pins 4, 5): The Positive and Negative Outputs of the Amplifier. These rail-to-rail outputs are designed to drive capacitive loads as high as 10,000pF.
$\mathbf{V}_{\text {MID }}$ (Pin 7): Mid-Supply Reference. This pin is connected to an on-chip resistive voltage divider to provide a midsupply reference. This provides a convenient way to set the output common mode level at half-supply. If used for this purpose, Pin 2 will be shorted to Pin 7, Pin 7 should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to ground. If this reference voltage is not used, leave the pin floating.

BLOCK DIAGRAMS

BLOCK DIAGRAMS
(1992-X)

APPLICATIONS INFORMATION

Theory of Operation

The LTC1992 family consists of five fully differential, low power amplifiers. The LTC1992 is an unconstrained fully differential amplifier. The LTC1992-1, LTC1992-2, LTC1992-5 and LTC1992-10 are fixed gain blocks (with gains of $1,2,5$ and 10 respectively) featuring precision onchip resistors for accurate and ultra stable gain.
In many ways, a fully differential amplifier functions much like the familiar, ubiquitous op amp. However, there are several key areas where the two differ. Referring to Figure 1, an op amp has a differential input, a high open-loop gain and utilizes negative feedback (through resistors) to set the closed-loop gain and thus control the amplifier's gain with great precision. A fully differential amplifier has all of these features plus an additional input and a complementary output. The complementary output reacts to the input signal in the same manner as the other output, but in the opposite direction. Two outputs changing in an equal but opposite manner require a common reference point (i.e., opposite relative to what?). The additional input, the $V_{\text {OCm }}$ pin, sets this reference point. The voltage on the $\mathrm{V}_{\text {ocm }}$ input directly sets the output signal's com-
mon mode voltage and allows the output signal's common mode voltage to be set completely independent of the input signal's common mode voltage. Uncoupling the input and output common mode voltages makes signal level shifting easy.
For a better understanding of the operation of a fully differential amplifier, refer to Figure 2. Here, the LTC1992 functional blockdiagram adds external resistors to realize a basic gain block. Note that the LTC1992 functional block diagram is not an exact replica of the LTC1992 circuitry. However, the Block Diagram is correct and is a very good tool for understanding the operation of fully differential amplifier circuits. Basic op amp fundamentals together with this block diagram provide all of the tools needed for understanding fully differential amplifier circuit applications.
The LTC1992 Block Diagram has two op amps, two summing blocks (pay close attention the signs) and four resistors. Two resistors, $\mathrm{R}_{\text {MID1 }}$ and $\mathrm{R}_{\text {MID2 }}$, connect directly to the $\mathrm{V}_{\text {MID }}$ pin and simply provide a convenient midsupply reference. Its use is optional and it is not involved in the operation of the LTC1992's amplifier. The LTC1992 functions through the use of two servo networks

LTC 1992 Family

APPLICATIONS InFORMATION

Figure 1. Comparison of an Op Amp and a Fully Differential Amplifier

Figure 2. LTC1992 Functional Block Diagram with External Gain Setting Resistors

APPLICATIONS INFORMATION

each employing negative feedback and using an op amp's differential input to create the servo's summing junction.

One servo controls the signal gain path. The differential input of op amp A1 creates the summing junction of this servo. Any voltage present at the input of A1 is amplified (by the op amp'slarge open-loop gain), sentto the summing blocks and then onto the outputs. Taking note of the signs on the summing blocks, op amp A1's output moves +OUT and -OUT in opposite directions. Applying a voltage step at the INM node increases the +OUT voltage while the -OUT voltage decreases. The R_{FB} resistors connect the outputs to the appropriate inputs establishing negative feedback and closing the servo's loop. Any servo loop always attempts to drive its error voltage to zero. In this servo, the error voltage is the voltage between the INM and INP nodes, thus A1 will force the voltages on the INP and INM nodes to be equal (within the part's DC offset, open Ioop gain and bandwidth limits). The "virtual short" between the two inputs is conceptually the same as that for op amps and is critical to understanding fully differential amplifier applications.
The other servo controls the output common mode level. The differential input of op amp A2 creates the summing junction of this servo. Similar to the signal gain servo above, any voltage present at the input of A2 is amplified, sent to the summing blocks and then onto the outputs. However, in this case, both outputs move in the same direction. The resistors $\mathrm{R}_{\text {CMP }}$ and $\mathrm{R}_{\text {CMM }}$ connect the +OUT and -OUT outputs to A2's inverting input establishing negative feedback and closing the servo's loop. The midpoint of resistors $R_{\text {CMP }}$ and $R_{\text {CMm }}$ derives the output's common mode level (i.e., its average). This measure of the output's common mode level connects to A2's inverting input while A2's noninverting input connects directly to the $\mathrm{V}_{\text {OCM }}$ pin. A2 forces the voltages on its inverting and noninverting inputs to be equal. In other words, it forces the output common mode voltage to be equal to the voltage on the $\mathrm{V}_{\text {OCM }}$ input pin.
For any fully differential amplifier application to function properly both the signal gain servo and the common mode level servo must be satisfied. When analyzing an applications circuit, the INP node voltage must equal the INM node voltage and the output common mode voltage must equal the $V_{0 C M}$ voltage. If either of these servos is taken
out of the specified areas of operation (e.g., inputs taken beyond the common mode range specifications, outputs hitting the supply rails or input signals varying faster than the part can track), the circuit will not function properly.

Fully Differential Amplifier Signal Conventions

Fully differential amplifiers have a multitude of signals and signal ranges to consider. To maintain proper operation with conventional op amps, the op amp's inputs and its output must not hit the supply rails and the input signal's common mode level must also be within the part's specified limits. These considerations also apply to fully differential amplifiers, but here there is an additional output to consider and common mode level shifting complicates matters. Figure 3 provides a list of the many signals and specifications as well as the naming convention. The phrase "common mode" appears in many places and often leads to confusion. The fully differential amplifier's ability to uncouple input and output common mode levels yields great design flexibility, but also complicates matters some. For simplicity, the equations in Figure 3 also assume an ideal amplifier and perfect resistor matching. For a detailed analysis, consult the fully differential amplifier applications circuit analysis section..

Basic Applications Circuits

Most fully differential amplifier applications circuits employ symmetrical feedback networks and are familiar territory for op amp users. Symmetrical feedback networks require that the $-\mathrm{V}_{\text {IN }} /+\mathrm{V}_{\text {OUT }}$ network is a mirror image duplicate of the $+\mathrm{V}_{\text {IN }} /-\mathrm{V}_{\text {OUT }}$ network. Each of these half circuits is basically just a standard inverting gain op amp circuit. Figure 4 shows three basic inverting gain op amp circuits and their corresponding fully differential amplifier cousins. The vast majority of fully differential amplifier circuits derive from old tried and true inverting op amp circuits. To create a fully differential amplifier circuit from an inverting op amp circuit, first simply transfer the op amp's $V_{\text {IN }} / V_{\text {OUT }}$ network to the fully differential amplifier's $-\mathrm{V}_{\text {IN }} /+\mathrm{V}_{\text {OUT }}$ nodes. Then, take a mirror image duplicate of the network and apply it to the fully differential amplifier's $+\mathrm{V}_{\text {IN }} /-V_{\text {OUT }}$ nodes. Op amp users can comfortably transfer any inverting op amp circuit to a fully differential amplifier in this manner.

LTC 1992 Family

APPLICATIONS INFORMATION

$$
\begin{array}{ll}
\text { DIFFERENTIAL }=V_{\text {INDIFF }}=+V_{\text {IN }}--V_{\text {IN }} & \text { DIFFERENTIAL } \\
\text { INPUT VOLTAGE } & \text { OUTPUT VOLTAGE } \\
\text { INPUT COMMON }=V_{\text {OUTDIFF }}=+V_{\text {OUT }}--V_{\text {OUT }} \\
\text { MODE VOLTAGE } & +\frac{+V_{I N}+-V_{I N}}{2}
\end{array} \begin{aligned}
& \text { OUTPUT COMMON }=V_{\text {OUTCM }}=\frac{+V_{\text {OUT }}+-V_{\text {OUT }}}{2}
\end{aligned}
$$

$$
+V_{\text {OUT }}=\left(+V_{I N}--V_{I N}\right) \cdot \frac{1}{2} \cdot \frac{R_{F B}}{R_{I N}}+V_{O C M} \quad ; V_{O S C M}=0 V
$$

$$
-V_{\text {OUT }}=\left(-V_{I N}-+V_{I N}\right) \cdot \frac{1}{2} \cdot \frac{R_{F B}}{R_{I N}}+V_{O C M} \quad ; V_{O S C M}=0 V
$$

$$
V_{\text {OUTDIFF }}=V_{\text {INDIFF }} \cdot \frac{R_{F B}}{R_{\text {IN }}}
$$

$$
V_{\text {AMPDIFF }}=V_{\text {INP }}-V_{\text {INM }}
$$

$$
V_{\text {AMPCM }}=\frac{V_{\text {INP }}+V_{\text {INM }}}{2}
$$

$\mathrm{V}_{\text {OUTCM }}=\mathrm{V}_{\text {OCM }}$
$C M R R=\frac{\Delta V_{\text {AMPCM }}}{\Delta V_{\text {AMPDIFF }}} ;+V_{I N}=-V_{I N}$
OUTPUT BALANCE $=\frac{\Delta V_{\text {OUTCM }}}{\Delta V_{\text {OUTDIFF }}}$
$\mathrm{e}_{\text {NOUT }}=\left(\frac{\mathrm{R}_{\text {FB }}}{\mathrm{R}_{\mathrm{IN}}}+1\right) \cdot \sqrt{\mathrm{e}_{\text {NIN }}{ }^{2}+\mathrm{r}_{N}^{2}}$ WHERE: $\mathrm{e}_{\text {NOUT }}=$ OUTPUT REFERRED NOISE VOLTAGE DENSITY $\mathrm{e}_{\text {NIN }}=$ INPUT REFERRED NOISE VOLTAGE DENSITY

$$
r_{N} \approx(0.13 n V / \sqrt{H Z})\left(\frac{R_{I N} \bullet R_{F B}}{R_{I N}+R_{F B}}\right)
$$

(RESISTIVE NOISE IS ALREADY INCLUDED IN THE SPECIFICATIONS FOR THE FIXED GAIN LTC1992-X PARTS)
$V_{\text {OSDIFFOUT }}=V_{\text {OSDIFFIN }} \cdot\left(\frac{R_{F B}}{R_{I N}}+1\right)$
$V_{\text {OSCM }}=V_{\text {OUTCM }}-V_{\text {OCM }}$

Figure 3. Fully Differential Amplifier Signal Conventions (Ideal Amplifier and Perfect Resistor Matching is Assumed)

Single-Ended to Differential Conversion

One of the most important applications of fully differential amplifiers is single-ended signaling to differential signaling conversion. Many systems have a single-ended signal that must connect to an ADC with a differential input. The ADC could be run in a single-ended manner, but performance usually degrades. Fortunately, all of basic applications circuits shown in Figure 4, as well as all of the fixed gain LTC1992-X parts, are equally suitable for both differential and single-ended input signals. For single-ended input signals, connect one of the inputs to a reference voltage (e.g., ground or midsupply) and connect the otherto the signal path. There are no tradeoffs here as the part's performance is the same with singleended or differential input signals. Which input is used
for the signal path only affects the polarity of the differential output signal.

Signal Level Shifting

Another important application of fully differential amplifier is signal level shifting. Single-ended to differential conversion accompanied by a signal level shift is very commonplace when driving ADCs. As noted in the theory of operation section, fully differential amplifiers have a common mode level servo that determines the output common mode level independent of the input common mode level. To set the output common mode level, simply apply the desired voltage to the $\mathrm{V}_{\text {ocm }}$ input pin. The voltage range on the $V_{\text {OCM }}$ pin is from $\left(-V_{S}+0.5 \mathrm{~V}\right)$ to $\left(+V_{S}-1.3 \mathrm{~V}\right)$.

APPLICATIONS InFORMATION

Figure 4. Basic Fully Differential Amplifier Application Circuits (Note: Single-Ended to Differential Conversion is Easily Accomplished by Connecting One of the Input Nodes, $+V_{\text {IN }}$ or $-V_{\text {IN }}$, to a DC Reference Level (e.g., Ground))

LTC 1992 Family

APPLLCATIONS InFORMATION

The $\mathrm{V}_{\text {Ocm }}$ input pin has a very high input impedance and is easily driven by even the weakest of sources. Many ADCs provide a voltage reference output that defines either its common mode level or its full-scale level. Apply the ADC's reference potential either directly to the $V_{0 C M}$ pin or through a resistive voltage divider depending on the reference voltage's definition. When controlling the $\mathrm{V}_{0 \mathrm{CM}}$ pin by a high impedance source, connect a bypass capacitor ($1000 \mathrm{pFto} 0.1 \mu \mathrm{~F}$) from the $\mathrm{V}_{\text {Ocm }}$ pin to ground to lower the high frequency impedance and limit external noise coupling. Other applications will want the output biased at a midpoint of the power supplies for maximum output voltage swing. For these applications, the LTC1992 provides a midsupply potential at the $\mathrm{V}_{\text {MID }}$ pin. The $\mathrm{V}_{\text {MID }}$ pin connects to a simple resistive voltage divider with two 200 k resistors connected between the supply pins. To use this feature, connect the $\mathrm{V}_{\text {MID }}$ pin to the $\mathrm{V}_{\text {OCM }}$ pin and bypass this node with a capacitor.

One undesired effect of utilizing the level shifting function is an increase in the differential output offset voltage due to gain setting resistor mismatch. The offset is approximately the amount of level shift ($\mathrm{V}_{\text {OUTCM }}$ - $\mathrm{V}_{\text {INCM }}$) multiplied by the amount of resistor mismatch. For example, a 2 V level shift with 0.1% resistors will give around 2 mV of output offset $(2 \bullet 0.1 \%=2 \mathrm{mV})$. The exact amount of offset is dependent on the application's gain and the resistor mismatch. For a detail description, consult the Fully Differential Amplifier Applications Circuit Analysis section.

CMRR and Output Balance

One common misconception of fully differential amplifiers is that the common mode level servo guarantees an infinite common mode rejection ratio (CMRR). This is not true. The common mode level servo does, however, force the two outputs to be truly complementary (i.e., exactly opposite or 180 degrees out of phase). Output balance is a measure of how complementary the two outputs are.
At low frequencies, CMRR is primarily determined by the matching of the gain setting resistors. Like any op amp, the LTC1992 does not have infinite CMRR, however resistor mismatching of only 0.018%, halves the circuit's CMRR. Standard 1% tolerance resistors yield a CMRR of about 40dB. For most applications, resistor matching
dominates low frequency CMRR performance. The specifications for the fixed gain LTC1992-X parts include the on-chip resistor matching effects. Also, note that an input common mode signal appears as a differential output signal reduced by the CMRR. As with op amps, at higher frequencies the CMRR degrades. Refer to the Typical Performance plots for the details of the CMRR performance over frequency.
At low frequencies, the output balance specification is determined by the matching of the on-chip $\mathrm{R}_{\text {CMM }}$ and $\mathrm{R}_{\text {CMP }}$ resistors. At higher frequencies, the output balance degrades. Refer to the typical performance plots for the details of the output balance performance over frequency.

Input Impedance

The input impedance for a fully differential amplifier application circuit is similar to that of a standard op amp inverting amplifier. One major difference is that the input impedance is different for differential input signals and single-ended signals. Referring to Figure 3, for differential input signals the input impedance is expressed by the following expression:

$$
R_{\text {INDIFF }}=2 \cdot R_{\text {IN }}
$$

For single-ended signals, the input impedance is expressed by the following expression:

$$
R_{I N S-E}=\frac{R_{I N}}{1-\frac{R_{F B}}{2 \cdot\left(R_{I N}+R_{F B}\right)}}
$$

The input impedance for single-ended signals is slightly higher than the $R_{I N}$ value since some of the input signal is fed back and appears as the amplifier's input common mode level. This small amount of positive feedback increases the input impedance.

Driving Capacitive Loads

The LTC1992 family of parts is stable for all capacitive loads up to at least 10,000 pF. While stability is guaranteed, the part's performance is not unaffected by capacitive loading. Large capacitive loads increase output step response ringing and settling time, decrease the bandwidth

APPLICATIONS INFORMATION

and increase the frequency response peaking. Refer to the Typical Performance plots for small-signal step response, large-signal step response and gain over frequency to appraise the effects of capacitive loading. While the consequences are minor in most instances, consider these effects when designing application circuits with large capacitive loads.

Input Signal Amplitude Considerations

For application circuits to operate correctly, the amplifier must be in its linear operating range. To be in the linear operating range, the input signal's common mode voltage must be within the part's specified limits and the rail-torail outputs must stay within the supply voltage rails. Additionally, the fixed gain LTC1992-X parts have input protection diodes that limit the input signal to be within the supply voltage rails. The unconstrained LTC1992 uses external resistors allowing the source signals to go beyond the supply voltage rails.

When taken outside of the linear operating range, the circuit does not perform as expected, however nothing extreme occurs. Outputs driven into the supply voltage rails are simply clipped. There is no phase reversal or oscillation. Once the outputs return to the linear operating range, there is a small recovery time, then normal operation proceeds. When the input common mode voltage is below the specified lower limit, on-chip protection diodes conduct and clamp the signal. Once the signal returns to the specified operating range, normal operation proceeds. If the input common mode voltage goes slightly above the specified upper limit (by no more than about 500 mV), the amplifier's open-loop gain reduces and DC offset and closed-loop gain errors increase. Return the input back to the specified range and normal performance commences. If taken well above the upper limit, the amplifier's input stage is cut off. The gain servo is now open loop; however, the common mode servo is still functional. Output balance is maintained and the outputs go to opposite supply rails. However, which output goes to which supply rail is
random. Once the input returns to the specified input common mode range, there is a small recovery time then normal operation proceeds.
The LTC1992's input signal common mode range (VINCMR) is from $\left(-V_{S}-0.1 \mathrm{~V}\right)$ to $\left(+V_{S}-1.3 \mathrm{~V}\right)$. This specification applies to the voltage at the amplifier's input, the INP and INM nodes of Figure 2. The specifications for the fixed gain LTC1992-X parts reflect a higher maximum limit as this specification is for the entire gain block and references the signal at the input resistors. Differential input signals and single-ended signals require a slightly different set of formulae. Differential signals separate very nicely into common mode and differential components while single ended signals do not. Refer to Figure 5 for the formulae for calculating the available signal range. Additionally, Table 1 lists some common configurations and their appropriate signal levels.
The LTC1992's outputs allow rail-to-rail signal swings. The output voltage on either output is a function of the input signal's amplitude, the gain configured and the output signal's common mode level set by the $\mathrm{V}_{\text {OCM }}$ pin. For maximum signal swing, the $\mathrm{V}_{00 \mathrm{M}}$ pin is set at the midpoint of the supply voltages. For other applications, such as an ADC driver, the required level must fall within the $\mathrm{V}_{\text {OCM }}$ range of $\left(-\mathrm{V}_{S}+0.5 \mathrm{~V}\right)$ to $\left(+\mathrm{V}_{S}-1.3 \mathrm{~V}\right)$. For singleended input signals, it is not always obvious which output will clip first thus both outputs are calculated and the minimum value determines the signal limit. Refer to Figure 5 for the formulae and Table 1 for examples.
To ensure proper linear operation both the input common mode level and the output signal level must be within the specified limits. These same criteria are also present with standard op amps. However, with a fully differential amplifier, it is a bit more complex and old familiar op amp intuition often leads to the wrong result. This is especially true for single-ended to differential conversion with level shifting. The required calculations are a bittedious, but are necessary to guarantee proper linear operation.

LTC 1992 Family

APPLICATIONS InFORMATION

Differential Input Signals

INPUT COMMON MODE LIMITS
A. CALCULATE $V_{I N C M}$ MINIMUM AND MAXIMUM GIVEN $R_{I N}, R_{F B}$ AND $V_{O C M}$
$V_{\text {INCM }}(\mathrm{MAX})=\left(+V_{S}-1.3 V\right)+\frac{1}{G}\left(+V_{S}-1.3 V-V_{\text {OCM }}\right)$
$V_{\text {INCM }}$ (MIN $)=\left(-V_{S}-0.1 \mathrm{~V}\right)+\frac{1}{G}\left(-V_{S}-0.1 \mathrm{~V}-V_{\text {OCM }}\right)$
OR B. WITH A KNOWN VINCM, RiN, R ${ }_{\text {FB }}$ AND V $V_{O C M}$, CALCULATE COMMON MODE
VOLTAGE AT INP AND INM NODES (VINCM(AMP)) AND CHECK THAT IT IS
WITHIN THE SPECIFIED LIMITS.
$V_{\text {INCM(AMP) })}=\frac{V_{\text {INP }}+V_{\text {INM }}}{2}=\frac{G}{G+1} V_{\text {INCM }}+\frac{1}{G+1} V_{\text {OCM }}$
OUTPUT SIGNAL CLIPPING LIMIT
$V_{\text {INDIFF }}(\operatorname{MAX})\left(V_{\text {P-PDIFF }}\right)=$ THE LESSER VALUE OF $\frac{4}{G}\left(+V_{S}-V_{\text {OCM }}\right)$ OR $\frac{4}{G}\left(V_{\text {OCM }}--V_{S}\right)$

Single End Input Signals

INPUT COMMON MODE LIMITS (NOTE: FOR THE FIXED GAIN LTC1992-X PARTS, VINREF AND VINSIG CANNOT EXCEED THE SUPPLIES)

$$
\begin{aligned}
& V_{\text {INSIG(MAX) }}=2\left[\left(+V_{S}-1.3 V-\frac{V_{\text {INREF }}}{2}\right)+\frac{1}{G}\left(+V_{S}-1.3 V-V_{\text {OCM }}\right)\right] \\
& V_{\text {INSIG(MIN) }}=2\left[\left(-V_{S}-0.1 V-\frac{V_{\text {INREF }}}{2}\right)+\frac{1}{G}\left(-V_{S}-0.1 V-V_{\text {OCM }}\right)\right] \\
& \text { OR } \\
& V_{\text {INSIGP-P }}=2\left[\left(\left(+V_{S}--V_{S}\right)-1.2 V\right)+\frac{1}{G}\left(\left(+V_{S}--V_{S}\right)-1.2 V\right)\right]
\end{aligned}
$$

OUTPUT SIGNAL CLIPPING LIMIT
$V_{\text {INSIG(MAX }}=$ THE LESSER VALUE OF $V_{\text {INREF }}+\frac{2}{G}\left(+V_{S}-V_{\text {OCM }}\right)$ OR $V_{\text {INREF }}+\frac{2}{G}\left(V_{O C M}--V_{S}\right)$
$V_{\text {INSIG }}(M I N)=$ THE GREATER VALUE OF $V_{\text {INREF }}+\frac{2}{G}\left(-V_{S}-V_{\text {OCM }}\right)$ OR $V_{\text {INREF }}+\frac{2}{G}\left(V_{O C M}-+V_{S}\right) \quad 1992$ f05
Figure 5. Input Signal Limitations

APPLICATIONS INFORMATION

Table 1. Input Signal Limitations for Some Common Applications
Differential Input Signal, $\mathrm{V}_{\text {OCM }}$ at Midsupply. (VIICM must be within the Min and Max table values and
$V_{\text {INDIFF }}$ must be less than the table value)

$+V_{\mathbf{S}}$ (\mathbf{V})	$-\mathbf{V}_{\mathbf{S}}$ (\mathbf{V})	GAIN $(\mathbf{V} / \mathbf{N})$	$\mathbf{V}_{\mathbf{0 C M}}$ (\mathbf{V})	$\mathbf{V}_{\text {INCM(MAX) }}$ (\mathbf{V})	$\mathbf{V}_{\text {INCM(MIN) }}$ (\mathbf{V})	$\mathbf{V}_{\text {INDIFF(MAX) }}$ $\left(\mathbf{V}_{\text {P-PDIFF) }}\right.$	$\mathbf{V}_{\text {OUTDIFF(MAX) }}$ $\left(\mathbf{V}_{\text {P-PDIFF }}\right)$
2.7	0	1	1.35	1.450	-1.550	5.40	5.40
2.7	0	2	1.35	1.425	-0.825	2.70	5.40
2.7	0	5	1.35	1.410	-0.390	1.08	5.40
2.7	0	10	1.35	1.405	-0.245	0.54	5.40
5	0	1	2.5	4.900	-2.700	10.00	10.00
5	0	2	2.5	4.300	-1.400	5.00	10.00
5	0	5	2.5	3.940	-0.620	2.00	10.00
5	0	10	2.5	3.820	-0.360	1.00	10.00
5	-5	1	0	7.400	-10.200	20.00	20.00
5	-5	2	0	5.550	-7.650	10.00	20.00
5	-5	5	0	4.440	-6.120	4.00	20.00
5	-5	10	0	4.070	-5.610	2.00	20.00

Differential Input Signal, $\mathrm{V}_{\text {OCM }}$ at Typical ADC Levels. (VINCM must be within the Min and Max table values and $V_{\text {INDIFF }}$ must be less than the table value)

$+\mathbf{V}_{\mathbf{S}}$ (\mathbf{V})	$-\mathbf{V}_{\mathbf{S}}$ (\mathbf{V})	GAIN $(\mathbf{V} / \mathbf{N})$	$\mathbf{V}_{\text {OCM }}$ (\mathbf{V})	$\mathbf{V}_{\text {INCM(MAX) }}$ (\mathbf{V})	$\mathbf{V}_{\text {INCM(MIN) }}$ (\mathbf{V})	$\mathbf{V}_{\text {INDIFF(MAX) }}$ $\left(\mathbf{V}_{\text {P-PDIFF }}\right)$	$\mathbf{V}_{\text {OUTDIFF(MAX) }}$ $\left(\mathbf{V}_{\text {P-PDIFF }}\right)$
2.7	0	1	1	1.800	-1.200	4.00	4.00
2.7	0	2	1	1.600	-0.650	2.00	4.00
2.7	0	5	1	1.480	-0.320	0.80	4.00
2.7	0	10	1	1.440	-0.210	0.40	4.00
5	0	1	2	5.400	-2.200	8.00	8.00
5	0	2	2	4.550	-1.150	4.00	8.00
5	0	5	2	4.040	-0.520	1.60	8.00
5	0	10	2	3.870	-0.310	0.80	8.00
5	-5	1	2	5.400	-12.200	12.00	12.00
5	-5	2	2	4.550	-8.650	6.00	12.00
5	-5	5	2	4.040	-6.520	2.40	12.00
5	-5	10	2	3.870	-5.810	1.20	12.00

LTC 1992 Family

APPLICATIONS INFORMATION

Table 1. Input Signal Limitations for Some Common Applications
Midsupply Referenced Single-Ended Input Signal, $\mathrm{V}_{\text {OCM }}$ at Midsupply. (The $\mathrm{V}_{\text {INSIG }}$ Min and Max values listed account for both the input common mode limits and the output clipping)

$\begin{aligned} & +V_{S} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} -V_{S} \\ (V) \end{gathered}$	$\begin{aligned} & \text { GAIN } \\ & \text { (V/V) } \end{aligned}$	$V_{0 C M}$ (V)	$V_{\text {INREF }}$ (V)	$\mathrm{V}_{\text {INSIG(MAX) }}$ (V)	$\mathrm{V}_{\text {INSIG(MIN) }}$ (V)	$\begin{gathered} V_{\text {INSIGP-P(MAX) }} \\ \left(V_{\text {P-P }} \text { AROUND } V_{\text {INREF }}\right) \end{gathered}$	$V_{\text {OUTDIFF(MAX) }}$ (VP-PDIFF)
2.7	0	1	1.35	1.35	1.550	-1.350	0.40	0.40
2.7	0	2	1.35	1.35	1.500	0.000	0.30	0.60
2.7	0	5	1.35	1.35	1.470	0.810	0.24	1.20
2.7	0	10	1.35	1.35	1.460	1.080	0.22	2.20
5	0	1	2.5	2.5	7.300	-2.500	9.60	9.60
5	0	2	2.5	2.5	5.000	0.000	5.00	10.00
5	0	5	2.5	2.5	3.500	1.500	2.00	10.00
5	0	10	2.5	2.5	3.000	2.000	1.00	10.00
5	-5	1	0	0	10.000	-10.000	20.00	20.00
5	-5	2	0	0	5.000	-5.000	10.00	20.00
5	-5	5	0	0	2.000	-2.000	4.00	20.00
5	-5	10	0	0	1.000	-1.000	2.00	20.00

Midsupply Referenced Single-Ended Input Signal, $\mathrm{V}_{\text {ocm }}$ at Typical ADC Levels. (The $\mathrm{V}_{\text {INSIG }}$ Min and Max values listed account for both the input common mode limits and the output clipping)

$\begin{aligned} & +V_{S} \\ & (V) \end{aligned}$	$\begin{gathered} -V_{S} \\ (V) \end{gathered}$	$\begin{aligned} & \text { GAIN } \\ & \text { (V/V) } \end{aligned}$	$V_{0 C M}$ (V)	$V_{\text {INREF }}$ (V)	$\begin{aligned} & V_{\text {INSIG(MAX) }}(V) \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {INSIG(MIN) }}$ (V)	$\begin{gathered} \text { VINSIGP-P(MAX) }^{\left(V_{\text {P-P }} \text { AROUND } V_{\text {INREF }}\right)} \\ \hline \end{gathered}$	$\begin{gathered} V_{\text {OUTDIFF(MAX) }} \\ \left(V_{\text {P-PDIFF }}\right) \end{gathered}$
2.7	0	1	1	1.35	2.250	-0.650	1.80	1.80
2.7	0	2	1	1.35	1.850	0.350	1.00	2.00
2.7	0	5	1	1.35	1.610	0.950	0.52	2.60
2.7	0	10	1	1.35	1.530	1.150	0.36	3.60
5	0	1	2	2.5	6.500	-1.500	8.00	8.00
5	0	2	2	2.5	4.500	0.500	4.00	8.00
5	0	5	2	2.5	3.300	1.700	1.60	8.00
5	0	10	2	2.5	2.900	2.100	0.80	8.00
5	-5	1	2	0	6.000	-6.000	12.00	12.00
5	-5	2	2	0	3.000	-3.000	6.00	12.00
5	-5	5	2	0	1.200	-1.200	2.40	12.00
5	-5	10	2	0	0.600	-0.600	1.20	12.00

APPLICATIONS INFORMATION

Table 1. Input Signal Limitations for Some Common Applications
Single Supply Ground Referenced Single-Ended Input Signal, $\mathbf{V}_{\text {OCM }}$ at Midsupply. (The $\mathrm{V}_{\text {INSIG }}$ Min and Max values listed account for both the input common mode limits and the output clipping)

$+V_{S}$ (V)	$\begin{aligned} & -V_{S} \\ & (V) \end{aligned}$	GAIN (V / V)	$V_{0 C M}$ (V)	$V_{\text {InReF }}$ (V)	$\mathrm{V}_{\text {INSIG(MAX) }}$ (V)	$V_{\text {INSIG(MIN) }}$ (V)	$\begin{gathered} V_{\text {INSIGP-P(MAX) }} \\ \left(V_{\text {P-P }} \text { AROUND } V_{\text {INREF }}\right) \end{gathered}$	$V_{\text {OUTDIFF(MAX) }}$ (VP-PDIFF)
2.7	0	1	1.35	0	2.700	-2.700	5.40	5.40
2.7	0	2	1.35	0	1.350	-1.350	2.70	5.40
2.7	0	5	1.35	0	0.540	-0.540	1.08	5.40
2.7	0	10	1.35	0	0.270	-0.270	0.54	5.40
5	0	1	2.5	0	5.000	-5.000	10.00	10.00
5	0	2	2.5	0	2.500	-2.500	5.00	10.00
5	0	5	2.5	0	1.000	-1.000	2.00	10.00
5	0	10	2.5	0	0.500	-0.500	1.00	10.00

Single Supply Ground Referenced Single-Ended Input Signal, V $\mathbf{O C M}$ at Typical ADC Reference Levels. (The VinSIg Min and Max values listed account for both the input common mode limits and the output clipping)

$+V_{S}$ (V)	$\begin{gathered} -V_{S} \\ (V) \\ \hline \end{gathered}$	$\begin{aligned} & \text { GAIN } \\ & (\mathrm{V} / \mathrm{N}) \\ & \hline \end{aligned}$	$V_{0 C M}$ (V)	$V_{\text {InReF }}$ (V)	$\mathrm{V}_{\text {INSIG(MAX) }}$ (V)	$\mathrm{V}_{\text {INSIG(MIN) }}$ (V)	$\begin{gathered} V_{\text {INSIGP-P(MAX) }} \\ \left(V_{\text {P-P }} \text { AROUND } V_{\text {INREF }}\right) \end{gathered}$	$V_{\text {OUTDIFF(MAX) }}$ (VP-PDIFF)
2.7	0	1	1	0	2.000	-2.000	4.00	4.00
2.7	0	2	1	0	1.000	-1.000	2.00	4.00
2.7	0	5	1	0	0.400	-0.400	0.80	4.00
2.7	0	10	1	0	0.200	-0.200	0.40	4.00
5	0	1	2	0	4.000	-4.000	8.00	8.00
5	0	2	2	0	2.000	-2.000	4.00	8.00
5	0	5	2	0	0.800	-0.800	1.60	8.00
5	0	10	2	0	0.400	-0.400	0.80	8.00

Fully Differential Amplifier Applications Circuit Analysis

All of the previous applications circuit discussions have assumed perfectly matched symmetrical feedback networks. To consider the effects of mismatched or asymmetrical feedbacknetworks, the equations geta bit messier.

Figure 6 lists the basic gain equation for the differential output voltage in terms of $+\mathrm{V}_{\text {IN }},-\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OSDIFF }}, \mathrm{V}_{\text {OUTCM }}$ and the feedback factors $\beta 1$ and $\beta 2$. The feedback factors are simply the portion of the output that is fed back to the input summing junction by the $\mathrm{R}_{\mathrm{FB}}-\mathrm{R}_{\mathrm{IN}}$ resistive voltage divider. $\beta 1$ and $\beta 2$ have the range of zero to one. The $V_{\text {OUTCM }}$ term also includes its offset voltage, $\mathrm{V}_{\text {OSCM }}$, and its gain mismatch term, K_{CM}. The K_{CM} term is determined by the matching of the on-chip $\mathrm{R}_{\mathrm{CMP}}$ and $\mathrm{R}_{\mathrm{CMM}}$ resistors in the common mode level servo (see Figure 2).

While mathematically correct, the basic signal equation does not immediately yield any intuitive feel for fully differential amplifier application operation. However, by nulling out specific terms, some basic observations and sensitivities come forth. Setting $\beta 1$ equal to $\beta 2$, $\mathrm{V}_{\text {OSDIFF }}$ to zero and $\mathrm{V}_{\text {OUTCM }}$ to $\mathrm{V}_{\text {OCM }}$ gives the old gain equation from Figure 3. The ground referenced, single-ended input signal equation yields the interesting result that the driven side feedback factor ($\beta 1$) has a very different sensitivity than the grounded side ($\beta 2$). The CMRR is twice the feedback factor difference divided by the feedback factor sum. The differential output offset voltage has two terms. The first term is determined by the input offset term, $V_{\text {OSDIFF }}$ and the application's gain. Note that this term equates to the formula in Figure 3 when $\beta 1$ equals $\beta 2$. The amount of signal level shifting and the feedback factor mismatch determines the second term. This term

LTC 1992 Family

APPLICATIONS InFORMATION

$$
\begin{aligned}
& V_{\text {OUTDIFF }}=\frac{2\left[+V_{\text {IN }} \cdot(1-\beta 1)-\left(-V_{\text {IN }}\right) \cdot(1-\beta 2)\right]+2 V_{\text {OSDIFF }}+2 V_{\text {OUTCM }}(\beta 1-\beta 2)}{\beta 1+\beta 2} \\
& \text { WHERE: } \\
& \beta 1=\frac{R_{\text {IN } 1}}{R_{I N 1}+R_{F B 1}} ; \beta 2=\frac{R_{\text {IN2 }}}{R_{\text {IN2 }}+R_{F B 2}} ; V_{\text {OSDIFF }}=\text { AMPLIFIER INPUT REFERRED OFFSET VOLTAGE } \\
& V_{\text {OUTCM }}=\mathrm{K}_{\text {CM }} \bullet V_{\text {OCM }}+V_{\text {OSCM }} \\
& 0.999<\mathrm{K}_{\mathrm{CM}}<1.001 \\
& \text { - FOR GROUND REFERENCED, SINGLE-ENDED INPUT SIGNAL, LET }+\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INSIG }} \text { AND }-\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \\
& V_{\text {OUTDIFF }}=\frac{2 \cdot \mathrm{~V}_{\text {INSIG }} \cdot(1-\beta 1)+2 \mathrm{~V}_{\text {OSDIFF }}+2 \mathrm{~V}_{\text {OUTCM }}(\beta 1-\beta 2)}{\beta 1+\beta 2} \\
& \text { - COMMON MODE REJECTION: SET }+\mathrm{V}_{\text {IN }}=-\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INCM }}, \mathrm{V}_{\text {OSDIFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUTCM }}=0 \mathrm{~V} \\
& \text { CMRR }=\frac{\Delta V_{\text {INCM }}}{\Delta V_{\text {OUTDIFF }}}=2 \frac{\beta 1+\beta 2}{\beta 2-\beta 1} ; \text { OUTPUT REFERRED } \\
& \text { - OUTPUT DC OFFSET VOLTAGE: SET }+\mathrm{V}_{\text {IN }}=-\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INCM }} \\
& V_{\text {OSDIFFOUT }}=V_{\text {OSDIFF }} \frac{2}{\beta 1+\beta 2}+\left(V_{\text {OUTCM }}-V_{\text {INCM }}\right) 2 \frac{\beta 2-\beta 1}{\beta 1+\beta 2}
\end{aligned}
$$

Figure 6. Basic Equations for Mismatched or Asymmetrical Feedback Applications Circuits
quantifies the undesired effect of signal level shifting discussed earlier in the Signal Level Shifting section.

Asymmetrical Feedback Application Circuits

The basic signal equation in Figure 6 also gives insight to another piece of intuition. The feedback factors may be deliberately setto different values. One interesting class of these application circuits sets one or both of the feedback factors to the extreme values of either zero or one. Figure 7 shows three such circuits.

At first these application circuits may look to be unstable or open loop. It is the common mode feedback loop that enables these circuits to function. While they are useful circuits, they have some shortcomings that must be considered. First, do to the severe feedback factor asymmetry, the $V_{\text {OCM }}$ level influences the differential output voltage with about the same strength as the input signal. With this much gain in the $\mathrm{V}_{\text {OCm }}$ path, differential output offset and noise increase. The large $\mathrm{V}_{\text {Ocm }}$ to $\mathrm{V}_{\text {OUTDIFF }}$ gain also necessitates that these circuits are largely limited to
dual, split supply voltage applications with a ground referenced input signal and a grounded $\mathrm{V}_{\text {Ocm }}$ pin.

The top application circuit in Figure 7 yields a high input impedance, precision gain of 2 block without any external resistors. The on-chip common mode feedback servo resistors determine the gain precision (better than 0.1 percent). By using the $-\mathrm{V}_{\text {OUT }}$ output alone, this circuit is also useful to get a precision, single-ended output, high input impedance inverter. To intuitively understand this circuit, consider it as a standard op amp voltage follower (delivered through the signal gain servo) with a complementary output (delivered through the common mode level servo). As usual, the amplifier's input common mode range must not be exceeded. As with a standard op amp voltage follower, the common mode signal seen at the amplifier's input is the input signal itself. This condition limits the input signal swing, as well as the output signal swing, to be the input signal common mode range specification.
The middle circuit is largely the same as the first except that the noninverting amplifier path has gain. Note that

APPLICATIONS INFORMATION

$V_{\text {OUTDIFF }}=2\left(+V_{\text {IN }}-V_{\text {OCM }}\right)$

SETTING $V_{\text {OCM }}=O V$
$V_{\text {OUTDIFF }}=2 V_{\text {IN }}$

$V_{\text {OUTDIFF }}=2\left(+V_{\text {II }} \frac{1}{\beta}-V_{\text {OCM }}\right) ; \beta=\frac{R_{\text {IN }}}{R_{\text {IN }}+R_{F B}}$

SETTING $V_{\text {OCM }}=0 V$
$V_{\text {OUTDIFF }}=2 V_{I N}\left(\frac{1}{\beta}\right)=2 V_{\text {IN }}\left(1+\frac{R_{F B}}{R_{\text {IN }}}\right)$

$V_{\text {OUTDIFF }}=2\left(+V_{\text {IN }} \frac{1-\beta}{\beta}+V_{\text {OCM }}\right) ; \beta=\frac{R_{\text {IN }}}{R_{\text {IN }}+R_{\text {FB }}}$

SETTING $\mathrm{V}_{\mathrm{OCM}}=\mathrm{OV}$
SETTING $V_{O C M}=0 V$
$V_{\text {OUTDIFF }}=2 V_{\text {IN }}\left(\frac{1-\beta}{\beta}\right)=2 V_{\text {IN }}\left(\frac{R_{\text {FB }}}{R_{\text {IN }}}\right)$

Figure 7. Asymmetrical Feedback Application Circuits (Most Suitable in Applications with Dual, Split Supplies (e.g., $\pm 5 \mathrm{~V}$), Ground Referenced Single-Ended Input Signals and $\mathrm{V}_{\text {Ocm }}$ Connected to Ground)
once the $V_{\text {OCM }}$ voltage is set to zero, the gain formula is the same as a standard noninverting op amp circuit multiplied by two to account for the complementary output. Taking R FBB $^{\text {to zero (i.e., taking } \beta \text { to one) gives the }}$ same formula as the top circuit. As in the top circuit, this circuit is also useful as a single-ended output, high input impedance inverting gain block (this time with gain). The input common mode considerations are similar to the top circuit's, but are not nearly as constrained since there is now gain in the noninverting amplifier path. This circuit, with $V_{\text {ocm }}$ at ground, also permits a rail-to-rail output swing in most applications.

The bottom circuit is another circuit that utilizes a standard op amp configuration with a complementary output. In this case, the standard op amp circuit has an inverting configuration. With $\mathrm{V}_{\mathrm{Ocm}}$ at zero volts, the gain formula is the same as a standard inverting op amp circuit multiplied by two to account for the complementary output. This circuit does not have any common mode level constraints as the inverting input voltage sets the input common mode level. This circuit also delivers rail-to-rail output voltage swing without any concerns.

LTC1992 Family

TYPICAL APPLICATIONS

Interfacing a Bipolar, Ground Referenced, Single-Ended Signal to a Unipolar Single Supply, Differential Input ADC ($\mathrm{V}_{I N}=0 \mathrm{~V}$ Gives a Digital Mid-Scale Code)

Compact, Unipolar Serial Data Conversion

Zero Components, Single-Ended Adder/Subtracter

TYPICAL APPLICATIONS

Single-Ended to Differential Conversion Driving an ADC

PACKAGG DESCRIPTION

MS8 Package 8-Lead Plastic MSOP

(Reference LTC DWG \# 05-08-1660)

LTC 1992 Family

TYPICAL APPLICATION

Balanced Frequency Converter (Suitable for Frequencies up to 50 kHz)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1167	Precision Instrumentation Amplifier	Single Resistor Sets the Gain
LT1990	High Voltage, Gain Selectable Difference Amplifier	$\pm 250 \mathrm{~V}$ Common Mode, Micropower, Selectable Gain =1, 10
LT1991	Precision Gain Selectable Difference Amplifier	Micropower, Pin Selectable Gain $=-13$ to 14
LT1995	High Speed Gain Selectable Difference Amplifier	$30 \mathrm{MHz}, 1000 \mathrm{~V} / \mathrm{us}$, Pin Selectable Gain $=-7$ to 8
LT6600-X	Differential In/Out Amplifier Lowpass Filter	Very Low Noise, Standard Differential Amplifier Pinout

